
Inference of phylogenetic trees
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pOverview

� Phylogenetic inference: task definition,

� basics from graph theory,

� motivation for phylogenetic analysis

− example trees,

� three general types of methods

− distance: find tree that accounts for estimated evolutionary distances,

− parsimony: find the tree that requires minimum number of changes to
explain the data,

− maximum likelihood: find the tree that maximizes the likelihood of the
data.
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pPhylogenetic inference: task definition

� Given

− data characterizing a set of species/genes,

− earlier: morphological data,

− today: nucleotide sequences or amino acid sequences,

� Do

− infer a phylogenetic tree that accurately characterizes the evolutionary lin-
eages among the species/genes,

− phylogenesis = the evolutionary development and diversification of a species
or group of organisms,

− limitations: homoplasy, horizontal gene transfer, etc.
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pPhylogenetic tree basics

� Tree

− an undirected graph without cycles,

− a directed graph whose underlying undirected graph is a tree
(often also ∀v: indegree(v)≤1 to avoid polytrees with many roots),

� phylogenetic tree

− leaves = things (genes, species, individuals/strains) being compared,

− internal nodes = hypothetical ancestral units,

− taxon (taxa plural) = species and broader classifications of organisms,

� rooted and unrooted trees

− a directed tree has a root

∗ the root represents the common ancestor,

∗ path from root to a node represents an evolutionary path,

− an undirected tree is unrooted

∗ specifies relationships among things, but not evolutionary paths.
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pRooted and unrooted trees

� The role of root

− an extra node that tells us the direction of evolution,

� the number of possible trees for n leaves (sequences) quickly grows

− unrooted:
∏n

i=3(2i− 5),

− rooted: (2n− 3)
∏n

i=3(2i− 5).

rooted tree unrooted tree
Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pWhy construct phylogenetic trees?

� to gain knowledge of biologial diversity from raw data

− and organize it in a structured (hierarchical) way,

� to understand evolutionary lineage of various species

− straightforward reconstruction, see tree paths from the root to a leaf,

� to understand how various functions evolved and which loci underlie it

− may help extract functional (e.g., gene-trait association) signal from ge-
nomic data,

� to inform multiple alignments

− multiple sequence alignments often used to create a phylogenetic tree,

− the knowledge of phylogeny helps to improve multiple sequence alignments
(guide trees),

� to identify what is most conserved/important in some class of sequences

− those that keep relatively unchanged far back up the phylogenetic tree.
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pExample tree: tracing the evolution of the Ebola virus

� Ebola virus: a lethal human pathogen

� 2014 Ebola epidemic in Africa

− until recently the largest case in 1976 (318 cases),

− outbreak reported in Feb 2014,

− 11,315 deaths, fatality rate 78%,

� key questions

− where did the pathogen come from?

− how is it evolving?

� In a 2014 Science paper

− whole genome sequence alignment of 99 Ebola virus genomes from 78
patients in Sierra Leone,

− also three published Guinean samples and 20 genomes from earlier out-
breaks.
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pExample tree: tracing the evolution of the Ebola virus

Gire et al., Science 2014.
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pExample tree: tracing the evolution of the Ebola virus

� Insights gained from sequence comparison [Gire et al., Science 2014]

− “Genetic similarity across the sequenced 2014 samples suggests a single
transmission from the natural reservoir, followed by human-to-
human transmission during the outbreak.”,

− “. . . the Sierra Leone outbreak stemmed from the introduction of two ge-
netically distinct viruses from Guinea around the same time . . . ”,

− “. . . the three most recent outbreaks (2002, 2007, 2014) represent an inde-
pendent zoonotic event from the same genetically diverse viral population
in its natural reservoir . . . ”.

Gire et al., Science 2014.
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pDistance-based approaches

� given: an n× n matrix M , where Mij is the distance between taxa i and j,

� do: build an edge-weighted tree such that the distances between leaves i and
j correspond to Mij.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pWhere do we get distances?

