Protel N Structure 1.2 Sequence Determines Structure Determines

Function
Pl’edICtIOn 14 1D, 2D, Protein three-dimensional (3D) structure (i.e., the coordi-
d 3D nates of all atoms) determines protein function. But what
an determines 3D structure? The hypothesis that structure (also

referred to as ‘the fold’) is uniquely determined by the speci-
Burkhard Rost ficity of the sequence, has been verified for many protgins.
European Molecular Biology Laboratory, Heidelberg, Germany While it is now known that particular proteins (chaperones)
often play a role in the folding pathway, and in correcting
misfolds? it is still generally assumed that the final structure
is at the free-energy minimum. Thus, all information about

Introduction 2243 the native structure of a protein is coded in the amino acid
State of the Art in Protein Structure Prediction 2244 sequence, plus its native solution environment. Can the code be
geqc;l_etnce _A“ggmems 2325 deciphered, i.e., can 3D structure be predicted from sequence?
reiction in In principle, the code could by deciphered from physico-
Prediction in 2D 2250 P ple, y P bhy

chemical principles using, for example, molecular dynamics

©Co~NoOOUAWNPRE

Prediction in 3D 2251 -

Conclusions 2053 Methods’ In practice, however, such approaches are frus-
Related Articles 2054 trated by two principal obstacles. First, energy differences
References 2254 between native and unfolded proteins are extremely small

(order of 1 kcal mott). Second, the high complexity (i.e.,
cooperativity) of protein folding requires several orders of
magnitudes more computing time than we anticipate to have
Abbreviations over the next decades. Thus, the inaccuracy in experimentally
. . ) ) determining the basic parameters, and the limited computing
1D = one-dimensional; 1D structure one-dimensional  resources become fatal for predicting protein structure from
(e.g., sequence or string of secondary structure);=2D fjrst principles® The only successful structure prediction tools

two-dimensional; 2D structure two-dimensional (€.g., inter-  are knowledge-based, using a combination of statistical theory
residue distances); 3B three-dimensional; 3D structuke g empirical rules.

three-dimensional (coordinates of protein structure); RbB
Protein Data Bank of experimentally determined 3D structures . . .
of proteins; SWISS-PROE database of protein sequences; 1.3 The SequenceStructure Gap is Rapidly Increasing

T =target used for homology modeling (protein of known  cyrrently, databases for protein sequences (e.g., SWISS-

3D structure); U= protein sequence of unknown 3D structure PROT) are expanding rapidly, largely because of large-scale

(e.g., search sequence). genome sequencing projects. The first four entire genome
sequences have been published; they represent all three ter-
restrial kingdoms: (1) prokaryote$iaemophilus influenzae

1 INTRODUCTION and Mycoplasma genitaliuf (2) eucaryotes: yeadf; and
_ _ _ (3) archeans:Methanococcus jannascHit At least another
1.1 Proteins are the Machinery of Life dozen genomes will be completely sequenced before the end

. . . of 1997 (Terry Gaasterland, personal communication); the
The information for life is stored by a four-letter alphabet entire human genome is likely to be known in the year 2003.

in the genes (DNA). Prote!ns are, among 'others, Fhe MacrOpy;g implies that the explosion of genome, and hence, pro-
molecules that perform all important tasks in organisms, suc in, sequences is supposedly the only field outgrowing the

as catalysis of biochemical reactions, transport of nutrients, o in development of computer hardware. It also implies,

recognition, apd transmission c.)f signals. Thus, genes are ”} at despite significant improvements of structure determina-
bluep'rmts or library, anql proteins are the machinery of IIfe'tion techniques, the gap between the number of proteins for

. ! X ) . which structure is deposited in public databases (EpBind
into a stretched chain. This protein sequence comprises atrarm—e number of proteins for which sequences are known is

lation of the four-letter DNA alphabet into a 20-letter alphabetincreasing
of native amino acids. Proteins differ in length (from 30 to '
over 30000 amino acids), and in the arrangement of the amino

acids (dubbed .residues,. when joineq in prpteins). Inwater, the¢ 4 can the Egg be Unboiled?

chain folds up into a unique three-dimensional (3D) structure.

The main driving force is the need to pack residues for which  When an egg is boiled, the proteins it contains unfold. Can
a contact with water is energetically unfavorable (hydropho-this procedure be reversed in theory? Can the encrypted code
bic residues) into the interior of the molecule. A detailedof protein structure be deciphered? Or, can theory help to
analysis of the underlying chemistry shows that this is onlybridge the sequenestructure gap? Indeed, for over 30 years,
possible if the protein forms regular patterns of a macroscopithere has been an ardent search for methods to predict protein
substructure called secondary structure (Figure 1; for an excestructure from the sequence. Many methods were found which
lent introduction into protein structure, see Ref. 1; for a shoriooked initially very promising- but always the hope has been
review of the basic principles of folding, see Ref. 2). dashed. How well do we do?
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Figure 1 Representation of HIV-1 protease monomer (Protein Data Bank code 1HHP) in one, two, and three dimensions. Each of the
representations gives rise to a different type of prediction problem. 1D prediction of secondary structure and solvent accessibility. From left to
ion of right: amino acids for the first 33 residues (one letter code, first column); alignment exemplified by 5 sequences (second column); secondary
structuré® (H, helix; E, strand; blank, other: third column), solvent accessibility (measuréd,irfourth columr?®), and a typical prediction

by the neural network program PHbfor secondary structure and solvent accessibility (in italics, fifth and sixth column). 2D prediction of
contact map. The 3D structure can be projected onto a two-dimensional matrix of inter-residue distances or contacts (as shown here). The entry
at positioni j of the matrix gives the contact strength between resichra residugj. The stronger a contact, the darker the marker. Horizontal

and vertical lines give borders of secondary structure segments. Graph made with C®ISBNbrediction of three-dimensional coordinates.

The ion of trace of the protein chain in 3D is plotted schematically as a ribeinaCe. Strands are indicated by arrows, the short helix is on

the right towards the end (C-term) of the protein. Graph made with MOLSCRPTediction not shown

1.5 No General Prediction of Structure from Sequence,  structure prediction and sequence analy%ia? In this review
Yet focus will be laid on recent prediction methods that do actually

. . - contribute to bridging the sequence structure gap in partic-
An important experiment has been initiated by John MOUItuIar in view of analyzing entire genomes. The first section

(CARB, Washington): those who determine protein structures . . ; ; X
submitted the sequences of proteins for which they were aboiff’h'.II provide a brief sketch about where we are today in pro

. ) , . ein structure prediction. The following sections will sketch
to solve the structure to a ‘to-be-predicted’ database; for eac e problems. and some of the solutions in database searches
entry in that database predictors could send in their prediction dpth d " f tein struct in 1D 2D d 3D '
before a given deadline (the public release of the structure)al?. elpre ction ot protein structure in ' » an
finally, the results were compared, and discussed during glgure ):
workshop (in Asilomar, California). Two such experiments
have been completed: in December 19%%*ofeins special
issue, Vol. 23, 1995), and in December 1996 (to be publishe S;AEEE'CQFTOTNHE ART IN PROTEIN STRUCTURE
in Proteing 1998). The results of both experiments demon-
strated clearly that the goal to predict structure from sequencg Bridging the SequenceStructure Gap for 10-30%
has not been reached, yet. So, has there been no improve- . g Sequences
ment despite ardent attempts, and the explosion of knowledge
deposited in databases? The gap between the number of known sequences

