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Abbreviations

1DD one-dimensional; 1D structureD one-dimensional
(e.g., sequence or string of secondary structure); 2DD
two-dimensional; 2D structureD two-dimensional (e.g., inter-
residue distances); 3DD three-dimensional; 3D structureD
three-dimensional (coordinates of protein structure); PDBD
Protein Data Bank of experimentally determined 3D structures
of proteins; SWISS-PROTD database of protein sequences;
T D target used for homology modeling (protein of known
3D structure); UD protein sequence of unknown 3D structure
(e.g., search sequence).

1 INTRODUCTION

1.1 Proteins are the Machinery of Life

The information for life is stored by a four-letter alphabet
in the genes (DNA). Proteins are, among others, the macro-
molecules that perform all important tasks in organisms, such
as catalysis of biochemical reactions, transport of nutrients,
recognition, and transmission of signals. Thus, genes are the
blueprints or library, and proteins are the machinery of life.
Proteins are formed by joining amino acids by peptide bonds
into a stretched chain. This protein sequence comprises a trans-
lation of the four-letter DNA alphabet into a 20-letter alphabet
of native amino acids. Proteins differ in length (from 30 to
over 30 000 amino acids), and in the arrangement of the amino
acids (dubbed residues, when joined in proteins). In water, the
chain folds up into a unique three-dimensional (3D) structure.
The main driving force is the need to pack residues for which
a contact with water is energetically unfavorable (hydropho-
bic residues) into the interior of the molecule. A detailed
analysis of the underlying chemistry shows that this is only
possible if the protein forms regular patterns of a macroscopic
substructure called secondary structure (Figure 1; for an excel-
lent introduction into protein structure, see Ref. 1; for a short
review of the basic principles of folding, see Ref. 2).

1.2 Sequence Determines Structure Determines
Function

Protein three-dimensional (3D) structure (i.e., the coordi-
nates of all atoms) determines protein function. But what
determines 3D structure? The hypothesis that structure (also
referred to as ‘the fold’) is uniquely determined by the speci-
ficity of the sequence, has been verified for many proteins.3

While it is now known that particular proteins (chaperones)
often play a role in the folding pathway, and in correcting
misfolds,4 it is still generally assumed that the final structure
is at the free-energy minimum. Thus, all information about
the native structure of a protein is coded in the amino acid
sequence, plus its native solution environment. Can the code be
deciphered, i.e., can 3D structure be predicted from sequence?
In principle, the code could by deciphered from physico-
chemical principles using, for example, molecular dynamics
methods.5 In practice, however, such approaches are frus-
trated by two principal obstacles. First, energy differences
between native and unfolded proteins are extremely small
(order of 1 kcal mol�1). Second, the high complexity (i.e.,
cooperativity) of protein folding requires several orders of
magnitudes more computing time than we anticipate to have
over the next decades. Thus, the inaccuracy in experimentally
determining the basic parameters, and the limited computing
resources become fatal for predicting protein structure from
first principles.6 The only successful structure prediction tools
are knowledge-based, using a combination of statistical theory
and empirical rules.

1.3 The SequenceStructure Gap is Rapidly Increasing

Currently, databases for protein sequences (e.g., SWISS-
PROT7) are expanding rapidly, largely because of large-scale
genome sequencing projects. The first four entire genome
sequences have been published; they represent all three ter-
restrial kingdoms: (1) prokaryotes:Haemophilus influenzae,8

and Mycoplasma genitalium;9 (2) eucaryotes: yeast;10 and
(3) archeans:Methanococcus jannaschii.11 At least another
dozen genomes will be completely sequenced before the end
of 1997 (Terry Gaasterland, personal communication); the
entire human genome is likely to be known in the year 2003.
This implies that the explosion of genome, and hence, pro-
tein, sequences is supposedly the only field outgrowing the
speed in development of computer hardware. It also implies,
that despite significant improvements of structure determina-
tion techniques, the gap between the number of proteins for
which structure is deposited in public databases (PDB12), and
the number of proteins for which sequences are known is
increasing.

1.4 Can the Egg be Unboiled?

When an egg is boiled, the proteins it contains unfold. Can
this procedure be reversed in theory? Can the encrypted code
of protein structure be deciphered? Or, can theory help to
bridge the sequencestructure gap? Indeed, for over 30 years,
there has been an ardent search for methods to predict protein
structure from the sequence. Many methods were found which
looked initially very promising but always the hope has been
dashed. How well do we do?
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Figure 1 Representation of HIV-1 protease monomer (Protein Data Bank code 1HHP) in one, two, and three dimensions. Each of the
representations gives rise to a different type of prediction problem. 1D prediction of secondary structure and solvent accessibility. From left to
ion of right: amino acids for the first 33 residues (one letter code, first column); alignment exemplified by 5 sequences (second column); secondary
structure20 (H, helix; E, strand; blank, other: third column), solvent accessibility (measured inÅ2, fourth column,20), and a typical prediction
by the neural network program PHD21 for secondary structure and solvent accessibility (in italics, fifth and sixth column). 2D prediction of
contact map. The 3D structure can be projected onto a two-dimensional matrix of inter-residue distances or contacts (as shown here). The entry
at positionij of the matrix gives the contact strength between residuei and residuej. The stronger a contact, the darker the marker. Horizontal
and vertical lines give borders of secondary structure segments. Graph made with CONAN.22 3D prediction of three-dimensional coordinates.
The ion of trace of the protein chain in 3D is plotted schematically as a ribbon Ca-trace. Strands are indicated by arrows, the short helix is on
the right towards the end (C-term) of the protein. Graph made with MOLSCRIPT.23 Prediction not shown

1.5 No General Prediction of Structure from Sequence,
Yet

An important experiment has been initiated by John Moult
(CARB, Washington): those who determine protein structures
submitted the sequences of proteins for which they were about
to solve the structure to a ‘to-be-predicted’ database; for each
entry in that database predictors could send in their predictions
before a given deadline (the public release of the structure);
finally, the results were compared, and discussed during a
workshop (in Asilomar, California). Two such experiments
have been completed: in December 1994 (Proteins special
issue, Vol. 23, 1995), and in December 1996 (to be published
in Proteins, 1998). The results of both experiments demon-
strated clearly that the goal to predict structure from sequence
has not been reached, yet. So, has there been no improve-
ment despite ardent attempts, and the explosion of knowledge
deposited in databases?