� Commonly obtained from sequence alignments

− in alignment of sequence i with sequence j, distij = fij

fij =
#mismatches

#matches +#mismatches

� to correct for multiple substitutions at a single position

− use Jukes-Cantor model for mutation rates

distJC(i.j) = −
3

4
ln
(
1− 4

3
fij

)
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pThe molecular clock hypothesis and ultrametric data

� In the 1960s, sequence data were accumulated for small, abundant proteins
such as globins, cytochromes c, and fibrinopeptides. Some proteins appeared
to evolve slowly, while others evolved rapidly.

� Linus Pauling, Emanuel Margoliash and others proposed the hypothesis of a
molecular clock: For every given protein, the rate of molecular evolution is
approximately constant in all evolutionary lineages.

� the molecular clock assumption is not generally true: selection pressures vary
across time periods, organisms, genes within an organism, regions within a
gene,

� if it does hold, then the data is said to be ultrametric

− this property simplifies construction of rooted phylogenetic trees.
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pThe molecular clock hypothesis

Pevsner: Bioinformatics and Functional Genomics, Wiley, 2009.
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pDistance metrics

� Properties of distance metrics

− identity: dist(xi, xi) = 0,

− symmetry: dist(xi, xj) = dist(xj, xi),

− triangle inequality: dist(xi, xj) ≤ dist(xi, xk) + dist(xk, xj),

− non-negativity: dist(xi, xj) ≥ 0 (follows from the previous properties),

� semimetric if the triangle equality does not hold,

� ultrametric property makes the triangle equality condition stronger

− ultrametric: dist(xi, xj) ≤ max(dist(xi, xk), dist(xk, xj)).
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pThe molecular clock hypothesis and ultrametric data

� Ultrametric data

− for any triplet of sequences, i, j, k, the distances are either all equal, or
two are equal and the remaining one is smaller.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pThe UPGMA method

� Unweighted Pair Group Method using Arithmetic Averages (UPGMA),

� given ultrametric data, UPGMA will reconstruct the tree T that is consistent
with the data,

� basic idea

− iteratively pick two taxa/clusters and merge them.

− create new node in tree for merged cluster.

� distance dij between clusters Ci and Cj of taxa is defined as

− average distance between pairs of taxa from each cluster

− dij =
1

|Ci||Cj|
∑

p∈Ci,q∈Cj dpq

� given a new cluster Ck formed by merging Ci and Cj,

� we can calculate the distance between Ck and any other cluster Cl as follows

− dkl =
dil|Ci|+djl|Cj|
|Ci|+|Cj|
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pThe UPGMA algorithm

� assign each taxon to its own cluster,

� define one leaf for each taxon, place it at height 0,

� while more than two clusters

− determine two clusters i, j with smallest dij,

− define a new cluster Ck = Ci ∪ Cj,
− define a node k with children i and j, place it at height dij/2,

− replace clusters i and j with k,

− compute distance between k and other clusters,

� join last two clusters, i and j, by root at height dij/2.
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pUPGMA example

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pUPGMA example
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pAnother distance-based algorithm: neighbor joining

� unlike UPGMA

− does not make molecular clock assumption,

− produces unrooted trees,

� it assumes additivity

− distance between a pair of leaves is sum of lengths of edges connecting
them,

∀x, y, u, v (leaves) : d(x, y)+d(u, v) ≤ max(d(x, u)+d(y, v), d(y, u)+d(x, v))

� like UPGMA, constructs a tree by iteratively joining subtrees, however

− the pair of subtrees to be merged on each iteration is selected differently,

− distances are updated differently after each merge too.
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pPicking pairs of nodes to join in neighbor joining (NJ)

� at each step, we pick a pair of nodes to join

− should we pick a pair i and j with minimal distance dij?