Indeed, there is a flood of literature on protein struc-(>170006%) and the number of known structures (about
ture prediction attempting to keep track with the expandings00d*) is widening rapidly. The most successful theoretical
databases (reviews;!* books®'® a practical approach to approach to bridging this gap is homology modeling. The



PROTEIN STRUCTURE PREDICTION IN 1D, 2D, AND 3D 3
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B homologw modelling

B remote homologw O Wi fold

Figure 2 Scope of structure prediction. Given any expressed protein, how likely can theory predict its 3D structure? For example, for 30%

of the proteins in the current SWISS-PROT database we can find regions for which homology modelling is agplwaitier the first four

entirely sequenced genomes (shown is yeast) this is true for less than 10% of all pf s, SWISS-PROT contains a bias introduced,

e.g., by limitations of previous sequencing techniques. Estimating the contribution of fold recognition or threading techniques is problematic.
Margins given are certainly over-estimated in terms of the accuracy of current threading methods, and supposedly under-estimated in terms of
the number of remote homologs that could be detected. (Note, however, today threading techniques are not accurate enough for any large-scale
prediction of 3D structure!) The remaining region (8D%) is occupied by unknown folds for which no accurate predictions in 3D can be
obtained

principal idea bases on the following observation. EachMost of these techniques are applicable if, and only if, the
native protein sequence adopts a unique structure. Howeveremote homolog to U has known structure. Once a remote
many different sequences can adopt the same basic folthomology is detected, remote homology modeling may be used
In other words, proteins with similar sequences tend tdo construct a 3D model. This could potentially reduce the
fold into similar structures. Indeed, for a pair of naturally sequencestructure gap by an additional 10 OD 000 pro-
evolved proteins, levels of 280% pairwise sequence identity teins (Figure 2). Given a sequence U from one of the complete
(percentage of residues identical between the two proteingenome sequences which have recently become available;
are sufficient to assure that the two proteins fold into similarwhat is the likelihood that the 3D structure can be predicted for
structure$>27 Thus, if a sequence of unknown structure U by homology modeling or remote homology modeling? A
(denoted U) has significant sequence similarity to a protein ogonservative answer is: 10%, based on the success of sequence
known structure (T), it is possible to construct an approximatedlignment-based homology modeling (Figure 2). A very opti-
3D model for U based on the assumption that U simply hagnistic estimate is over 50%, assuming all remote homologs
basically the same structure as T. This technique is referregould be recognized (Figure 2).

to as homology modeling. It effectively raises the number of

*known’ 3D structures from 5000 to over 50 0¥QFigure 2). 2.3 Accurate Prediction for 1D Aspects of 3D Structure

If no remote homolog can be detected for U, we are forced
2.2 Widening the Bridge by Threading to simplify the prediction problem. There is a pay-off from
Homology modeling allows prediction of 3D structure for Making this simplification: using the rich diversity of informa-
10-30% of all protein sequences. However, there is evidencdOn in current databases, it is possible to make very accurate
that most pairs of proteins with similar structure are remotelD Predictions from the sequence alone. Automatic predic-
homologs with less than 25% pairwise sequence idefftity. tion services are readlly'avallable for secondary structure,
These remote homologs cannot usually be recognised by consolvent accessibility, location artdpologyfor transmembrane

ventional sequence alignments, as this level of sequence ideRelices’? and the location of helices for the special class of

tity is not significant for structural similarity in the following Coiléd-coil proteins’®
sense. If one were to collect all pairwise alignments<@b%
sequence identity that result from a search with U against
database of protein sequences, then the vast majority of these
pairs would be entirely unrelated proteins. Thus, most similar .
structures appear to be remote homologs, but most possib%1 Basic Concept

pairs at low levels of sequence identity are, in fact, unrelated. The principal problem of sequence alignments is to find
Consequently, searching for remote homologs is similar to theéhe optimal superposition between two strings of amino (or
task of finding a needle in a haystatkTechniques to man- nucleic) acid sequences, i.e., to optimally align the two strings.
age this difficult task are referred to as ‘threading techniquesThe most simple objective is to optimize the percentage

SEQUENCE ALIGNMENTS
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and a putative homolog H is over 230% (for more

P of prcteie seguemces | CCOLAKETAL than 80 residues), alignment procedures are usually
E| 0000001100 straightforward?®=4° For less similar protein pairs, alignments
i T G| 1100000114 may fail.
iy it e Q] 0120000011
F| 0012000001 ) S
¥ 00012000400 3.4 Routine Database Searches by Simplified Procedures
E|] 00001211040 Aliani by d . N
i i - W Gao0a012110 igning two sequences by ynamI.C programming IS a
E Ll saooi1ago12i2 matter of seconds on a modern workstation. However, database
searches require to repeat this many times, and since the
databases grow, CPU time becomes a constraint in everyday

sequence analysis. This bottleneck is opened by methods that
Figure 3 The simple dynamic programming algorithm simply pro- start to find ‘identical words’ (sub-strings), and then grow the
ceeds in the following way. The two sequences to be aligned (U an@lignment around such blocks. The most widely used programs
T) are written into a matrix. Starting from the first element in the of this sort are BLAST and FASTA’39 In practice, advanced
matrix, identities are counted and summed along the diagqnal. Thalignment algorithms typically proceed by first running a fast
two best paths are marked by gray lines. The two best alignment§can with BLAST and/or FASTA, and then by applying the
match only two identical residues for the example given. However, ifg | dynamic programming algorithm. To illustrate sequence
insertions (marked by dots) were allowed, the best alignment, aCt”a"yanaIysis in practice: aligning the 6000 sequences of yeast
matches four residues against all known proteins was recently accomplished in 72 h

on 64 SGI 10000 processdts.
of residues that are identical between the two sequences.

A dynamic programmingalgorithm is guaranteed to find
the optimal solution for the problem in an algorithmic time
quadratic in the length of both sequen@g&igure 3). For the The most advanced sequence alignment tools base the align-
alignment of protein sequences this simple approach is nahent on profiles derived from databases or particular sequence
sufficient as finding the best alignments, usually, requires tdamilies1*4?> One new generation of alignment methods is
introduce gaps in one sequence, or insertions in the Btherbased on Hidden Markov Models, another on genetic algo-
(Figure 3: rather than placing two dots into sequence Trithms. These new methods may be more successful in intrud-
residues A and E could be deleted in sequence U; note: thieg into the twilight zone of sequence alignments {20%

gap increases the score from 2 to 4 identical residues). Theequence identi&j) than advanced profile-based methods.
introduction of such gaps is mathematically treated by addindglowever, this remains to be proven.

a constant (gap open penalty) to the final score (here number

of id_e_ntical rgsidu_es). Howeve_r,_ to align pro_tein Sequenceg g prawback: Lack of Sufficiently Tested Cut-off

sensitively, this still is not sufficient. The major addition to Criteria

the simple approach described so far is to evaluate scores not

based on residue identities but based on biochemical properties There are many different alignment methods available for
of amino acid. For example, aligning two hydrophobic residueghose who need to run database searches for their every-
(I and L) is more beneficial than aligning a hydrophobic andday work. Which method is best? One of the difficulties in

a charged residue (L and K; note: when treating hydrophobi€omparing different alignment procedures is the lack of well-

residues as identical, the score for the best gapped alignmefigfined criteria for measuring the alignment quality. Very
in Figure 3 increases from 4 to 6). few papers have attempted to define such measures for the

comparison of various method%.The second problem for
. o ] . users is that most methods do not supply a cut-off criterion
3.2 Evolution Distinguishes Signal from Noise for distinguishing between homologous and nonhomologous