Indeed, there is a flood of literature on protein struc-
ture prediction attempting to keep track with the expanding
databases (reviews;13,14 books;15,16 a practical approach to

structure prediction and sequence analysis.17 19 In this review
focus will be laid on recent prediction methods that do actually
contribute to bridging the sequence structure gap in partic-
ular in view of analyzing entire genomes. The first section
will provide a brief sketch about where we are today in pro-
tein structure prediction. The following sections will sketch
the problems, and some of the solutions in database searches,
and the prediction of protein structure in 1D, 2D, and 3D
(Figure 1).

2 STATE OF THE ART IN PROTEIN STRUCTURE
PREDICTION

2.1 Bridging the SequenceStructure Gap for 10 30%
of all Sequences

The gap between the number of known sequences
(>170 00024) and the number of known structures (about
500012) is widening rapidly. The most successful theoretical
approach to bridging this gap is homology modeling. The
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Figure 2 Scope of structure prediction. Given any expressed protein, how likely can theory predict its 3D structure? For example, for 30%
of the proteins in the current SWISS-PROT database we can find regions for which homology modelling is applicable,28 but for the first four
entirely sequenced genomes (shown is yeast) this is true for less than 10% of all proteins.29 Thus, SWISS-PROT contains a bias introduced,
e.g., by limitations of previous sequencing techniques. Estimating the contribution of fold recognition or threading techniques is problematic.
Margins given are certainly over-estimated in terms of the accuracy of current threading methods, and supposedly under-estimated in terms of
the number of remote homologs that could be detected. (Note, however, today threading techniques are not accurate enough for any large-scale
prediction of 3D structure!) The remaining region (5080%) is occupied by unknown folds for which no accurate predictions in 3D can be
obtained

principal idea bases on the following observation. Each
native protein sequence adopts a unique structure. However,
many different sequences can adopt the same basic fold.
In other words, proteins with similar sequences tend to
fold into similar structures. Indeed, for a pair of naturally
evolved proteins, levels of 2530% pairwise sequence identity
(percentage of residues identical between the two proteins)
are sufficient to assure that the two proteins fold into similar
structures.25 27 Thus, if a sequence of unknown structure
(denoted U) has significant sequence similarity to a protein of
known structure (T), it is possible to construct an approximate
3D model for U based on the assumption that U simply has
basically the same structure as T. This technique is referred
to as homology modeling. It effectively raises the number of
‘known’ 3D structures from 5000 to over 50 00028 (Figure 2).

2.2 Widening the Bridge by Threading

Homology modeling allows prediction of 3D structure for
10 30% of all protein sequences. However, there is evidence
that most pairs of proteins with similar structure are remote
homologs with less than 25% pairwise sequence identity.30

These remote homologs cannot usually be recognised by con-
ventional sequence alignments, as this level of sequence iden-
tity is not significant for structural similarity in the following
sense. If one were to collect all pairwise alignments of<25%
sequence identity that result from a search with U against a
database of protein sequences, then the vast majority of these
pairs would be entirely unrelated proteins. Thus, most similar
structures appear to be remote homologs, but most possible
pairs at low levels of sequence identity are, in fact, unrelated.
Consequently, searching for remote homologs is similar to the
task of finding a needle in a haystack.31 Techniques to man-
age this difficult task are referred to as ‘threading techniques’.

Most of these techniques are applicable if, and only if, the
remote homolog to U has known structure. Once a remote
homology is detected, remote homology modeling may be used
to construct a 3D model. This could potentially reduce the
sequencestructure gap by an additional 10 00050 000 pro-
teins (Figure 2). Given a sequence U from one of the complete
genome sequences which have recently become available;
what is the likelihood that the 3D structure can be predicted for
U by homology modeling or remote homology modeling? A
conservative answer is: 10%, based on the success of sequence
alignment-based homology modeling (Figure 2). A very opti-
mistic estimate is over 50%, assuming all remote homologs
could be recognized (Figure 2).

2.3 Accurate Prediction for 1D Aspects of 3D Structure

If no remote homolog can be detected for U, we are forced
to simplify the prediction problem. There is a pay-off from
making this simplification: using the rich diversity of informa-
tion in current databases, it is possible to make very accurate
1D predictions from the sequence alone. Automatic predic-
tion services are readily available for secondary structure,
solvent accessibility, location andtopologyfor transmembrane
helices,32 and the location of helices for the special class of
coiled-coil proteins.33

3 SEQUENCE ALIGNMENTS

3.1 Basic Concept

The principal problem of sequence alignments is to find
the optimal superposition between two strings of amino (or
nucleic) acid sequences, i.e., to optimally align the two strings.
The most simple objective is to optimize the percentage
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Figure 3 The simple dynamic programming algorithm simply pro-
ceeds in the following way. The two sequences to be aligned (U and
T) are written into a matrix. Starting from the first element in the
matrix, identities are counted and summed along the diagonal. The
two best paths are marked by gray lines. The two best alignments
match only two identical residues for the example given. However, if
insertions (marked by dots) were allowed, the best alignment, actually,
matches four residues

of residues that are identical between the two sequences.
A dynamic programmingalgorithm is guaranteed to find
the optimal solution for the problem in an algorithmic time
quadratic in the length of both sequences34 (Figure 3). For the
alignment of protein sequences this simple approach is not
sufficient as finding the best alignments, usually, requires to
introduce gaps in one sequence, or insertions in the other35

(Figure 3: rather than placing two dots into sequence T,
residues A and E could be deleted in sequence U; note: the
gap increases the score from 2 to 4 identical residues). The
introduction of such gaps is mathematically treated by adding
a constant (gap open penalty) to the final score (here number
of identical residues). However, to align protein sequences
sensitively, this still is not sufficient. The major addition to
the simple approach described so far is to evaluate scores not
based on residue identities but based on biochemical properties
of amino acid. For example, aligning two hydrophobic residues
(I and L) is more beneficial than aligning a hydrophobic and
a charged residue (L and K; note: when treating hydrophobic
residues as identical, the score for the best gapped alignment
in Figure 3 increases from 4 to 6).

