RNA secondary structure prediction

Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

Lecture based on Mark Craven's class at University of Wisconsin

http://cw.felk.cvut.cz/wiki/courses/b4m36bin/start

Overview

- Key concepts
 - RNA secondary structure,
 - secondary structure features: stems, loops, bulges,
 - pseudoknots,
 - Nussinov algorithm,
 - Adapting Nussinov to take free energy into account.

Why RNA is interesting

- Messenger RNA (mRNA) is not the only important class of RNA
 - ribosomal RNA (rRNA)
 - * ribosomes are complexes that incorporate several RNA subunits in addition to numerous protein units,
 - transfer RNA (tRNA)
 - * transport amino acids to the ribosome during translation,
 - the spliceosome, which performs intron splicing
 - * a complex with several RNA units,
 - microRNAs and other ncRNAs that play regulatory roles,
 - many viruses (e.g. HIV) have RNA genomes,
 - guide RNA
 - * sequence complementarity determines whether to cleave DNA,
 - folding of an mRNA can be involved in regulating the gene's expression.

RNA secondary structure

- RNA is typically single stranded,
- folding, in large part is determined by base-pairing,
- A-U and C-G are the canonical base pairs
 - C-G pairs form 3 hydrogen bonds, while A-U form only two,
 - other bases will sometimes pair, especially G-U,
- base-paired structure is referred to as the secondary structure of RNA,
- related RNAs often have homologous secondary structure
 - without significant sequence similarity.

tRNA Secondary Structure

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Small subunit ribosomal RNA

O'Connor, Nucleic acids research, 1997.

6S RNA secondary structure

Cavanagh, Annual review of microbiology, 2014.

Secondary structure features

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Probing RNA secondary structure in vivo

- Dimethyl sulfate (DMS) mutational profiling
 - DMS methylates exposed \mathbf{A} and \mathbf{C} bases = those that do not pair,
 - modified RNA is then reversely transcribed using DNA polymerase,
 - methylated bases typically result in termination of reverse transcription.

Jin et al.: Probing in vivo RNA Structure With Optimized DMS-MaPseq in Rice, Front. Plant Sci. 2022.

Secondary structure as CFG

 Context-free grammar (CFG) is a suitable formalism for representing palindrome languages.

seq1	seq2	seq3
A A	C A	C A
G A	G A	G A
G • C	U•A	$\Omega \times C$
A•U	C • G	$C \times \Omega$
$C \bullet G$	G • C	$G \times G$

$$S \rightarrow aW_1u \mid cW_1g \mid gW_1c \mid uW_1a$$

$$W_1 \rightarrow aW_2u \mid cW_2g \mid gW_2c \mid uW_2a$$

$$W_2 \rightarrow aW_3u \mid cW_3g \mid gW_3c \mid uW_3a$$

$$W_3 \rightarrow gaaa \mid gcaa.$$

Durbin, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.

Four key problems

- Predicting RNA secondary structure (Focus for today)
 - Given: RNA sequence,
 - Do: predict secondary structure that sequence will fold into,
- Searching for instances of a given structure
 - Given: an RNA sequence or its secondary structure,
 - Do: find sequences that will fold into a similar structure,
- Modeling a family of RNAs
 - Given: a set of RNA sequences with similar secondary structure,
 - Do: construct a model that captures the secondary structure regularities of the set,
- Identifying novel RNA genes
 - Given: a pair of homologous DNA sequences,
 - Do: identify subsequences that appear to have highly conserved RNA secondary structure (putative RNA genes).

RNA folding assumption and pseudoknots

- We will assume that base pairings do not cross,
- for base-paired positions i, i' and j, j', with i < i' and j < j', we must have</p>
 - either i < i' < j < j' or j < j' < i < i' (not nested),
 - or i < j < j' < i' or j < i < i' < j' (nested),
- cannot have i < j < i' < j' or j < i < j' < i'
 - these crossings are called pseudoknots,
 - dynamic programming breaks down with them,
 - fortunately, they are not very frequent.

Seliverstov et al. BMC Microbiology, 2005.

Predicting RNA secondary structure

Given:

- an RNA sequence,
- the constraint = pseudoknots not allowed,

Do:

- find a secondary structure for the RNA,
- it maximizes the number of base pairing positions,
- Nussinov algorithm
 - key ideas
 - * do this using dynamic programming,
 - * start with small subsequences,
 - * progressively work to larger ones.