At the level of protein molecules, selective pressure result§€duences (i.e., false positives). For some large sequence fam-
from the need to maintain function, which in turn requires!€S, remote homologs can be aligned correctly, but for most
maintenance of the specific 3D structure. This evolutionanfaSes sequences aligned to the search protein U at levels below
history is the basis for the success in aligning protein (02270 Pairwise sequence identity will be false positives, i.e.,
nucleotide) sequences. Accordingly, conservation and muté’y'" have no structural or functional similarity to U. A sim-

tion patterns observed in alignments contain very specificpIe I_Zn%trg-derf)endent CU‘I\'ATXE%S&‘;' |_(|)n sequer;lt_:e ;‘den::ty IS
information about 3D structure. How much variation is toler- Provided by the program - However, this thresh-

ated without loss of structure? Two naturally evolved proteinsgft\;:gze;rﬂm%ngg%i”;]eo;rlﬂzeggfu?:e?]'ggﬁrggi similarities

with more than 25% identical residues (lengtB0 residues)
are very likely to be similar in 3D structufé.

3.5 Multiple Alignments Improve as Data Banks Grow

4 PREDICTION IN 1D

3.3 Task Trivial for High Levels of Sequence Identity
) ) 4.1 Secondary Structure
Any sequence analysis starts with database searches:

all known databases are scanned by sequence alignmehtl-1 Basic Concept
procedures for proteins homologous to the search sequence The principal idea underlying most secondary structure pre-
U. When the pairwise sequence identity between Udiction methods isthe factthat segments of consecutive residues
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have preferences for certain secondary structure stdt@$us,  growing databases are-84 percentage points more accurate.
the prediction problem becomes a pattern-classification probFhus, using evolutionary information secondary structure can
lem tractable by pattern recognition algorithms. The goal ig10w be predicted more accurately and reliably than other fea-
to predict whether the residue at the centre of a segmenrtres of protein structure.

of typically 13-21 adjacent residues is in a helix, strand or

in neither of the two (no regular secondary structure, ofter4.1.3 Secondary Structure Predictions now Extremely
referred to as the ‘coil’ or ‘loop’ state). Many different algo- Useful, in Practice

rithms have been applied to tackle this simplest version of the How good is a prediction accuracy of 72% in practice?

protein structure prediction problem: physico-chemical princi- i certainly reasonably good compared with the prediction

ples, rule-based devices, expert systems, graph theory, lineg
and multi-linear statistics, nearest-neighbor algorithms, molec9¥ secondary structure by homology modelfiigHowever,

. . rediction accuracy varies between different proteins, i.e., pre-
ular dynamics, and neural networkstHowever, until recently, P y P P

performance accuracy seemed to have been limited to abof]{Ct'.on accuracy 1S 72.% 9% (one gtandard deviatioff).For
60% (percentage of residues correctly predicted in either helix?ppl;catlons this implies that Opredlctlons can b? as good as
strand, or other). The limited accuracy was argued to result fro 95%, but alsg as bad as54%. Can users d|st|ngmsh one
the fact that all methods used only information local in sequenc om the Oth?r' A few methods_successfully_ use rel!at_nllty
(window of less than 20 adjacent residues). Local informatior"dices allowing one to label residues for which predictions
was estimated to account for roughly 65% of the secondar re, on average, likely to be more accurate. Indeed, for the
structure formation. Two additional problems were common to e.uralllne.twork system PHD the porrelatlon be‘WeeT‘ S.UCh a
all methods developed from 1957 to 1993: (1) strands were prd€liability index and accuracy is linedt. Thus, the reliabil-
dicted atlevels of accuracy only slightly superior to random prelty index effectively becomes a means to predict prediction

dictions, and (2) predicted secondary structure segments werd¢curacy, and hence to assess to which class a protein of
pknown structure (U) belongs: to the well predicted, or to

on average, only half as long as observed segments. The Ia[“%] : ;
two shortcomings could be surmounted by using a particuIaF e badly predicted ones. Various methods successfully use

combination of neural networléd. secondary structure predictions as a first step, e.g., prediction-
based threading (indeed one of the problems of the Asilomar
1996 prediction contest was that many developers of threading
algorithms used the same PHD secondary structure predictions
as a first step), inter-strand, and inter-residue distance pre-
On the one hand, about 75 out of 100 residues can bgictions. However, the use of secondary structure predictions
exchanged in a protein without changing structure. On thes not limited to structure prediction. Instead, the results of,
other hand, exchanges of 3 residues can already destabi- for instance, the public prediction service (PredictPréiin
lize a protein structure. These statements may appear CORaye been used to assist the determination of protein struc-
tradictory. However, the explanation is simple: evolution hasyres (chain tracing in X-ray crystallography), as well as to
explored exactly the unlikely exchanges of particular aminotormulate hypotheses about protein structure and function that
acids at particular positions that do not change structure, agided experiments in molecular biology, in general (in partic-

a change of structure usually results in a loss of functionyjar, prediction of binding sites, homologous proteins, design
(and thus would not survive). Thus, the residue exchanggy residue mutations).

patterns extracted from a protein family (i.e., alignments of
similar sequences) are highly indicative of the specific stru
ctural details for that family. The first method that reached
a sustained level of a three-state prediction accuracy above
70% was the profile-based neural network system PHD which Proteins have been partitioned into various structural clas-
uses exactly such evolutionary information derived from mul-Ses, e.g., based on the percentage of residues assigned to helix,
tiple sequence alignments as inpbiBy stepwise incorpora- strand, and othef® However, such a coarse-grained classifi-
tion of particular evolutionary information, prediction accuracy cation is not well defined” Consequently, given a protein
(Figure 4) has been pushed above 72% accutaén inter-  sequence U of unknown structure, attempts to first predict the
esting, technical detail of this network system is that the us@econdary structure content for U and then to use the result to
of a global ‘descriptor’, namely the overall amino acid com- predict the secondary structural class (i.e.caléll-g or inter-
position (percentage of occurrence of each of the 20 amintediates) is of limited practical use. How do alignment-based
acids) does not affect the local score for accuracy as medpredictions compare with experimental means of determining
sured by the percentage of correctly predicted single residuethe content in secondary structure? For example, PHD is, on
Using amino acid composition, however, improves the accuaverage, surprisingly about as accurate as circular dichroism
racy in terms of a more global score, such as the differencepectroscopy’ Of course, this does not imply that predictions
between the percentage of observed and predicted secondagn replace experiments. In particular, variation of secondary
structure?! Is the neural network an essential tool for the moststructure as a result of changes in environmental conditions
accurate secondary structure prediction? A nearest-neighb@®.g., solvent) is generally only accessible experimentally.
algorithm can be used to incorporate evolutionary informa-

tion in a similar manner as the neural network system; they 2 Solvent Accessibility

result is a similar performand.Methods combining statis-
tics, and multiple alignment information have been clearly
less successful, so far. In comparison with methods using sin- It has long been argued that, if the segments of secondary
gle sequence information only, methods making use of thestructure could be accurately predicted, the 3D structure