� suppose the real tree below, we aim to pick the first pair of nodes to join

− wrong decision to join A and B,

− we need to consider distance of the pair to other leaves too,

− pick a pair of nodes that minimizes Dij

Dij = dij − (ri + rj)

ri =
1

|L| − 2

∑
k∈L

dik

where L is the set of leaves
Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pUpdating distances in neighbor joining

� the joined pair (i, j) will be replaced by a new internal node k,

� its distance to another node m is given by

dkm =
1

2
(dim + djm − dij)

� the distance from a leaf to its parent node calculated in the same way

dik =
1

2
(dij + dim − djm)

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pUpdating distances in neighbor joining

� the previous update works perfectly if data are strictly additive,

� if not, a more robust method applies

− instead of single m, take into account the distance to all other leaves

dik =
1

2
(dij + ri − rj)

ri =
1

|L| − 2

∑
m∈L

dim

− where L is the set of leaves.
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pNeighbor joining algorithm

define the tree T = set of leaf nodes

L = T
while more than two subtrees in T

pick the pair i, j in L with minimal Dij

add to T a new node k joining i and j
determine new distances dik, djk
determine dkm for all other m in L
remove i and j from L and insert k
(treat it like a leaf)

join two last subtrees i and j with edge of length dij

� if the data is additive (and these distances represent real distances), then
neighbor joining will identify the correct tree,

� otherwise, the method may not recover the correct tree, but it may still be
reasonable heuristics,

� neighbor joining is commonly used.
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pTesting for additivity

� remember the additivity property

∀i, j, k, l (leaves) : d(i, j) + d(k, l) ≤ max(d(i, k) + d(j, l), d(i, l) + d(j, k))

� for every set of four leaves, i, j, k, and l, two of the distances dij+dkl, dik+djl
and dil+djk must be equal and not less than the third.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pRooting trees

� finding a root in an unrooted tree sometimes accomplished with an outgroup,

− a species known to be (far) more distantly related to remaining species,

� edge joining the outgroup to the rest of the tree is best candidate for root
position,

� no outgroup → pick the midpoint of the longest chain of consecutive edges.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pParsimony-based approaches

� parsimony: find the tree that explains the data with minimum changes,

� given: character-based data,

� do: find tree that explains the data with a minimal number of changes,

� focus is on finding the right tree topology, not on estimating branch lengths,

� there are various trees that could explain the phylogeny of the sequences AAG,
AAA, GGA, AGA including the two below,

� parsimony prefers the first tree because it requires fewer substitution events.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pParsimony-based approaches

� usually these approaches involve two separate components

− a procedure to find the minimum number of changes needed to explain the
data for a given tree topology

∗ we will assume that positions are independent and compute the mini-
mum number of changes for each position separately,

∗ at first, we will treat the costs of these changes uniformly,

∗ then, we will work with different costs for different changes,

− a search through the space of trees

∗ cannot be exhaustive, too many trees,

∗ a heuristic method of nearest neighbor interchange.
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pFinding minimum number of changes for a given tree

� brute force approach

− for each possible assignment of states to the internal nodes, calculate the
number of changes,

− report the minimum number of changes found,

− runtime is O(NkN)
k = number of characters (4 for DNA), N = number of leaves,

� Fitch’s two-pass algorithm

− firstly traverses tree from leaves to root determining set of possible states
(e.g. nucleotides) for each internal node,

− secondly traverses tree from root to leaves picking ancestral states for
internal nodes,

− deals with the uniform costs of changes,

− finds the best assignment in O(Nk).
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pFitch’s algorithm: step 1 = post-order

� do a post-order (from leaves to root) traversal of tree,

� determine possible states Ri of internal node i with children j and k

Ri =

{
Rj ∪Rk, if Rj ∩Rk = ∅
Rj ∩Rk, otherwise

� this step calculates the number of changes required
# of changes = # union operations.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pFitch’s algorithm: step 2 = pre-order

� do a pre-order (from root to leaves) traversal of tree,

� select state rj of internal node j with parent i

rj =

{
ri, if ri ∈ Rj

arbitrary state ∈ Rj, otherwise

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pWeighted parsimony

� instead of assuming all state changes are equally likely, use different costs
S(a, b) for different changes,