3.2 Evolution Distinguishes Signal from Noise

At the level of protein molecules, selective pressure results
from the need to maintain function, which in turn requires
maintenance of the specific 3D structure. This evolutionary
history is the basis for the success in aligning protein (or
nucleotide) sequences. Accordingly, conservation and muta-
tion patterns observed in alignments contain very specific
information about 3D structure. How much variation is toler-
ated without loss of structure? Two naturally evolved proteins
with more than 25% identical residues (length>80 residues)
are very likely to be similar in 3D structure.27

3.3 Task Trivial for High Levels of Sequence Identity

Any sequence analysis starts with database searches:
all known databases are scanned by sequence alignment
procedures for proteins homologous to the search sequence
U. When the pairwise sequence identity between U

and a putative homolog H is over 2530% (for more
than 80 residues), alignment procedures are usually
straightforward.36 40 For less similar protein pairs, alignments
may fail.

3.4 Routine Database Searches by Simplified Procedures

Aligning two sequences by dynamic programming is a
matter of seconds on a modern workstation. However, database
searches require to repeat this many times, and since the
databases grow, CPU time becomes a constraint in everyday
sequence analysis. This bottleneck is opened by methods that
start to find ‘identical words’ (sub-strings), and then grow the
alignment around such blocks. The most widely used programs
of this sort are BLAST and FASTA.37,39 In practice, advanced
alignment algorithms typically proceed by first running a fast
scan with BLAST and/or FASTA, and then by applying the
full dynamic programming algorithm. To illustrate sequence
analysis in practice: aligning the 6000 sequences of yeast
against all known proteins was recently accomplished in 72 h
on 64 SGI 10 000 processors.41

3.5 Multiple Alignments Improve as Data Banks Grow

The most advanced sequence alignment tools base the align-
ment on profiles derived from databases or particular sequence
families.14,42 One new generation of alignment methods is
based on Hidden Markov Models, another on genetic algo-
rithms. These new methods may be more successful in intrud-
ing into the twilight zone of sequence alignments (2030%
sequence identity26) than advanced profile-based methods.
However, this remains to be proven.

3.6 Drawback: Lack of Sufficiently Tested Cut-off
Criteria

There are many different alignment methods available for
those who need to run database searches for their every-
day work. Which method is best? One of the difficulties in
comparing different alignment procedures is the lack of well-
defined criteria for measuring the alignment quality. Very
few papers have attempted to define such measures for the
comparison of various methods.43 The second problem for
users is that most methods do not supply a cut-off criterion
for distinguishing between homologous and nonhomologous
sequences (i.e., false positives). For some large sequence fam-
ilies, remote homologs can be aligned correctly, but for most
cases sequences aligned to the search protein U at levels below
25% pairwise sequence identity will be false positives, i.e.,
will have no structural or functional similarity to U. A sim-
ple length-dependent cut-off based on sequence identity is
provided by the program MAXHOM.27 However, this thresh-
old neither quantifies the influence of biochemical similarities
between amino acids, nor the occurrence of gaps.

4 PREDICTION IN 1D

4.1 Secondary Structure

4.1.1 Basic Concept

The principal idea underlying most secondary structure pre-
diction methods is the fact that segments of consecutive residues
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have preferences for certain secondary structure states.1,21Thus,
the prediction problem becomes a pattern-classification prob-
lem tractable by pattern recognition algorithms. The goal is
to predict whether the residue at the centre of a segment
of typically 13 21 adjacent residues is in a helix, strand or
in neither of the two (no regular secondary structure, often
referred to as the ‘coil’ or ‘loop’ state). Many different algo-
rithms have been applied to tackle this simplest version of the
protein structure prediction problem: physico-chemical princi-
ples, rule-based devices, expert systems, graph theory, linear
and multi-linear statistics, nearest-neighbor algorithms, molec-
ular dynamics, and neural networks.21 However, until recently,
performance accuracy seemed to have been limited to about
60% (percentage of residues correctly predicted in either helix,
strand, or other). The limited accuracy was argued to result from
the fact that all methods used only information local in sequence
(window of less than 20 adjacent residues). Local information
was estimated to account for roughly 65% of the secondary
structure formation. Two additional problems were common to
all methods developed from 1957 to 1993: (1) strands were pre-
dicted at levels of accuracy only slightly superior to random pre-
dictions, and (2) predicted secondary structure segments were,
on average, only half as long as observed segments. The later
two shortcomings could be surmounted by using a particular
combination of neural networks.21