4.1.2 Evolutionary Information Key to Significantly
Improved Predictions

.1.4 Separate Prediction of Secondary Structure Content
not very Useful

4.2.1 Basic Concept
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Figure 4 PHDsec: profile-based neural network system for secondary structure predtdfimm the multiple alignment (here guide sequence

SH3 plus four other proteins a4, note: lower case letters indicate deletions in the aligned sequence) a profile of amino acid occurrences is
compiled. To the resulting 20 values at one particular posiiiagm the protein (one column) three values are added: the number of deletions

and insertions, and the conservation weight (CW). 13 adjacent columns are used as input. The whole network system for secondary structure
prediction consists of three layers: two network layers and one layer averaging over independently trained networks
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Outside

Figure 5 Residue solvent accessibility is usually measured by rolling a spherical water molecule over a protein surface and summing the area
that can be accessed by this molecule on each residue (typical values range from OX?Q.SDﬂaIIOW comparisons between the accessibility

of long extended and spherical amino acids, typically relative values are compiled (actual area as percentage of maximally accessible area). A
simplified descriptions distinguishes two states: buried (here residues C and D) and exposed (here residues A, B, E, F, and G) residues. Since
the packing density of native proteins resembles that of crystals, values for solvent accessibility provide upper and lower limits to the number
of possible inter-residue contacts

/nside

could be predicted by simply trying different arrangementspredict sub-cellular location (Andrade and O’'Donoghue, per-
of the segments in spat®.One criterion for assessing each sonal communication).

arrangement could be to use predictions of residue solvent

accessibility’®*° The principal goal is to predict the extent 0 4 3 Transmembrane Helices

which a residue embedded in a protein structure is accessible
to solvent (Figure 5). Solvent accessibility can be described i#.3.1 Basic Concept

several way$> The simplest is a two-state description dis-  Eyen in the optimistic scenario that in the near future most
tinguishing between residues that are buried (relative solverfyotein structures will be experimentally determined, one class
accessibility<16%) and exposed (relative solvent accessibil-of proteins will still represent a challenge for experimental
ity >16%). The classical method to predict accessibility is togetermination of 3D structure: transmembrane proteins. The
assign either of the two states, buried or exposed, accordingiajor obstacle with these proteins is that they do not crystal-
to residue hydrophobicity. However, a neural network predicize, and are hardly tractable by NMR spectroscopy. Conse-
tion of accessibility has been shown to be superior to simplgyuently, for this class of proteins, structure prediction methods

hydrophobicity analyses. are needed even more than for globular water-soluble proteins.
Fortunately, the prediction task is simplified by strong envi-

4.2.2 Evolutionary Information Improves Prediction ronmental constraints on transmembrane proteins: the lipid

Accuracy bilayer of the membrane reduces the degrees of freedom to

such an extent that 3D structure formation becomes almost

Solvent accessibility at each position of the protein structurey 2D problem. Two major classes of membrane proteins are
is evolutionarily conserved within sequence families. This factknown: proteins which insert helices into the lipid bilayer
has been used to develop methods for predicting accessibilitfrigure 6), and proteins that form pores by a barrel of 16
using multiple alignment informatiot?. Prediction accuracy is  strands (the only known cases of this type are p&f)nSince
about 75+ 7%, four percentage points higher than for meth-there is not much experimental information available on dif-
ods not using alignment information. Predictions of solventferent porin-like membrane proteins, we can hardly estimate
accessibility have also been used successfully for predictiorprediction accuracy for this class. The situation is quite dif-
based threading, as a second criterion towards 3D prediderent for helical membrane proteins. Once the location of
tion by packing secondary structure segments according ttransmembrane segments is known for helical transmembrane
upper and lower bounds provided by accessibility predictionsproteins, 3D structure can be predicted by exploring all possi-
and as basis for predicting functional sitésMore recently, ble conformation$* Additionally, predicting the locations of
predictions of accessibility were also used successfully tdhese transmembrane helices is a much simpler problem than
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etra~cyloplasmic

protein B

protein A b

Figure 6 Topology of helical transmembrane proteins. In one class of membrane proteins, typically apolar helical segments are embedded
in the lipid bilayer oriented perpendicular to the surface of the membrane. The helices can be regarded as more or less rigid cylinders. The
orientation of the helical axes, i.e., the topology of the transmembrane protein, can be defined by the orientation of the first N-terminal residues
with respect to the cell. Topology is defined @st when the protein N-term (first residue) starts on the extra-cytoplasmic region (protein A),

and asin if the N-term starts on the intra-cytoplasmic side (proteins B and C)

is the prediction of secondary structure for soluble proteinsquickly scanning entire chromosom&sThe classification into
Elaborated combinations of expert-rules, hydrophobicity analmembrane/nonmembrane proteins has an expected error rate
yses and statistics yields a two-state per-residue accuracy ef less than 2%, i.e., about 2% of the proteins predicted to
about 90% (residues predicted correctly as either transmengontain transmembrane regions will probably be false posi-

brane helix, or other). tives. The predictions of transmembrane helices has provided
a lower bound to approach the question of how many proteins

4.3.2 Evolutionary Information Improves Prediction organisms need for example, communication: the percentage
Accuracy of proteins with transmembrane helices has been estimated

) ) ) ~ to be about 25% for yeast arfdaemophilus influenzaand

For two methods the use of multiple alignment information ground 10 15% for Mycoplasma genitaliunand Methanococ-
is reported to clearly improve the accuracy of predicting trans¢ys jannaschii(Rost, manuscript in preparation; data available
membrane heliced:5® The best current prediction methods gt http://www.embl-heidelberg.defost).
have a similar high accuracy around 95%. One such method
uses a system of neural networks similar to the one sketched
in Figure 4. In order to predict the orientation of the helicess PREDICTION IN 2D
(i.e., the topology Figure 6) a simple rule is applied: posi-
tively charged residues occur more often in intra-cytoplasmiag.1 Inter-residue Contacts
wﬂ Igygigﬁ %y;:p:)a;;m:mr]%?g)vr;sd Z%?]iﬁg;/?{;;egynggéﬂgne .1.1 Prediction Problem is Difficult, but the Stakes are High
dynamic programming algorithm to the neural network out-  Given all inter-residue contacts or distances (Figure 1),
put. The principal idea is to use the neural network out-3D structure can be reconstructed by distance geometry or
put as an energy landscape and to find the optimal patmolecular dynamics. This is used for the determination of
through this landscap®. As reliable data for the locations 3D structures by NMR spectroscopy which produces exper-
of transmembrane helices exist only for a few proteins, datémental data of distances between prot#h€an inter-residue
used for deriving these methods originate predominantly frontontacts be predicted? Obviously, some fraction of these con-
experiments in cell biology and gene-fusion techniques. Diftacts can be: helices and strands can be assigned based on
ferent experimental groups often report different locationshydrogen-bonding pattern between residues. Thus, a success-
for transmembrane regions. Thus, the level of 95% accuful prediction of secondary structure implies a successful
racy is not verifiable. Despite this uncertainty in detail, theprediction of some fraction of all the contacts. However,
prediction of transmembrane helices is a valuable tool forcontacts predicted from secondary structure assignment are
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short-ranged, i.e., between residues nearby in sequence. Hdentify the correctg-strand alignment in 3545% of the
a successful application of distance geometry, long-range corcases.