DP in the Nussinov algorithm

Let

$$\delta(i,j) = \begin{cases} 1 \text{ if } x_i \text{ and } x_j \text{ complementary} \\ 0 \text{ otherwise} \end{cases}$$

initialization

$$\gamma(i,i-1)=0 \ \ {
m for} \ i=2 \ {
m to} \ L$$
 $\gamma(i,i)=0 \ \ {
m for} \ i=1 \ {
m to} \ L$

recursion

Nussinov algorithm traceback

Determine one non-crossing RNA structure with maximal score.

```
push(1,L) onto stack
repeat until stack is empty
  pop(i, j)
  if i \geq j continue
  else if \gamma(i+1,j) = \gamma(i,j) push(i+1,j)
  else if \gamma(i, j-1) = \gamma(i, j) push(i, j-1)
  else if \gamma(i+1,j-1)+\delta(i,j)=\gamma(i,j)
     record i, j base pair
     push(i+1, j-1)
  else for k = i + 1 to j - 1:
     if \gamma(i,k) + \gamma(k+1,j) = \gamma(i,j)
        push(k+1,j)
        push(i,k)
        break
```

Predict RNA secondary structure by energy minimization

- Maximizing the number of base pairs oversimplifies prediction of folding,
- however, we can generalize the key recurrence relation by minimizing free energy instead.

$$E(i,j) = min \begin{cases} E(i+1,j) \\ E(i,j-1) \\ min_{i < k < j} [E(i,k) + E(k+1,j)] \\ P(i,j) \leftarrow \text{ case that } i \text{ and } j \text{ are base paired} \end{cases}$$

Predict RNA secondary structure by energy minimization

 A sophisticated program, such as Mfold [Zuker et al.], can take into account free energy of the "local environment" of [i, j].

$$P(i,j) = min \begin{cases} \alpha(i,j) + \mathsf{LoopEnergy}(j-i-1) \\ \alpha(i,j) + \mathsf{StackingEnergy}(i,j,i+1,j-1) + P(i+1,j-1) \\ min_{k \geq 1}[\alpha(i,j) + \mathsf{BulgeEnergy}(k) + P(i+k+1,j-1)] \\ min_{k \geq 1}[\alpha(i,j) + \mathsf{BulgeEnergy}(k) + P(i+1,j-k-1)] \\ min_{k,l \geq 1}[\alpha(i,j) + \mathsf{LoopEnergy}(k+l) + P(i+k+1,j-l-1)] \\ min_{j > k > i}[\alpha(i,j) + E(i+1,k) + E(k+1,j-1)] \end{cases}$$

Predict RNA secondary structure by energy minimization

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Mfold example

- Mfold solutions with energy up to 5% from the best
 - different from Nussinov results (2 Watson-Crick base pairs only here).

http://unafold.rna.albany.edu/

MXfold2 – a recent deep learning extension to Mfold

- Deep neural network computes four types of folding scores
 - unpaired, stacking, opening and closing score,
 - the scores obtained for each pair of nucleotides,
- then, MXfold2 predicts an optimal secondary structure
 - it maximizes the sum of the scores of the nearest-neighbor loops,
 - using Zuker-style dynamic programming as shown in Mfold,
- the deep neural network is trained using the max-margin framework
 - also known as structured support vector machine (SSVM),
 - it minimizes the structured hinge loss function with thermodynamic regularization,
- it prevents the folding score of the secondary structure from differing significantly from the free energy of the thermodynamic parameters.

MXfold2 - a recent deep learning extension to Mfold

Sate et al: RNA secondary structure prediction using deep learning with thermodynamic integration, Nature Communications, 2021.

MXfold2 example

MXfold2 server publicly available,

Colors - 🗘 - 👯

Powered by forna

yet another outcome for our small running example,

MXfold2 Server Pexample GGGAAUCC ((....)) (-1.0) Add Molecule Clear A A G C G C C

http://ws.sato-lab.org/mxfold2/predict

→ ± ...

Summary

- RNA has numerous roles in translation, splicing, DNA replication, regulation,
- RNA structure understanding is important
 - substitutions possible, function preserved as long as they preserve structure,
- Secondary structure can be predicted
 - comparative sequence analysis
 - * molecules with similar function will form similar structures,
 - * it searches for positions that co-vary,
 - free energy minimization
 - * take a sequence, search for energetically stable complementary regions,
 - * in a simplified form discussed in this lecture,
 - * many foldings lie close to the predicted global energy minimum,
 - current folding programs get on average 60-75% base pairs correct,
 - in general an intractable task,
- experimental methods such as dimethyl sulfate (DMS) probing exist.