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Overview

m Phylogenetic inference: task definition,

m basics from graph theory,

= motivation for phylogenetic analysis
example trees,

m three general types of methods

distance: find tree that accounts for estimated evolutionary distances,

parsimony: find the tree that requires minimum number of changes to
explain the data,

maximum likelihood: find the tree that maximizes the likelihood of the
data.




Phylogenetic inference: task definition

= Given

data characterizing a set of species/genes,
earlier: morphological data,

today: nucleotide sequences or amino acid sequences,

IDO

infer a phylogenetic tree that accurately characterizes the evolutionary lin-
eages among the species/genes,

phylogenesis = the evolutionary development and diversification of a species
or group of organisms,

limitations: homoplasy, horizontal gene transfer, etc.




Phylogenetic tree basics

m lree

an undirected graph without cycles,
a directed graph whose underlying undirected graph is a tree
(often also Vu: indegree(v)<1 to avoid polytrees with many roots),

m phylogenetic tree

leaves = things (genes, species, individuals/strains) being compared,
internal nodes = hypothetical ancestral units,

(taxa plural) = species and broader classifications of organisms,
= rooted and unrooted trees

a directed tree has a root

* the root represents the common ancestor,
x path from root to a node represents an evolutionary path,

an undirected tree is unrooted

x specifies relationships among things, but not evolutionary paths.




Rooted and unrooted trees

m | he role of root
an extra node that tells us the direction of evolution,

= the number of possible trees for n leaves (sequences) quickly grows

unrooted: [[:_5(2i —5),
rooted: (2n — 3) [[_5(2¢ — 5).
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Why construct phylogenetic trees?

= to gain knowledge of biologial diversity from raw data

and organize it in a structured (hierarchical) way,
m to understand evolutionary lineage of various species

straightforward reconstruction, see tree paths from the root to a leaf,
m to understand how various functions evolved and which loci underlie it

may help extract functional (e.g., gene-trait association) signal from ge-
nomic data,

= to inform multiple alignments

multiple sequence alignments often used to create a phylogenetic tree,

the knowledge of phylogeny helps to improve multiple sequence alignments
(guide trees),

= to identify what is most conserved /important in some class of sequences

those that keep relatively unchanged far back up the phylogenetic tree.




Example tree: tracing the evolution of the Ebola virus

m Ebola virus: a lethal human pathogen
m 2014 Ebola epidemic in Africa

until recently the largest case in 1976 (318 cases),
outbreak reported in Feb 2014,
11,315 deaths, fatality rate 78%,

m key questions

where did the pathogen come from?

how is it evolving?
= In a 2014 Science paper

whole genome sequence alignment of 99 Ebola virus genomes from 78
patients in Sierra Leone,

also three published Guinean samples and 20 genomes from earlier out-
breaks.




Example tree: tracing the evolution of the Ebola virus
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Example tree: tracing the evolution of the Ebola virus

= Insights gained from sequence comparison [Gire et al., Science 2014]

“Genetic similarity across the sequenced 2014 samples suggests a single
transmission from the natural reservoir, followed by human-to-
human transmission during the outbreak.”,

“...the Sierra Leone outbreak stemmed from the introduction of two ge-
netically distinct viruses from Guinea around the same time ..."

“...the three most recent outbreaks (2002, 2007, 2014) represent an inde-
pendent zoonotic event from the same genetically diverse viral population
in its natural reservoir ..."
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Distance-based approaches

= given: an n X n matrix M, where M;; is the distance between taxa i and 7,

m do: build an edge-weighted tree such that the distances between leaves 7 and
jJ correspond to M;;.
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Where do we get distances?

s Commonly obtained from sequence alignments

— in alignment of sequence ¢ with sequence 7, dist;; = f;;
Jij

m to correct for multiple substitutions at a single position

H#mismatches

- #matches + #maismatches

— use Jukes-Cantor model for mutation rates
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The molecular clock hypothesis and ultrametric data

m In the 1960s, sequence data were accumulated for small, abundant proteins
such as globins, cytochromes c, and fibrinopeptides. Some proteins appeared
to evolve slowly, while others evolved rapidly.

m Linus Pauling, Emanuel Margoliash and others proposed the hypothesis of a
. For every given protein, the rate of molecular evolution is
approximately constant in all evolutionary lineages.

m the molecular clock assumption is not generally true: selection pressures vary
across time periods, organisms, genes within an organism, regions within a
gene,

m if it does hold, then the data is said to be

this property simplifies construction of rooted phylogenetic trees.
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Distance metrics

m Properties of distance metrics
identity: dist(x;, x;) =0,
symmetry: dist(z;, x;) = dist(z;, z;),
triangle inequality: dist(z;, x;) < dist(x;, zi) + dist(xy, ),
non-negativity: dist(z;, x;) > 0 (follows from the previous properties),
m semimetric if the triangle equality does not hold,

m ultrametric property makes the triangle equality condition stronger

ultrametric: dist(z;, ;) < maz(dist(x;, vy), dist(xg, x;)).