tacts have to be predicted, i.e., contacts between residues far

apart in sequence. A few methods have been proposed for thgp 3 Using Evolutionary Information to Predict Inter-strand
prediction of long-range inter-residue contacts. Two questions Contacts

surround such methods: first, how accurate are these predic-

tion methods on average; and second, are all important contacts Even if the locations of strands in the sequence are known
predicted? exactly, the pseudo-potentials cannot predict the correct inter-

strand contacts in most caséddowever, when using multiple

) . . alignment information, the signal-to-noise ratio increases such

5.1.2 Correlated Mutations can Imply Spatial Proximity that inter-strand contacts have been predicted correctly for
In sequence alignments, some pairs of positions appear most of the strands inspected in some test céséar the

co-vary in a physico-chemically plausible manner, i.e., a ‘losgpurpose of reliable contact prediction, this result is inadequate,
of function’ point mutation is often rescued by an additionalespecially as the locations of the strands are not known
mutation that compensates for the chahg@ne hypothesis is  precisely. Can the pseudo-potentials handle errors resulting
that compensations would be most effective in maintaining drom incorrect prediction of strands? Various test examples
structural motif if the mutated residues were spatial neighborsusing predictions by PHDséktas input to the strand pseudo-
Attempts have been made to quantify such a hypothesis arpbtentials indicate that the accuracy in predicting inter-strand
to use it for contact predictior§-° In general, prediction contacts drops (T. Hubbard, unpublished), but in some cases
accuracy is rather poor, with a direct trade-off between preis still high enough to be useful for approximate modeling of
dicting enough contacts, and predicting only correct ones, e.g3D structure®®
taking 5% of the best-predicted long-range contacts (sequence
separation above 10 residues) the accuracy prediction is about
50% (A. Valencia, personal communication). 6 PREDICTION IN 3D

5.1.3 Distinction Between Different Models, no Prediction 01‘6'l Known Folds: Homology Modeling

3D, Yet 6.1.1 Basic Concept

Analyzing correlated mutations is only one way to predict An analysis of PDB reveals that all protein pairs with more
long-range inter-residue contacts. Other methods use statistiagan 30% pairwise sequence identity (for alignment length
mean-force potentials, or neural networks. So far none of the.8?7) have homologous 3D structures, i.e., the essential fold
methods appears to find a path between the Scylla of misgf the two proteins is identical, details such as additional
ing too many true contacts and the Charibdis of predictingoop regions- regions not in helices or strandsnay vary.
too many false contacts. However, some of the methods prostrycture is more conserved than is sequence. This is the pillar
vide sufficient information to distinguish between alternativefgy the success of homology modeling. The principal idea is to
models of 3D structure (Valencia, personal communication)model the structure of U (protein of unknown structure) based
The ambitious goal of predicting long-range inter-residue conyp the template of a sequence homolog of known structure (T).
tacts sufficiently accurately will hopefully continue to attract Consequently, the precondition for homology modeling is that

intellectual resources. a sequence homolog of known structure is found in PDB. Since
homology modeling is currently the only theoretical means

5.2 Inter-strand Contacts successfully to predict 3D structure, this has two implications.
S . First, homology modeling is applicable to ‘only’ one quarter

5.2.1 Simplifying the Contact Prediction Problem of the known protein sequences (Figure 2). Second, as the

One simplification of the problem of predicting inter- template of a homolog is required, no unique 3D structure
residue contacts focuses on predicting the contacts betwe&an yet be predicted, i.e., no structure that has no similarity
residues in adjacent strands (Figure 1). Such an attempt 1§ any experimentally determined 3D structure. Suppose, there
motivated by the hope that such interactions are more specifié a protein with a sequence similar to U in PDB (say T), is
than are sequence-distant (long-range) contacts in general, ah@mology modeling straightforward?
hence are easier to predict.

6.1.2 High Level of Sequence Identity: Atomic Resolution

522 |dentitying the Corregf-Strand Alignment The basic assumption of homology modeling is that U
The only method published for predicting inter-strandand T have identical backbones (main chain C). The task
contacts is based on potentials of mean-f®rcgimilar to is correctly to place the side chains of U into the backbone
those used in the evaluation of strastrand threadin§? of T. For very high levels of sequence identity between U
Propensities are compiled by database counts far22< 2~ and T (ideally differing by one residue only), side chains
classes (parallel/anti-parallel, H-bonded/not H-bonded, N-/Cean be ‘grown’ during molecular dynamics simulatiéisor
terminal). Each of the eight classes is divided further intoslightly lower levels (still of high sequence similarity), side
five sub-classes in the following way. Suppose the two stranghains are built based on similar environments in known
residues at positions and j are close in space. Then the structure$>% Rotamer libraries (libraries containing all side-
following five residue pairs are counted in separate tableschain orientations observed in known structures) are used in
i/j—2,i/j—1,i/j,i/j+1,i/j+ 2. Such pseudo-potentials the following way. (1) Rotamer distributions are extracted
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from a database of nonredundant sequences. (2) Fragmentsist solve three different tasks. (1) The remote homolog (T)
of seven (helix, strand) or five residues (other) are compiledhas to be detected. (2) U and T have to be correctly aligned.
(3) Fragments of the same length are successively shifte(8) The homology modeling procedure has to be tailored to the
through the backbone of U. (4) For modeling the side chains oharder problem of extremely low sequence identity (with many
U only those fragments from the rotamer library are acceptedoop regions to be modeled). Most methods developed so far
which have the same amino acid in the center as U, and fatiave been primarily addressed to solve the first, and the second
which the local backbone is similar to that around the evaluateg@roblem. The basic idea is to thread the sequence of U into the
position). Over the whole range of sequence identity betweeRnown structure of T and to evaluate the fitness of sequence for
U and T for which homology modeling is applicable, the structure by some kind of environment-based or knowledge-
accuracy of the model drops with decreasing similarity. Forpased potenti&®® Threading is in some respects a harder
levels of at least 60% sequence identity, the resulting model§r0b|em than is the prediction of 3D structure (NP-compléte;
are quite accurat®;®” even for higher values, the models are g physical connection between remote homologs, as many
as accurate as is experimental structure determination. Tf}%motely homologous protein pairs may have originated from
!|m|t|ng factor is the_ computation time required. How accurate jjgferent ancestor$). However, the stakes are high: solving
is homology modeling for lower levels of sequence identity? e threading problem could enable the prediction of thousands
of protein structures. Indeed, threading has evolved to become
6.1.3 Low Level of Sequence Identity: Loop Regions one of the most active fields in the arena of protein structure
Sometimes Correct prediction (with well over 100 annual publications).