4.1.2 Evolutionary Information Key to Significantly
Improved Predictions

On the one hand, about 75 out of 100 residues can be
exchanged in a protein without changing structure. On the
other hand, exchanges of 15 residues can already destabi-
lize a protein structure. These statements may appear con-
tradictory. However, the explanation is simple: evolution has
explored exactly the unlikely exchanges of particular amino
acids at particular positions that do not change structure, as
a change of structure usually results in a loss of function
(and thus would not survive). Thus, the residue exchange
patterns extracted from a protein family (i.e., alignments of
similar sequences) are highly indicative of the specific stru-
ctural details for that family. The first method that reached
a sustained level of a three-state prediction accuracy above
70% was the profile-based neural network system PHD which
uses exactly such evolutionary information derived from mul-
tiple sequence alignments as input.21 By stepwise incorpora-
tion of particular evolutionary information, prediction accuracy
(Figure 4) has been pushed above 72% accuracy.21 An inter-
esting, technical detail of this network system is that the use
of a global ‘descriptor’, namely the overall amino acid com-
position (percentage of occurrence of each of the 20 amino
acids) does not affect the local score for accuracy as mea-
sured by the percentage of correctly predicted single residues.
Using amino acid composition, however, improves the accu-
racy in terms of a more global score, such as the difference
between the percentage of observed and predicted secondary
structure.21 Is the neural network an essential tool for the most
accurate secondary structure prediction? A nearest-neighbor
algorithm can be used to incorporate evolutionary informa-
tion in a similar manner as the neural network system; the
result is a similar performance.44 Methods combining statis-
tics, and multiple alignment information have been clearly
less successful, so far. In comparison with methods using sin-
gle sequence information only, methods making use of the

growing databases are 614 percentage points more accurate.
Thus, using evolutionary information secondary structure can
now be predicted more accurately and reliably than other fea-
tures of protein structure.

4.1.3 Secondary Structure Predictions now Extremely
Useful, in Practice

How good is a prediction accuracy of 72% in practice?
It is certainly reasonably good compared with the prediction
of secondary structure by homology modeling.45 However,
prediction accuracy varies between different proteins, i.e., pre-
diction accuracy is 72%š 9% (one standard deviation).21 For
applications this implies that predictions can be as good as
>95%, but also as bad as<54%. Can users distinguish one
from the other? A few methods successfully use reliability
indices allowing one to label residues for which predictions
are, on average, likely to be more accurate. Indeed, for the
neural network system PHD the correlation between such a
reliability index and accuracy is linear.21 Thus, the reliabil-
ity index effectively becomes a means to predict prediction
accuracy, and hence to assess to which class a protein of
unknown structure (U) belongs: to the well predicted, or to
the badly predicted ones. Various methods successfully use
secondary structure predictions as a first step, e.g., prediction-
based threading (indeed one of the problems of the Asilomar
1996 prediction contest was that many developers of threading
algorithms used the same PHD secondary structure predictions
as a first step), inter-strand, and inter-residue distance pre-
dictions. However, the use of secondary structure predictions
is not limited to structure prediction. Instead, the results of,
for instance, the public prediction service (PredictProtein21)
have been used to assist the determination of protein struc-
tures (chain tracing in X-ray crystallography), as well as to
formulate hypotheses about protein structure and function that
guided experiments in molecular biology, in general (in partic-
ular, prediction of binding sites, homologous proteins, design
of residue mutations).

4.1.4 Separate Prediction of Secondary Structure Content
not very Useful

Proteins have been partitioned into various structural clas-
ses, e.g., based on the percentage of residues assigned to helix,
strand, and other.46 However, such a coarse-grained classifi-
cation is not well defined.47 Consequently, given a protein
sequence U of unknown structure, attempts to first predict the
secondary structure content for U and then to use the result to
predict the secondary structural class (i.e., all-˛, all-ˇ or inter-
mediates) is of limited practical use. How do alignment-based
predictions compare with experimental means of determining
the content in secondary structure? For example, PHD is, on
average, surprisingly about as accurate as circular dichroism
spectroscopy.47 Of course, this does not imply that predictions
can replace experiments. In particular, variation of secondary
structure as a result of changes in environmental conditions
(e.g., solvent) is generally only accessible experimentally.

4.2 Solvent Accessibility

4.2.1 Basic Concept

It has long been argued that, if the segments of secondary
structure could be accurately predicted, the 3D structure
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Figure 4 PHDsec: profile-based neural network system for secondary structure prediction.21 From the multiple alignment (here guide sequence
SH3 plus four other proteins a1a4, note: lower case letters indicate deletions in the aligned sequence) a profile of amino acid occurrences is
compiled. To the resulting 20 values at one particular positionµ in the protein (one column) three values are added: the number of deletions
and insertions, and the conservation weight (CW). 13 adjacent columns are used as input. The whole network system for secondary structure
prediction consists of three layers: two network layers and one layer averaging over independently trained networks
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Figure 5 Residue solvent accessibility is usually measured by rolling a spherical water molecule over a protein surface and summing the area
that can be accessed by this molecule on each residue (typical values range from 0 to 300Å2). To allow comparisons between the accessibility
of long extended and spherical amino acids, typically relative values are compiled (actual area as percentage of maximally accessible area). A
simplified descriptions distinguishes two states: buried (here residues C and D) and exposed (here residues A, B, E, F, and G) residues. Since
the packing density of native proteins resembles that of crystals, values for solvent accessibility provide upper and lower limits to the number
of possible inter-residue contacts

could be predicted by simply trying different arrangements
of the segments in space.48 One criterion for assessing each
arrangement could be to use predictions of residue solvent
accessibility.49,50 The principal goal is to predict the extent to
which a residue embedded in a protein structure is accessible
to solvent (Figure 5). Solvent accessibility can be described in
several ways.49,50 The simplest is a two-state description dis-
tinguishing between residues that are buried (relative solvent
accessibility<16%) and exposed (relative solvent accessibil-
ity ½16%). The classical method to predict accessibility is to
assign either of the two states, buried or exposed, according
to residue hydrophobicity. However, a neural network predic-
tion of accessibility has been shown to be superior to simple
hydrophobicity analyses.51

4.2.2 Evolutionary Information Improves Prediction
Accuracy

Solvent accessibility at each position of the protein structure
is evolutionarily conserved within sequence families. This fact
has been used to develop methods for predicting accessibility
using multiple alignment information.52 Prediction accuracy is
about 75š 7%, four percentage points higher than for meth-
ods not using alignment information. Predictions of solvent
accessibility have also been used successfully for prediction-
based threading, as a second criterion towards 3D predic-
tion by packing secondary structure segments according to
upper and lower bounds provided by accessibility predictions,
and as basis for predicting functional sites.52 More recently,
predictions of accessibility were also used successfully to

predict sub-cellular location (Andrade and O’Donoghue, per-
sonal communication).