� the modification of Fitch’s algorithm proposed by Sankoff & Cedergren,

� 1st post-order step of algorithm propagates costs up through tree,

� the goal is to determine cost Ri(a) of assigning character a to node i,

� for leaves

Ri(a) =

{
0, if a is character at leaf,

∞, otherwise

� for an internal node i with children j and k

Ri(a) = minb(Rj(b) + S(a, b)) +minb(Rk(b) + S(a, b))
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pExample: weighted parsimony

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pWeighted parsimony: step 2 = pre-order

� do a pre-order (from root to leaves) traversal of tree

− for root node: select minimal cost character,

− for each internal node: select the character that resulted in the minimum
cost explanation of the character selected at the parent,
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pExample: weighted parsimony

� Consider the two simple phylogenetic trees shown below,

� and the symmetric cost matrix for assessing nucleotide changes,

� the tree on the right has a cost of 0.8,

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

� show how the weighted parsimony determines the cost of the tree on the left,

� what are the minimal cost characters for the internal nodes in the tree?

� which of the two trees would the maximum parsimony approach prefer?
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pExample: weighted parsimony

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

� The minimal cost characters for node 1 are either g or t. The tree costs 1.0.

� The minimal cost character for node 3 is g.

� The maximum parsimony approach would prefer the other tree (1.0>0.8).
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pExploring the space of trees: nearest neighbor interchange

� For any internal edge in a tree

− there are 3 ways the four subtrees can be grouped,

� nearest neighbor interchanges move from one grouping to another.

− it represents the simplest tree structure rearrangement (only local).

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pHeuristic hill-climbing with nearest neighbor interchange

given: set of leaves L
create an initial tree t incorporating all leaves in L
best -score = parsimony algorithm applied to t
repeat

for each internal edge e in t
for each nearest neighbor interchange

t′ ← tree with interchange applied to edge e in t
score = parsimony algorithm applied to t′

if score < best -score

best -score = score

best -tree = t′

t = best -tree

until stopping criteria met
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pExact method: branch and bound

� Each partial tree represents a set of complete trees,

� parsimony score on a partial tree = lower bound on the best score in the set,

� search by repeatedly selecting the partial tree with the lowest lower bound.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pExact method: branch and bound

given: set of leaves L
initialize Q with a partial tree with 3 leaves from L
repeat

t← tree in Q with lowest lower bound

if t has incorporated all leaves in L
return t

else

create new trees

(by adding next leaf from L to each branch of t)
compute lower bound for each tree

put trees in Q sorted by lower bound
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pExact method: branch and bound (improved version)

given: set of leaves L
use heuristic method to grow initial tree t′

initialize Q with a partial tree with 3 leaves from L
repeat

t← tree in Q with lowest lower bound

if t has incorporated all leaves in L
return t

else

create new trees

(by adding next leaf from L to each branch of t)
for each new tree n

if lower-bound(n) < score(t’)

put n in Q sorted by lower bound

41/50 B4M36BIN Phylogenetic trees



pComments on parsimony methods

� Branch and bound is a complete search method

− guaranteed to find optimal solution,

� may be much more efficient than exhaustive search

� in the worst case, it is no better,

� branch and bound efficiency depends on

− the tightness of the lower bound,

− the quality of the initial tree,

� we described parsimony calculations in terms of rooted trees

− but we described the search procedures in terms of unrooted trees,

− it is not a big problem as

∗ unweighted parsimony: minimum cost is independent of where root is
located,

∗ weighted parsimony: minimum cost is independent of root if substitution
cost is a metric.
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pProbabilistic phylogenetic methods

� A probabilistic alternative to parsimony

− instead of cost S(a, b) of a substitution occurring along a branch, it uses
a probability P (child = a|parent = b),

− for a given tree, instead of finding a minimal cost assignment to the an-
cestral nodes, it sums the probabilities of all possible ancestral states,

− instead of finding a tree with minimum cost, it finds a tree that maximizes
likelihood (probability of the data given the tree),

� this approach aims to minimize the effect of implicit parsimony simplifications