With decreasing sequence identity between the known
structure H and the query protein U, the number of loops6.2.2 Variety of Threading Techniques

that have to be inserted to align the two grows. An accu- Th timi ted b f the first thread-
rate modeling of loop regions, however, implies solving the. € optimism generated by one of the irst papers on threa

structure prediction problem. The problem is simplified in twoNd Published in the 19968 has boosted attempts to develop
ways. First, loop regions are often relatively short and carfnreading methc_)ds. The P““C'p"?" idea has been to use stru-
thus be simulated by molecular dynamics (note the CPU tim&tural propensities of amino acids (such as preferences for
required for molecular dynamics simulations grows exponenS€condary structure formation, hydrophobicity, and polarity),
tially with the number of residues of the polypeptide to be@nd to then assess whether or not a given sequence with
modeled). Second, the ends of the loop regions are fixed byS stru_ctural preferences fllts.mto thg structural environment
the backbone of the template structure. Various methods af@f & given structuré? A principally different approach has
employed to model loop regions. The best have the orientatioReen pushed by Manfred Sipfit’® The idea is to use the

of the loop regions correct in some ca8éshis illustrates rich knowledge deposited in the database of protein structures
the current limitations of molecular dynamics: not even short(PDB) by extracting mean-force potentials. Such potentials
loop regions can be predicted from sequence. Furthermore, féRonitor the observed distances between residue pairs of par-
experimental structure refinement (use of molecular dynamicticular amino acids, with a particular sequence separation
to improve consistency, and accuracy of experimental datafnumber of residues between the two). Until 1995, most thread-
molecular dynamics is successfully applied to find a beting methods used mean-force potentf&I887* A more recent

ter solution when starting from an almost correct structuregeneration of threading methods is based on 1D predictns:
However, for homology modeling, molecular dynamics refine-first a 1D structure (secondary structure and solvent accessi-
ment usually reduces prediction accurééBelow about 40%  bility) is predicted for a sequence of unknown structure, then
sequence identity the accuracy of the sequence alignment ustite 1D structure is extracted for a library of known structures,
as basis for homology modeling becomes an additional proband finally the observed and the predicted 1D structure strings
lem. Nevertheless, even down to levels of-38% sequence are aligned by typical dynamic programiatgorithms® Has
identity, homology modeling produces coarse-grained modelall this effort enabled the hard nut of threading to be cracked?
for the overall fold of proteins of unknown structure.

) 6.2.3 Remote Homologs can often be Detected
6.2 Known Folds: Remote Homology Modeling

(Threading) _ First the good news: since the different mean-force poten-
_ tials which have been proposed capture different aspects of
6.2.1 Basic Concept protein structure, the correct remote homolog is likely to be

As noted in the previous section, naturally evolved sequfound by at least one of thef.Now the bad news: so far,
ences with more than 30% pairwise sequence identity havB0 single method has been able to detect the correct remote
homologous 3D structuréd.Are all others non-homologous? homolog for more than half of all test caség=or the methods
Not at all. In the current PDB database there are thousandghich have been rigorously evaluated using large test sets, the
of pairs of structurally homologous pairs of proteins with correct remote homolog is detected in less than 40% of all
less than 25% pairwise sequence identity (remote homologs§ases? However, this performance is clearly superior to that
Actually, most similar protein structures are such remoteof traditional sequence alignments at this low leve2§%) of
homologs®® If a correct alignment between U (sequencesequence identity. Furthermore, the success of the last Asilo-
of unknown structure) and a remote homolog T (pairwisemar experiment on structure predictioRréteins 1998, in
sequence identity to U<25%) is given, one could build the press) suggests that the likelihood of detecting the correct
3D structure of U by (remote) homology modelling based onremote homolog is reasonably high when the choice is refined
the template of T. A successful remote homology modelingby experts.
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6.2.4 3D Prediction by Threading is still not Reliable contrast, mean-force potentials of pairwise residue distances
are quite successful in fold recognition, as well as remote

Detecting the remote homology is only the first of the ; .
g 9y y mology modeling? It remains to be seen how best to com-

three obstacles. It appears that the second obstacle (corr . ! :
alignment between U and T) is much more difficult and, Ine these two different potentials. In one pilot study on the

unfortunately, there is no general solution so far. Thus the finaf'S€ of mean-force'potentlals for. ?’.D structure prediction, best
step, building a 3D model, usually fails since the modeling™®Sults where obtained by combining both potentidls.
procedures available today cannot correct the mistakes in

the alignments. Although the last Asilomar experiment on6.3.4 Extracting Principles about Structure Formation from
structure predictionRroteing 1998, in press) suggested that Structures?

major improvements have been accomplished over the last two The mean-force potential approach has recently been ext-
years, there are still very few publications to date which reporended to study protein folding. Both the physical basis
accurate 3D predictions from threading methods. Currently, thend the general characteristics of protein folding remain
successful use of threading methods requires sceptical, expfgntroversiaf® Simulations and other studies indicate that
user intervention to spot wrong hits and false alignments. Ithe free energy balance of hydrogen bond formation is close
is still possible that threading method will become the mostqg zerg, or slightly unfavorabf®,82 and that a specific fold
successful structure prediction method, but a lot of detaileds selected primarily by side-chain interactidsRecently,

work lies ahead. Sippl et al. have extended the concept of deriving mean-force
potentials to a formalism of describing Helmholtz free ener-
6.3 Unknown Folds: Ab Initio Prediction of Structure? gies of atom-pair interactiorfs. The formalism starts with the

following two assumptions: (1) that protein structures can be
described by Helmholtz free energies (or mean-force poten-
In the 1994 Asilomar meeting, none of the 3D initio  tials), and (2) that the distribution of intramolecular distances
methods was able to predict the correct protein struéfre. in experimentally determined protein structures does, on aver-
Since that time, new methods have been proposed whichge, not deviate substantially from the corresponding distribu-
indicate possible directions for the future. Several groupsion in native proteins. To normalize the absolute free energy
have obtained promising results using distance geometrgontributions, the ideal gas is chosen (no internal interac-
methods? Simplified force fields in combination with tions). Without any further assumptions or approximations,
dynamic optimizationstrategies have yielded promising, but atom-atom mean-force potentials are derived from a data set
still relatively inaccurate resulf$:’® Srinivasan and Rose of known protein structures. The resulting Helmholtz mean-
have reported very encouraging results with their hierarchicalorce potentials unravel interesting principles about protein
search method’ However, the second Asilomar experiment structure formation. (1) Backbone H-bonds (except for the
on structure predictionRroteins 1998, in press) concluded o-helix interaction Q... N;,4) do not contribute to the thermo-
similarly to the first: no prediction of 3D structure from dynamic stability of native folds. (2) H-bond formation (except

6.3.1 Recent Breakthrough in Structure Prediction?

sequence, yet. for O; ... N;,4) requires energy input that is regained when H-
bonds are formed. Once formed, H-bonds are locked in a deep,

6.3.2 Accurate Prediction of 3D Structure for Coiled-coil ~ Narrow minimum. (3) The energy gain of forming one ionic or

Proteins two hydrophobic contacts can provide roughly the activation

] ] ) ) energy required for forming a H-bond. Both the eloquence

A particular class of proteins are coiled-coils. These areand the conclusions of the approach have prompted strong
proteins can be defined by a rather simple geometry of longyiticism, even unanimous rejection of these findings. Do we
helices, of which two or more wind around one anofffer. witness an error in a method laid out to spot errors, or the
Nilges and Biingef® have achieved atomic accuracy in start of a new era of force fields? Further applications of these

an ab initio prediction of the GCN4 leucine zipper using mean-force potentials will be needed to answer this question.
a hybrid molecular dynamics/simulated annealing search

strategy. Recently, equally accurate models for three leucine
zippers were obtained with faster calculations based on mearr CONCLUSIONS
force potential$*

Native 3D structures of proteins are encoded by a linear
6.3.3 Recognizing Incorrect Structures sequence of amino acid residues. To predict 3D structure from
sequence is a task challenging enough to have occupied a

__ The single most important theoretical advance in 3D prediCyeneration of researchers. Have they finally succeeded in their
tion in recent years may have been the development of meaé