4.3 Transmembrane Helices

4.3.1 Basic Concept

Even in the optimistic scenario that in the near future most
protein structures will be experimentally determined, one class
of proteins will still represent a challenge for experimental
determination of 3D structure: transmembrane proteins. The
major obstacle with these proteins is that they do not crystal-
lize, and are hardly tractable by NMR spectroscopy. Conse-
quently, for this class of proteins, structure prediction methods
are needed even more than for globular water-soluble proteins.
Fortunately, the prediction task is simplified by strong envi-
ronmental constraints on transmembrane proteins: the lipid
bilayer of the membrane reduces the degrees of freedom to
such an extent that 3D structure formation becomes almost
a 2D problem. Two major classes of membrane proteins are
known: proteins which insert helices into the lipid bilayer
(Figure 6), and proteins that form pores by a barrel of 16
strands (the only known cases of this type are porins53). Since
there is not much experimental information available on dif-
ferent porin-like membrane proteins, we can hardly estimate
prediction accuracy for this class. The situation is quite dif-
ferent for helical membrane proteins. Once the location of
transmembrane segments is known for helical transmembrane
proteins, 3D structure can be predicted by exploring all possi-
ble conformations.54 Additionally, predicting the locations of
these transmembrane helices is a much simpler problem than



8 PROTEIN STRUCTURE PREDICTION IN 1D, 2D, AND 3D

Figure 6 Topology of helical transmembrane proteins. In one class of membrane proteins, typically apolar helical segments are embedded
in the lipid bilayer oriented perpendicular to the surface of the membrane. The helices can be regarded as more or less rigid cylinders. The
orientation of the helical axes, i.e., the topology of the transmembrane protein, can be defined by the orientation of the first N-terminal residues
with respect to the cell. Topology is defined asout when the protein N-term (first residue) starts on the extra-cytoplasmic region (protein A),
and asin if the N-term starts on the intra-cytoplasmic side (proteins B and C)

is the prediction of secondary structure for soluble proteins.
Elaborated combinations of expert-rules, hydrophobicity anal-
yses and statistics yields a two-state per-residue accuracy of
about 90% (residues predicted correctly as either transmem-
brane helix, or other).

4.3.2 Evolutionary Information Improves Prediction
Accuracy

For two methods the use of multiple alignment information
is reported to clearly improve the accuracy of predicting trans-
membrane helices.21,55 The best current prediction methods
have a similar high accuracy around 95%. One such method
uses a system of neural networks similar to the one sketched
in Figure 4. In order to predict the orientation of the helices
(i.e., the topology Figure 6) a simple rule is applied: posi-
tively charged residues occur more often in intra-cytoplasmic
than in extra-cytoplasmic regions. The advanced neural net-
work system has been improved significantly by adding a
dynamic programming algorithm to the neural network out-
put. The principal idea is to use the neural network out-
put as an energy landscape and to find the optimal path
through this landscape.32 As reliable data for the locations
of transmembrane helices exist only for a few proteins, data
used for deriving these methods originate predominantly from
experiments in cell biology and gene-fusion techniques. Dif-
ferent experimental groups often report different locations
for transmembrane regions. Thus, the level of 95% accu-
racy is not verifiable. Despite this uncertainty in detail, the
prediction of transmembrane helices is a valuable tool for

quickly scanning entire chromosomes.32 The classification into
membrane/nonmembrane proteins has an expected error rate
of less than 2%, i.e., about 2% of the proteins predicted to
contain transmembrane regions will probably be false posi-
tives. The predictions of transmembrane helices has provided
a lower bound to approach the question of how many proteins
organisms need for example, communication: the percentage
of proteins with transmembrane helices has been estimated
to be about 25% for yeast andHaemophilus influenzae, and
around 10 15% forMycoplasma genitaliumandMethanococ-
cus jannaschii(Rost, manuscript in preparation; data available
at http://www.embl-heidelberg.de/¾rost).

5 PREDICTION IN 2D

5.1 Inter-residue Contacts

5.1.1 Prediction Problem is Difficult, but the Stakes are High

Given all inter-residue contacts or distances (Figure 1),
3D structure can be reconstructed by distance geometry or
molecular dynamics. This is used for the determination of
3D structures by NMR spectroscopy which produces exper-
imental data of distances between protons.56 Can inter-residue
contacts be predicted? Obviously, some fraction of these con-
tacts can be: helices and strands can be assigned based on
hydrogen-bonding pattern between residues. Thus, a success-
ful prediction of secondary structure implies a successful
prediction of some fraction of all the contacts. However,
contacts predicted from secondary structure assignment are
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short-ranged, i.e., between residues nearby in sequence. For
a successful application of distance geometry, long-range con-
tacts have to be predicted, i.e., contacts between residues far
apart in sequence. A few methods have been proposed for the
prediction of long-range inter-residue contacts. Two questions
surround such methods: first, how accurate are these predic-
tion methods on average; and second, are all important contacts
predicted?

