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Overview

m Key concepts

RNA secondary structure,

secondary structure features: stems, loops, bulges,
pseudoknots,

Nussinov algorithm,

Adapting Nussinov to take free energy into account.




Why RNA is interesting

s Messenger RNA (mRNA) is not the only important class of RNA
ribosomal RNA (rRNA)

x ribosomes are complexes that incorporate several RNA subunits in ad-
dition to numerous protein units,

transfer RNA (tRNA)

% transport amino acids to the ribosome during translation,

the spliceosome, which performs intron splicing

x a complex with several RNA units,

microRNAs and other ncRNAs that play regulatory roles,

many viruses (e.g. HIV) have RNA genomes,

guide RNA

x sequence complementarity determines whether to cleave DNA,

folding of an mRNA can be involved in regulating the gene's expression.




RNA secondary structure

s RNA is typically single stranded,
s folding, in large part is determined by base-pairing,
m A-U and C-G are the canonical base pairs

C-G pairs form 3 hydrogen bonds, while A-U form only two,

other bases will sometimes pair, especially G-U,
m base-paired structure is referred to as the secondary structure of RNA,
= related RNAs often have homologous secondary structure

without significant sequence similarity.
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Small subunit ribosomal RNA
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6S RNA secondary structure
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Secondary structure features
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Probing RNA secondary structure in vivo

s Dimethyl sulfate (DMS) mutational profiling

DMS methylates exposed A and C bases = those that do not pair,
modified RNA is then reversely transcribed using DNA polymerase,
methylated bases typically result in termination of reverse transcription.

DMS treatment RNA extraction
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Jin et al.:Probing in vivo RNA Structure With Optimized DMS-MaPseq in Rice, Front. Plant Sci.2022.




Secondary structure as CFG

s Context-free grammar (CFG) is a suitable formalism for representing palin-
drome languages.

seql seq2 seqs | I | |
A A c A o CAGGARAACUG seql
G A G A G A GCUGCARARAGC seq2
GeC UeA UxC
AeU CeG CxU
CeG GeC GxG
S — aWu|cWyg | gWic | uWa
Wi — aWou | cWag | gWac | uWaa
Wy — aWiu | cWig | gWic | uWsa
Wiy —  gaaal| gcaa.

¢c a g g dda dada c u g

Durbin, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.




Four key problems

= Predicting RNA secondary structure ( )

Given: RNA sequence,
Do: predict secondary structure that sequence will fold into,

m Searching for instances of a given structure

Given: an RNA sequence or its secondary structure,
Do: find sequences that will fold into a similar structure,

s Modeling a family of RNAs

Given: a set of RNA sequences with similar secondary structure,
Do: construct a model that captures the secondary structure regularities
of the set,

= Identifying novel RNA genes

Given: a pair of homologous DNA sequences,

Do: identify subsequences that appear to have highly conserved RNA sec-
ondary structure (putative RNA genes).




RNA folding assumption and pseudoknots

s We will assume that base pairings do not cross,
m for base-paired positions i, i’ and j, j’, with i < i" and
j < j', we must have
eitheri <i' <j<j orj<j <i<i (notnested),
ori<j<j <iorj<i<i <j (nested), pseudoknot
mcannot havei < j<i' <jorj<i<j <t
these crossings are called ,
dynamic programming breaks down with them,

fortunately, they are not very frequent.
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Predicting RNA secondary structure

= Given:

an RNA sequence,

the constraint = pseudoknots not allowed,
= Do:

find a secondary structure for the RNA,

it maximizes the number of base pairing positions,
= Nussinov algorithm

key ideas

x do this using dynamic programming,
x start with small subsequences,

x progressively work to larger ones.