: ! . ~%goal? The bad news is: no, we still cannot predict structure for
force potentials. Before these potentials, structure predictioRy sequence. The good news is: we have come closer, and
was normally done with ‘physical’ potentials, i.e., bonds, 4 6ying databases facilitate the task.
angles, torsion angles, and van der Waals, as well as eleg—
trostatic nonbonded terms which describe the internal energ\7/ o .
of the moleculé In contrast, the mean-force potentials, deri- /-1~ Prediction in 3D: Theory Bridges the
ved from databases of protein struct@fegttempt to describe Sequence Structure Gap
the free energy of the molecule. The physical potentials have The only source for new, unique protein structures
been used very successfully to refine experimentally detefistructures for which no homolog exists in the database) is
mined structureg® However, these terms cannot distinguish experiments. However, given the amount of time needed to
between a native fold and a grossly misfolded structtii@.  determine a protein structure experimentally, more nonunigque
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structures can be predicted at atomic resolution by homologiPotentials and Prediction; Superfamily Analysis: Under-
modeling in a month than have been determined by experimergtanding Protein Function from Structure and Sequence.

over the last three decades. Homology derived models
are frequently accurate at the level of atomic resolution,
Unfortunately, most models typically have considerable
coordinate errors in loop regions. Coarse-grained homology
derived models are available for almost one-third of

the sequences deposited in the SWISS-PROT database. 2.
Threading techniques could increase this ratio considerably
by finding more distant homologs. However, for large-scale 3.
sequence analyses, threading techniques are not yet reliable 4

5.
7.2 Predictions in 1D: Significant Improvement from 6.

Larger Databases

The rich information contained in the growing sequence and ;'
structure databases has been used to improve the accuracy of
predictions of some aspects of protein structure. Evolutionary
information is successfully used for predictions of secondary
structure, solvent accessibility, and transmembrane helices.
These predictions of protein structure in 1D are significantly
more accurate, and more useful than five years ago. Some
methods have indicated that 1D predictions can be useful as
an intermediate step on the way to predicting 3D structure
(inter-strand contacts; prediction-based threading). Another9
advantage of predictions in 1D is that they are not very
CPU-intensive, i.e., 1D structure can be predicted for the
protein sequence of, for example, entire yeast chromosomes
overnight.

7.3 Predictions in 2D: so far of Limited Success 10.
The prediction accuracy of chain-distant inter-residue
contacts is so far relatively limited. Analysis of correlated
mutations can be used to distinguish between alternativél:
models (e.g., for threading techniques). The prediction of inter-
strand contacts appears to be useful in some cases. An accurate
method for the automatic prediction of contacts between
residues not close in sequence remains to be developed.

Most breakthroughs in protein structure prediction were
achieved since 1990. Thus, although we still cannot solve
the general prediction problem, progress has been made. .
general, however, we could ask the question is it worth
persevering with structure prediction, given that it is clearly
such a difficult task? The answer is: yes. The methods whic
have spun off from structure prediction have already given14
us considerable insight into the first four complete genomes.
Perseverance with structure prediction will yield fruit in about 15
2003 when the human genome will be known.

16.
8 RELATED ARTICLES 17.

18.

Circular Dichroism: Electronic; Drug Design; Hydropho-

bic Effect; Molecular Docking and Structure-based Design;
Molecular Dynamics: Techniques and Applications to Pro- 19
teins; Molecular Surfaces and Solubility; Molecular Sur- 20
face and Volume; Neural Networks in Chemistry; Protein 5’
Data Bank (PDB): A Database of 3D Structural Informa- 55
tion of Biological Macromolecules; Protein Design Con- 23
cepts; Protein Folding and Optimization Algorithms; Protein 24,
Modeling; Protein Structure and Stability: Database-derived 25.

9 REFERENCES

C. Brancen and J. Tooze, ‘Introduction to Protein Structure’,
Garland, New York, 1991.

E. E. Lattman and G. D. Ros&®roc. Natl. Acad. Sci. USA
1993,90, 439-441.

C. B. AnfinsenScience1973,181, 223-230.

F. J. Corrales and A. R. Fershtplding & Design 1996, 1,
265-273.

M. Levitt and A. WarshelNature 1975,253 694-698.

W. F. van GunsterenCurr. Opin. Struct. Biol. 1993, 3,
167-174.

A. Bairoch and R. ApweileMNucl. Acids Res1996,24, 21-25.

R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton,
E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J.-F. Tomb,
B. A. Dougherty, J. M. Merrick, K. McKenney, G. Sutton,
W. FitzHugh, C. Fields, J. D. Gocayne, J. Scott, R. Shirley,
L.-l. Liu, A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phil-
lips, T. Spriggs, E. Hedblom, M. D. Cotton, T. R. Utterback,
M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon,
L. D. Fine, J. L. Fritthman, J. L. Fuhrmann, N. S. M. Geogha-
gen, C. L. Gnehm, L. A. McDonald, K. V. Small, C. M. Fraser,
H. O. Smith, and J. C. Vente§cience 1995,269, 496-512.

C. M. Fraser, J. D. Gocayne, O. White, M. D. Adams,
R. A. Clayton, R. D. Fleischmann, C. J. Bult, A. R. Kerlavage,
G. Sutton, J. M. Kelley, J. L. Frittchman, J. F. Weidman, K. V.
Small, M. Sandusky, J. Fuhrmann, D. Nguyen, T. R. Utterback,
D. M. Saudek, C. A. Phillips, and J. C. Vent&gience 1995,
270, 397-403.

A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon,
H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston,
E. J. Louis, H. W. Mewes, Y. Murakami, Y. Philippsen, H. Tet-
telin, and S. G. OliverScience1996,274 546-567.

C. J. Bult, O. W. White, G. J. Olsen, L. Z. Zhou,
R. D. Fleischmann, G. Granger, G. G. Sutton, J. A. Blake,
L. M. FitzGerald, R. A. Clayton, D. Jeannine, J. D. Gocayne,
A. R. Kerlavage, B. A. Dougherty, J.-F. T. Tomb, D. Mark,
M. D. Adams, C. |l. Reich, R. O. Overbeek, E. F. Kirkness,
K. G. Weinstock, M. Joseph, J. M. Merrick, A. G. Glodek,
J. L. Scott, and N. S. M. Geoghagergcience 1996, 273
1058-1073.

F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer,
M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and
M. Tasumi,J. Mol. Biol, 1977,112 535-542.

B. Rost and C. SandeCurr. Opin. Biotechnol. 1994, 5,
372-380.

B. Rost and C. SandeAnnu. Rev. Biophys. Biomol. Stryct.
1996,25, 113-136.

R. F. Doolittle, ‘Computer Methods for Macromolecular Seq-
uence Analysis’, Academic Press, San Diego, CA, 1996.

M. J. E. Sternberg, ‘Protein Structure Prediction’, Oxford Uni-
versity Press, Oxford, 1996.

P. Bork and T. J. Gibsoieth. Enzymo].1996,266, 162-184.

B. Rost and R. Schneider, ‘Pedestrian Guide to Analysing
Sequence Databases’, ed. K. Ashman, ‘Core Techniques in Bio-
chemistry’, Springer, Heidelberg, 1998, in press.