5.1.2 Correlated Mutations can Imply Spatial Proximity

In sequence alignments, some pairs of positions appear to
co-vary in a physico-chemically plausible manner, i.e., a ‘loss
of function’ point mutation is often rescued by an additional
mutation that compensates for the change.57 One hypothesis is
that compensations would be most effective in maintaining a
structural motif if the mutated residues were spatial neighbors.
Attempts have been made to quantify such a hypothesis and
to use it for contact predictions.58 60 In general, prediction
accuracy is rather poor, with a direct trade-off between pre-
dicting enough contacts, and predicting only correct ones, e.g.,
taking 5% of the best-predicted long-range contacts (sequence
separation above 10 residues) the accuracy prediction is about
50% (A. Valencia, personal communication).

5.1.3 Distinction Between Different Models, no Prediction of
3D, Yet

Analyzing correlated mutations is only one way to predict
long-range inter-residue contacts. Other methods use statistics,
mean-force potentials, or neural networks. So far none of the
methods appears to find a path between the Scylla of miss-
ing too many true contacts and the Charibdis of predicting
too many false contacts. However, some of the methods pro-
vide sufficient information to distinguish between alternative
models of 3D structure (Valencia, personal communication).
The ambitious goal of predicting long-range inter-residue con-
tacts sufficiently accurately will hopefully continue to attract
intellectual resources.

5.2 Inter-strand Contacts

5.2.1 Simplifying the Contact Prediction Problem

One simplification of the problem of predicting inter-
residue contacts focuses on predicting the contacts between
residues in adjacent strands (Figure 1). Such an attempt is
motivated by the hope that such interactions are more specific
than are sequence-distant (long-range) contacts in general, and
hence are easier to predict.

5.2.2 Identifying the Correcť-Strand Alignment

The only method published for predicting inter-strand
contacts is based on potentials of mean-force61 similar to
those used in the evaluation of strandstrand threading.62

Propensities are compiled by database counts for 2ð 2ð 2
classes (parallel/anti-parallel, H-bonded/not H-bonded, N-/C-
terminal). Each of the eight classes is divided further into
five sub-classes in the following way. Suppose the two strand
residues at positionsi and j are close in space. Then the
following five residue pairs are counted in separate tables:
i/j� 2, i/j� 1, i/j, i/jC 1, i/jC 2. Such pseudo-potentials

identify the correctˇ-strand alignment in 3545% of the
cases.

5.2.3 Using Evolutionary Information to Predict Inter-strand
Contacts

Even if the locations of strands in the sequence are known
exactly, the pseudo-potentials cannot predict the correct inter-
strand contacts in most cases.61 However, when using multiple
alignment information, the signal-to-noise ratio increases such
that inter-strand contacts have been predicted correctly for
most of the strands inspected in some test cases.61 For the
purpose of reliable contact prediction, this result is inadequate,
especially as the locations of the strands are not known
precisely. Can the pseudo-potentials handle errors resulting
from incorrect prediction of strands? Various test examples
using predictions by PHDsec21 as input to the strand pseudo-
potentials indicate that the accuracy in predicting inter-strand
contacts drops (T. Hubbard, unpublished), but in some cases
is still high enough to be useful for approximate modeling of
3D structure.63

6 PREDICTION IN 3D

6.1 Known Folds: Homology Modeling

6.1.1 Basic Concept

An analysis of PDB reveals that all protein pairs with more
than 30% pairwise sequence identity (for alignment length
>8027) have homologous 3D structures, i.e., the essential fold
of the two proteins is identical, details such as additional
loop regions regions not in helices or strandsmay vary.
Structure is more conserved than is sequence. This is the pillar
for the success of homology modeling. The principal idea is to
model the structure of U (protein of unknown structure) based
on the template of a sequence homolog of known structure (T).
Consequently, the precondition for homology modeling is that
a sequence homolog of known structure is found in PDB. Since
homology modeling is currently the only theoretical means
successfully to predict 3D structure, this has two implications.
First, homology modeling is applicable to ‘only’ one quarter
of the known protein sequences (Figure 2). Second, as the
template of a homolog is required, no unique 3D structure
can yet be predicted, i.e., no structure that has no similarity
to any experimentally determined 3D structure. Suppose, there
is a protein with a sequence similar to U in PDB (say T), is
homology modeling straightforward?

6.1.2 High Level of Sequence Identity: Atomic Resolution

The basic assumption of homology modeling is that U
and T have identical backbones (main chain C). The task
is correctly to place the side chains of U into the backbone
of T. For very high levels of sequence identity between U
and T (ideally differing by one residue only), side chains
can be ‘grown’ during molecular dynamics simulations.64 For
slightly lower levels (still of high sequence similarity), side
chains are built based on similar environments in known
structures.65,66 Rotamer libraries (libraries containing all side-
chain orientations observed in known structures) are used in
the following way. (1) Rotamer distributions are extracted
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from a database of nonredundant sequences. (2) Fragments
of seven (helix, strand) or five residues (other) are compiled.
(3) Fragments of the same length are successively shifted
through the backbone of U. (4) For modeling the side chains of
U only those fragments from the rotamer library are accepted
which have the same amino acid in the center as U, and for
which the local backbone is similar to that around the evaluated
position). Over the whole range of sequence identity between
U and T for which homology modeling is applicable, the
accuracy of the model drops with decreasing similarity. For
levels of at least 60% sequence identity, the resulting models
are quite accurate;66,67 even for higher values, the models are
as accurate as is experimental structure determination. The
limiting factor is the computation time required. How accurate
is homology modeling for lower levels of sequence identity?