DP in the Nussinov algorithm

m Let
5(i. ) = 1 if z; and x; complementary o
7 0 otherwise j > paired bases in
subsequence [i, /]
G GGA A/AUTZCC

/

m initialization

G
G v
v(2,i —1) =0 fori =2to L G
v(i,i) =0  fori=1toL 2
A
m recursion u
( . . C
Y(i+1,7) c
7(27.] o 1)

v(4,7) = max <

Durbin, Biological Sequence Analysis:

f}/(’[/ _|_ 1, ] — 1) —|_ 5(2, ]) Probabilistic Models of Proteins and Nucleic Acids.
mazi<p<j[v(i, k) +v(k + 1, j)]

\




Nussinov algorithm traceback

m Determine one non-crossing RNA structure with maximal score.

push(l,L) onto stack
repeat until stack 1s empty
pop(i, J)
if 2> 7 continue
else if ~(t+1,5) =~(i,j) push(i+1,5)
else if ~(i,j —1)=~(i,5) push(i,j—1)
else if ~(i+ 1,5 —1)4+4d(i,5) =~(1,))
record 7,7 base pair
push(i+1,7 —1)
else for k=1+1 to j7—1:
if (i, k) +(k+1,5) =70 7)
push(k +1,7)
push(i, k)
break




Predict RNA secondary structure by energy minimization

s Maximizing the number of base pairs oversimplifies prediction of folding,

m however, we can generalize the key recurrence relation by minimizing free
energy instead.

(E(i+1,))
E(i,j—1)
mini<r<;| (i, k) + E(k +1,7)]
P(i,j) < case thati and j are base paired

E(i,7) = min <

\




Predict RNA secondary structure by energy minimization

= A sophisticated program, such as Mfold [Zuker et al.|, can take into account
free energy of the “local environment” of [i, j|.

a(i,j) + LoopEnergy(j —i — 1)

a(i, 7) + StackingEnergy(i, j, i+ 1,7 — 1)+ Pi+ 1,7 — 1)
ming>1|a(i, j) + BulgeEnergy(k) + P(i + k+ 1,5 — 1)]
ming>1|a(i, j) + BulgeEnergy(k) + P(i + 1,5 — k — 1)]

maing >1|c(t, 7) + LoopEnergy(k +1) + P(i + k+ 1,5 — 1 — 1)]
min;sg=ila(i, ) + E(i+ 1, k) + E(k+ 1,7 —1)]

P(i,5) = min |




Predict RNA secondary structure by energy minimization

a(z,7) + LoopEnergy(j —i — 1) ming >1(a(i, j) + LoopEnergy(k + 1) + P(i + k+ 1,5 — | — 1)]
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Mfold example

= Mfold solutions with energy up to 5% from the best

different from Nussinov results (2 Watson-Crick base pairs only here).

GGGAAAUCC ) )
5 / \
- N/
G — G —— G \ G — ¢
] | . | |
cC— ¢ — v R / G — G — ¢ 3
AG =-0.80 kcal/mol AG = 0.20 kcal/mol

http://unafold.rna.albany.edu/




MXfold2 — a recent deep learning extension to Mfold

m Deep neural network computes four types of folding scores

unpaired, stacking, opening and closing score,

the scores obtained for each pair of nucleotides,
s then, MXfold2 predicts an optimal secondary structure

it maximizes the sum of the scores of the nearest-neighbor loops,

using Zuker-style dynamic programming as shown in Mfold,
m the deep neural network is trained using the max-margin framework

also known as structured support vector machine (SSVM),

it minimizes the structured hinge loss function with thermodynamic regu-
larization,

m it prevents the folding score of the secondary structure from differing signifi-
cantly from the free energy of the thermodynamic parameters.




MXfold2 — a recent deep learning extension to Mfold
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Sate et al: RNA secondary structure prediction using deep learning with thermodynamic integration, Nature Communications, 2021.

21/23 B4M36BIN RNA structure prediction



MXfold2 example

s MXfold2 server publicly available,

m yet another outcome for our small running example,

MXfold2 Server

>>>>> ple
GGGAAALCC

((....)) (-1.0)

Add Molecule -~ [M®EE

Off 4 | Colors~ | & . I

Powered bv forna

http://ws.sato-lab.org/mxfold2/predict




Summary

s RNA has numerous roles in translation, splicing, DNA replication, regulation,
m RNA structure understanding is important

substitutions possible, function preserved as long as they preserve structure,
m Secondary structure can be predicted

comparative sequence analysis

* molecules with similar function will form similar structures,
x it searches for positions that co-vary,

free energy minimization

* take a sequence, search for energetically stable complementary regions,
% in a simplified form discussed in this lecture,
x many foldings lie close to the predicted global energy minimum,

current folding programs get on average 60-75% base pairs correct,

in general an intractable task,

= experimental methods such as dimethyl sulfate (DMS) probing exist.