B. Rost and A. ValenciaCurr. Opin. Biotechnol. 1996, 7,
457-461.

W. Kabsch and C. Sand@iopolymers 1983,22, 2577-2637.

B. Rost,Meth. Enzymo).1996,266, 525-539.

M. Scharf, ‘CONAN (CONtact ANalysis)’, Heidelberg, 1988.
P. Kraulis,J. Appl. Crystallogr,. 1991,24, 946-950.

A. Bairoch and R. ApweilefNucl. Acids Res1997,25, 31-36.

C. Chothia and A. M. LeskEMBO J, 1986,5, 823-826.



PROTEIN STRUCTURE PREDICTION IN 1D, 2D, AND 3D 13

26.

27.

28.

29.

30.
31.

32.

33.
34.

35.

36.

37.

38.

39.

41.

42.

43.
44,

45.
46.

47.
48.

49.
50.
51.

52.

R. F. Doolittle, ‘Of URFs and ORFs: A Primer on How

to 54.

Analyze Derived Amino Acid Sequences’, University Science

Books, Mill Valley, CA, 1986.

C. Sander and R. SchneidPBrpteins 1991,9, 56-68.

R. Schneider, A. de Daruvar, and C. Sandlarcl. Acids Res.
1997,25, 226-230.

G. Casari, A. De Daruvar, C. Sander, and R. Schneidends
Genetics 1996,12, 244-245.

B. Rost,Folding & Design 1997,2, S19-S24.

B. Rost, R. Schneider, and C. Sandenol. Biol, 1997,270,

471-480.

B. Rost, R. Casadio, and P. FariselRyot. Sci,
1704-1718.

A. Lupas,Trends Biol. Scj.1996,21, 375-382.

S. B. Neediman and C. D. Wunsch, Mol. Biol, 1970, 48,

443-453.

T. F. Smith and M. S. Watermad, Mol. Biol, 1981, 147,

195-197.

S. H. Bryant and L. M. AmzelJ. Int. Pept. Prot. Res.1987,
29, 46-52.

S. F. Altschul and W. GishMeth. Enzymo]. 1996, 266,

460-480.

D. G. Higgins, J. D. Thompson, and T. J. Gibsbteth. Enzy-
mol,, 1996,266, 383-402.

W. R. Pearsoryleth. Enzymo).1996,266, 227-258.

W. R. Taylor,Meth. Enzymo].1996,266, 343-367.

1996, 5,

55.
56.
57.
58.
59.

60.
61.

62.
63.
64.
65.
66.
67.
68.

69.

R. Schneider, G. Casari, d. D. Antoine, P. Bremer, M. Schlenk-

rich, R. Mercille, H. Vollhardt, and C. Sander, ‘GeneCrun

puter 96 Seminar, Mannheim’, K. G. Saur, pp. 108&9;
http://www.embl-heidelberg.de/~~schneide/

S. H. Bryant and S. F. Altschu@urr. Opin. Struct. Biol. 1995,
5, 236-244.

S. Henikoff and J. G. HenikofProteing 1993,17, 49-61.

A. A. Salamov and V. V. Solovye\. Mol. Biol, 1995, 247,
11-15.

B. Rost, C. Sander, and R. SchneidenVol. Biol., 1994,235,
13-26.

M. Levitt and C. ChothialNaturg 1976,261, 552-558.

B. Rost and C. Sanddproteins 1994,19, 55-72.

in ‘Protein Structure Prediction’, ed. M. J. E. Sternberg, Oxf
University Press, Oxford, 1996, pp. 2a228.

B. K. Lee and F. M. Richardg, Mol. Biol., 1971,55, 379-400.
C. Chothia,). Mol. Biol, 1976,105 1-12.

S. R. Holbrook, S. M. Muskal, and S.-H. Kifot. Eng, 1990,
3, 659-665.

B. Rost and S. I. O'Donoghu€ABIOS 1997,13, 345-356.

ch: 70.
Experiences on the SGI POWER CHALLENGE Array with 71.
Bioinformatics Applications. Proceedings of the Supercom-72.

73.
74.

75.
76.
77.
78.

79.
F. E. Cohen and S. R. Presnell, ‘The Combinatorial Approach’80.

ord

81.
82.
83.
84.

G. von Heijne, ‘Prediction of Transmembrane Protein Topol-
ogy’, in ‘Protein Structure Prediction’, ed. M. J. E. Sternberg,

Oxford Univ. Press, Oxford, 1996, pp. 10110.

W. R. Taylor, D. T. Jones, and N. M. Gredproteing 1994,
18, 281-294.

B. Persson and P. ArgdBrot. Sci, 1996,5, 363-371.

M. Nilges,Curr. Opin. Str. Biol, 1996,6, 617-623.

D. Altschuh, A. M. Lesk, A. C. Bloomer, and A. Klug, Mol.
Biol., 1987,193 693-707.

U. Goebel, C. Sander, R. Schneider, and A. ValerRiateins
1994,18, 309-317.

E. NeherProc. Natl. Acad. Sci. USAL994,91, 98-102.

W. R. Taylor and K. HatrickProt. Eng, 1994,7, 341-348.

T. J. P. Hubbard, ‘Use ¢f-strand Interaction Pseudo-potential
in Protein Structure Prediction and Modelling’, in ‘Proceedings
of the 27th Hawaii International Conference on System Sci-

ences’, ed. L. Hunter, IEEE, New York, 1994, pp. 3384.
S. Lifson and C. Sandel, Mol. Biol,, 1980,139, 627-639.

T. J. P. Hubbard and J. Pafkoteing 1995,23, 398-402.

M. Karplus and G. A. Petskd&Nature 1990,347, 631-639.

N. L. Summers and M. Karplus]. Mol. Biol, 1990, 216
991-1016.

A. C. W. May and T. L. Blundell,Curr. Opin. Biotechnol.
1994,5, 355-360.

J. Moult, J. T. Pedersen, R. Judson, and K. Fidélisteins
1995,23, ii-iv.

S. J. Wodak and M. J. Roomayrr. Opin. Struct. Biol. 1993,
3, 247-259.

D. Fischer, D. W. Rice, J. U. Bowie, and D. Eisenbé&SEB
J., 1996,10, 126-136.

R. H. LathropProt. Eng, 1994,7, 1059-1068.

M. J. Sippl,Curr. Opin. Struct. Biol. 1995,5, 229-235.

J. U. Bowie, R. @ithy, and D. Eisenberdscience 1991, 253
164-169.

M. J. Sippl and S. Weitcku®roteing 1992,13, 258-271.

C. M.-R. Lemer, M. J. Rooman, and S. J. Wodd&koteins
1995,23, 337-355.

A. Elofsson, S. M. Le Grand, and D. Eisenbd?mteins 1995,
23, 73-82.

J. T. Pedersen and J. MouBiurr. Opin. Struct. Biol. 1996, 6,
227-31.

R. Srinivasan and G. D. Roderoteinsg 1995,22, 81-99.

M. Nilges and A. T. Biinger,Proteins 1993,15, 133-146.
M. J. Sippl,J. Mol. Biol,, 1990,213 859-883.

B. Honig and F. E. CohenFolding & Design 1996, 1,
R17-R20.

A.-S. Yang and B. Honig]. Mol. Biol, 1995,252 351-365.
A.-S. Yang and B. Honig]. Mol. Biol, 1995,252 366-376.
M. J. Sippl,J. Mol. Biol, 1996,260, 644-648.

S. I. O'Donoghue and M. Nilges;olding & Design 1997, 2,
S47-S52.