6.1.3 Low Level of Sequence Identity: Loop Regions
Sometimes Correct

With decreasing sequence identity between the known
structure H and the query protein U, the number of loops
that have to be inserted to align the two grows. An accu-
rate modeling of loop regions, however, implies solving the
structure prediction problem. The problem is simplified in two
ways. First, loop regions are often relatively short and can
thus be simulated by molecular dynamics (note the CPU time
required for molecular dynamics simulations grows exponen-
tially with the number of residues of the polypeptide to be
modeled). Second, the ends of the loop regions are fixed by
the backbone of the template structure. Various methods are
employed to model loop regions. The best have the orientation
of the loop regions correct in some cases.67 This illustrates
the current limitations of molecular dynamics: not even short
loop regions can be predicted from sequence. Furthermore, for
experimental structure refinement (use of molecular dynamics
to improve consistency, and accuracy of experimental data)
molecular dynamics is successfully applied to find a bet-
ter solution when starting from an almost correct structure.
However, for homology modeling, molecular dynamics refine-
ment usually reduces prediction accuracy.67 Below about 40%
sequence identity the accuracy of the sequence alignment used
as basis for homology modeling becomes an additional prob-
lem. Nevertheless, even down to levels of 2530% sequence
identity, homology modeling produces coarse-grained models
for the overall fold of proteins of unknown structure.

6.2 Known Folds: Remote Homology Modeling
(Threading)

6.2.1 Basic Concept

As noted in the previous section, naturally evolved sequ-
ences with more than 30% pairwise sequence identity have
homologous 3D structures.27 Are all others non-homologous?
Not at all. In the current PDB database there are thousands
of pairs of structurally homologous pairs of proteins with
less than 25% pairwise sequence identity (remote homologs).
Actually, most similar protein structures are such remote
homologs.30 If a correct alignment between U (sequence
of unknown structure) and a remote homolog T (pairwise
sequence identity to U<25%) is given, one could build the
3D structure of U by (remote) homology modelling based on
the template of T. A successful remote homology modeling

must solve three different tasks. (1) The remote homolog (T)
has to be detected. (2) U and T have to be correctly aligned.
(3) The homology modeling procedure has to be tailored to the
harder problem of extremely low sequence identity (with many
loop regions to be modeled). Most methods developed so far
have been primarily addressed to solve the first, and the second
problem. The basic idea is to thread the sequence of U into the
known structure of T and to evaluate the fitness of sequence for
structure by some kind of environment-based or knowledge-
based potential.68,69 Threading is in some respects a harder
problem than is the prediction of 3D structure (NP-complete;70

no physical connection between remote homologs, as many
remotely homologous protein pairs may have originated from
different ancestors30). However, the stakes are high: solving
the threading problem could enable the prediction of thousands
of protein structures. Indeed, threading has evolved to become
one of the most active fields in the arena of protein structure
prediction (with well over 100 annual publications).

6.2.2 Variety of Threading Techniques

The optimism generated by one of the first papers on thread-
ing published in the 1990s72 has boosted attempts to develop
threading methods. The principal idea has been to use stru-
ctural propensities of amino acids (such as preferences for
secondary structure formation, hydrophobicity, and polarity),
and to then assess whether or not a given sequence with
its structural preferences fits into the structural environment
of a given structure.69 A principally different approach has
been pushed by Manfred Sippl.71,73 The idea is to use the
rich knowledge deposited in the database of protein structures
(PDB) by extracting mean-force potentials. Such potentials
monitor the observed distances between residue pairs of par-
ticular amino acids, with a particular sequence separation
(number of residues between the two). Until 1995, most thread-
ing methods used mean-force potentials,42,68,71A more recent
generation of threading methods is based on 1D predictions:52

first a 1D structure (secondary structure and solvent accessi-
bility) is predicted for a sequence of unknown structure, then
the 1D structure is extracted for a library of known structures,
and finally the observed and the predicted 1D structure strings
are aligned by typical dynamic programingalgorithms.35 Has
all this effort enabled the hard nut of threading to be cracked?

6.2.3 Remote Homologs can often be Detected

First the good news: since the different mean-force poten-
tials which have been proposed capture different aspects of
protein structure, the correct remote homolog is likely to be
found by at least one of them.74 Now the bad news: so far,
no single method has been able to detect the correct remote
homolog for more than half of all test cases.74 For the methods
which have been rigorously evaluated using large test sets, the
correct remote homolog is detected in less than 40% of all
cases.52 However, this performance is clearly superior to that
of traditional sequence alignments at this low level (<25%) of
sequence identity. Furthermore, the success of the last Asilo-
mar experiment on structure prediction (Proteins, 1998, in
press) suggests that the likelihood of detecting the correct
remote homolog is reasonably high when the choice is refined
by experts.
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6.2.4 3D Prediction by Threading is still not Reliable

Detecting the remote homology is only the first of the
three obstacles. It appears that the second obstacle (correct
alignment between U and T) is much more difficult and,
unfortunately, there is no general solution so far. Thus the final
step, building a 3D model, usually fails since the modeling
procedures available today cannot correct the mistakes in
the alignments. Although the last Asilomar experiment on
structure prediction (Proteins, 1998, in press) suggested that
major improvements have been accomplished over the last two
years, there are still very few publications to date which report
accurate 3D predictions from threading methods. Currently, the
successful use of threading methods requires sceptical, expert
user intervention to spot wrong hits and false alignments. It
is still possible that threading method will become the most
successful structure prediction method, but a lot of detailed
work lies ahead.

6.3 Unknown Folds:Ab Initio Prediction of Structure?

6.3.1 Recent Breakthrough in Structure Prediction?

In the 1994 Asilomar meeting, none of the 3Dab initio
methods was able to predict the correct protein structure.67

Since that time, new methods have been proposed which
indicate possible directions for the future. Several groups
have obtained promising results using distance geometry
methods.52 Simplified force fields in combination with
dynamic optimizationstrategies have yielded promising, but
still relatively inaccurate results.75,76 Srinivasan and Rose
have reported very encouraging results with their hierarchical
search method.77 However, the second Asilomar experiment
on structure prediction (Proteins, 1998, in press) concluded
similarly to the first: no prediction of 3D structure from
sequence, yet.