− substitution costs are rather arbitrary and the most parsimonious tree crit-
ically depends on them,

− parsimony methods require assignments of character states to the ancestral
nodes, the best assignment does not have to be the true one.
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pProbabilistic model setup

� We observe n sequences x1, . . . , xn,

� we are given a tree T and want to model the likelihood P (x1, . . . , xn|T )
− likelihood = probability of observation (sequences) given model (tree),

� for simplicity, consider that our sequences are of length 1 (just one character),

� to generalize to longer sequences, assume independence of each position

− each column of an ungapped multiple alignment tretaed independently,

− probability of sequences = product of probability of each position/column,

� the states of internal nodes given by random variables Xn+1, . . . , X2n−1

− assume a rooted binary tree,

� the branch lengths will be ignored for the sake of simplicity

− P (child = a|parent = b) instead of P (child = a|parent = b, time).
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pProbabilistic model setup

� The probability of any particular configuration of states at all tree nodes

P (x1, . . . , x2n−1|T ) = qx2n−1

2n−2∏
i=1

P (xi|xα(i))

− qx2n−1 is the prior probability of the state of the root node,

− α(i) is the index of the parent node of node i,

� key assumption

− state of node i is conditionally independent of the states of its ancestors
given the state of its parent,

� we only care about the probability of the observed (extant) sequences

� need to marginalize (sum over possible values of ancestral states) to obtain
the likelihood

P (x1, . . . , xn|T ) =
∑

xn+1,...,x2n−1

qx2n−1

2n−2∏
i=1

P (xi|xα(i))
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pFelsenstein’s algorithm

� There is an exponential number of terms in the previous likelihood sum!

� dynamic programming to the rescue once again!

� subproblem: P (Lk|a): probability of the leaves below node k, given that the
residue at k is a,

� Recurrence:

P (Lk|a) =
∑
b,c

P (b|a)P (Li|b)P (c|a)P (Lj|c) =

=
∑
b

P (b|a)P (Li|b)
∑
c

P (c|a)P (Lj|c)

− where i and j are the children nodes of k,

− b and c represent the states of node i and node j, respectively.
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pFelsenstein’s algorithm

� Initialize: k = 2n− 1

� Recursion:

− if k is a leaf node

P (Lk|a) =

{
1, if a = xk

0, otherwise

− else, compute P (Li|a) and P (Lj|a) for all a at daughters i and j

P (Lk|a) =
∑
b

P (b|a)P (Li|b)
∑
c

P (c|a)P (Lj|c)

� Termination:

− likelihood is equal to ∑
a

P (L2n−1|a)qa
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pConcluding remarks on maximum likelihood methods

� Very similar to the weighted parsimony case,

� main differences are at

− leaf nodes,

− minimization versus summation for internal nodes,

� can it be used to infer ancestral states as well?

− instead of summing, we would maximize,

− as in the parsimony case, we would need to keep track of the maximizing
assignment,

� substitution probabilities P (a|b) can be derived from principled mathematical
models and/or estimated from data.
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pWhat is probability for the following set of residues?

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pWhat is probability for the following set of residues?

� In leaf nodes the simple 0/1 rule,

� in internal nodes

P (L4|A) = P (A|A)P (L1|A)P (T |A)P (L2|T ) = 0.7× 1× 0.1× 1 = 0.07

P (L4|C) = P (A|C)P (L1|A)P (T |C)P (L2|T ) = 0.1× 1× 0.1× 1 = 0.01

. . .

− the other options in the leaf nodes lead to trivial zero probabilities and do
not influence the sum,

P (L5|A) = P (G|A)P (L3|G)
∑

b∈{ACGT}

P (b|A)P (L4|b) =

= 0.1× 1(0.7× 0.07 + 0.1× 0.01 + 0.1× 0.01 + 0.1× 0.07) = 0.0058

� the probability of residues given the tree (with the uniform nucleotide priors)∑
x

P (L5|x)qx = 0.25(0.0058 + 0.0022 + 0.0154 + 0.0058) = 0.0073
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