6.3.2 Accurate Prediction of 3D Structure for Coiled-coil
Proteins

A particular class of proteins are coiled-coils. These are
proteins can be defined by a rather simple geometry of long
helices, of which two or more wind around one another.33

Nilges and Br̈unger78 have achieved atomic accuracy in
an ab initio prediction of the GCN4 leucine zipper using
a hybrid molecular dynamics/simulated annealing search
strategy. Recently, equally accurate models for three leucine
zippers were obtained with faster calculations based on mean-
force potentials.84

6.3.3 Recognizing Incorrect Structures

The single most important theoretical advance in 3D predic-
tion in recent years may have been the development of mean-
force potentials. Before these potentials, structure prediction
was normally done with ‘physical’ potentials, i.e., bonds,
angles, torsion angles, and van der Waals, as well as elec-
trostatic nonbonded terms which describe the internal energy
of the molecule.6 In contrast, the mean-force potentials, deri-
ved from databases of protein structure,79 attempt to describe
the free energy of the molecule. The physical potentials have
been used very successfully to refine experimentally deter-
mined structures.56 However, these terms cannot distinguish
between a native fold and a grossly misfolded structure.79 In

contrast, mean-force potentials of pairwise residue distances
are quite successful in fold recognition, as well as remote
homology modeling.71 It remains to be seen how best to com-
bine these two different potentials. In one pilot study on the
use of mean-force potentials for 3D structure prediction, best
results where obtained by combining both potentials.84

6.3.4 Extracting Principles about Structure Formation from
Structures?

The mean-force potential approach has recently been ext-
ended to study protein folding. Both the physical basis
and the general characteristics of protein folding remain
controversial.80 Simulations and other studies indicate that
the free energy balance of hydrogen bond formation is close
to zero, or slightly unfavorable,81,82 and that a specific fold
is selected primarily by side-chain interactions.80 Recently,
Sippl et al. have extended the concept of deriving mean-force
potentials to a formalism of describing Helmholtz free ener-
gies of atom-pair interactions.83 The formalism starts with the
following two assumptions: (1) that protein structures can be
described by Helmholtz free energies (or mean-force poten-
tials), and (2) that the distribution of intramolecular distances
in experimentally determined protein structures does, on aver-
age, not deviate substantially from the corresponding distribu-
tion in native proteins. To normalize the absolute free energy
contributions, the ideal gas is chosen (no internal interac-
tions). Without any further assumptions or approximations,
atom atom mean-force potentials are derived from a data set
of known protein structures. The resulting Helmholtz mean-
force potentials unravel interesting principles about protein
structure formation. (1) Backbone H-bonds (except for the
˛-helix interaction Oi . . .NiC4) do not contribute to the thermo-
dynamic stability of native folds. (2) H-bond formation (except
for Oi . . .NiC4) requires energy input that is regained when H-
bonds are formed. Once formed, H-bonds are locked in a deep,
narrow minimum. (3) The energy gain of forming one ionic or
two hydrophobic contacts can provide roughly the activation
energy required for forming a H-bond. Both the eloquence
and the conclusions of the approach have prompted strong
criticism, even unanimous rejection of these findings. Do we
witness an error in a method laid out to spot errors, or the
start of a new era of force fields? Further applications of these
mean-force potentials will be needed to answer this question.

7 CONCLUSIONS

Native 3D structures of proteins are encoded by a linear
sequence of amino acid residues. To predict 3D structure from
sequence is a task challenging enough to have occupied a
generation of researchers. Have they finally succeeded in their
goal? The bad news is: no, we still cannot predict structure for
any sequence. The good news is: we have come closer, and
growing databases facilitate the task.

7.1 Prediction in 3D: Theory Bridges the
SequenceStructure Gap

The only source for new, unique protein structures
(structures for which no homolog exists in the database) is
experiments. However, given the amount of time needed to
determine a protein structure experimentally, more nonunique
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structures can be predicted at atomic resolution by homology
modeling in a month than have been determined by experiment
over the last three decades. Homology derived models
are frequently accurate at the level of atomic resolution.
Unfortunately, most models typically have considerable
coordinate errors in loop regions. Coarse-grained homology
derived models are available for almost one-third of
the sequences deposited in the SWISS-PROT database.28

Threading techniques could increase this ratio considerably
by finding more distant homologs. However, for large-scale
sequence analyses, threading techniques are not yet reliable.

7.2 Predictions in 1D: Significant Improvement from
Larger Databases

The rich information contained in the growing sequence and
structure databases has been used to improve the accuracy of
predictions of some aspects of protein structure. Evolutionary
information is successfully used for predictions of secondary
structure, solvent accessibility, and transmembrane helices.
These predictions of protein structure in 1D are significantly
more accurate, and more useful than five years ago. Some
methods have indicated that 1D predictions can be useful as
an intermediate step on the way to predicting 3D structure
(inter-strand contacts; prediction-based threading). Another
advantage of predictions in 1D is that they are not very
CPU-intensive, i.e., 1D structure can be predicted for the
protein sequence of, for example, entire yeast chromosomes
overnight.

7.3 Predictions in 2D: so far of Limited Success

The prediction accuracy of chain-distant inter-residue
contacts is so far relatively limited. Analysis of correlated
mutations can be used to distinguish between alternative
models (e.g., for threading techniques). The prediction of inter-
strand contacts appears to be useful in some cases. An accurate
method for the automatic prediction of contacts between
residues not close in sequence remains to be developed.

Most breakthroughs in protein structure prediction were
achieved since 1990. Thus, although we still cannot solve
the general prediction problem, progress has been made. In
general, however, we could ask the question is it worth
persevering with structure prediction, given that it is clearly
such a difficult task? The answer is: yes. The methods which
have spun off from structure prediction have already given
us considerable insight into the first four complete genomes.
Perseverance with structure prediction will yield fruit in about
2003 when the human genome will be known.
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