The molecular clock hypothesis and ultrametric data

m Ultrametric data

for any triplet of sequences, 7, 7, k, the distances are either all equal, or
two are equal and the remaining one is smaller.
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The UPGMA method

= Unweighted Pair Group Method using Arithmetic Averages (UPGMA),

m given ultrametric data, UPGMA will reconstruct the tree T that is consistent
with the data,

m basic idea

iteratively pick two taxa/clusters and merge them.

create new node in tree for merged cluster.

= distance d;; between clusters C; and C; of taxa is defined as
average distance between pairs of taxa from each cluster
dij — m zpeOi,quj dpq

m given a new cluster (. formed by merging C; and C,

m we can calculate the distance between C}. and any other cluster C as follows

_dy|Cil+d | Oy
i = ~JeFe;




The UPGMA algorithm

m assign each taxon to its own cluster,
m define one leaf for each taxon, place it at height O,
m while more than two clusters

determine two clusters ¢, j with smallest d;;,

define a new cluster C}, = C; U C},

define a node k with children ¢ and j, place it at height d;;/2,
replace clusters ¢ and j with £,

compute distance between k£ and other clusters,

= join last two clusters, ¢ and j, by root at height d;;/2.




UPGMA example
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UPGMA example
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Another distance-based algorithm: neighbor joining

= unlike UPGMA

does not make molecular clock assumption,

produces unrooted trees,
m It assumes

distance between a pair of leaves is sum of lengths of edges connecting
them,

Va,y, u, v (leaves) : d(z, y)+d(u, v) < maz(d(z, u)+d(y, v), d(y, u)+d(z, v))
m like UPGMA, constructs a tree by iteratively joining subtrees, however

the pair of subtrees to be merged on each iteration is selected differently,

distances are updated differently after each merge too.




Picking pairs of nodes to join in neighbor joining (NJ)

m at each step, we pick a pair of nodes to join
should we pick a pair 7 and j with minimal distance d;;?

m suppose the real tree below, we aim to pick the first pair of nodes to join

wrong decision to join A and B,

we need to consider distance of the pair to other leaves too,
pick a pair of nodes that minimizes D;;

A
5 d,, =03
Dyj = dij — (r; + 1) 0.1N\_91 701
04 0.4
r; = Zdz’k
L] —2 _
kel D D, = 1.2
where L is the set of leaves C
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Updating distances in neighbor joining

= the joined pair (i, j) will be replaced by a new internal node £,

m its distance to another node m is given by
1

A, = é(dzm + djp — d;j)
m the distance from a leaf to its parent node calculated in the same way
1

di, = §<dz’j + diy — djin)
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Updating distances in neighbor joining

m the previous update works perfectly if data are strictly additive,
m if not, a more robust method applies

instead of single m, take into account the distance to all other leaves

1
d;p. = é(dz’j"i_rz' —?“j>
O
T, = im
L] -2

meL
where L is the set of leaves.




Neighbor joining algorithm

define the tree 1T = set of leaf nodes
L =T
while more than two subtrees in T
pick the pair ¢, 7 in L with minimal Dy
add to T a new node k£ joining 7 and j
determine new distances dj, d;
determine dj,, for all other m in L
remove ¢ and j from L and insert k
(treat it like a leaf)
join two last subtrees i and j with edge of length d;;

= if the data is additive (and these distances represent real distances), then
neighbor joining will identify the correct tree,

m otherwise, the method may not recover the correct tree, but it may still be
reasonable heuristics,

= neighbor joining is commonly used.




Testing for additivity

m remember the additivity property
Vi, j,k, 1 (leaves) : d(i, j) + d(k, 1) < max(d(i, k) + d(j,1), d(i, 1) + d(j. k)

= for every set of four leaves, 7, j, k, and [, two of the distances d;;+dy;, d;+dj;
and d;;+d;;. must be equal and not less than the third.

>, > {
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Rooting trees

= finding a root in an unrooted tree sometimes accomplished with an ,
a species known to be (far) more distantly related to remaining species,

m edge joining the outgroup to the rest of the tree is best candidate for root
position,

= no outgroup — pick the midpoint of the longest chain of consecutive edges.

outgroup 1

candidate root

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.




Parsimony-based approaches

m parsimony: find the tree that explains the data with minimum changes,

m given: character-based data,

m do: find tree that explains the data with a minimal number of changes,

m focus is on finding the right tree topology, not on estimating branch lengths,

m there are various trees that could explain the phylogeny of the sequences AAG,
AAA, GGA, AGA including the two below,

m parsimony prefers the first tree because it requires fewer substitution events.

AAA AGA AAA AAA

AAG AAA GGA AGA AAG AGA AAA GGA
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Parsimony-based approaches

m usually these approaches involve two separate components

a procedure to find the minimum number of changes needed to explain the
data for a given tree topology

x we will assume that positions are independent and compute the mini-
mum number of changes for each position separately,

x at first, we will treat the costs of these changes uniformly,

x then, we will work with different costs for different changes,

a search through the space of trees

x cannot be exhaustive, too many trees,
x a heuristic method of nearest neighbor interchange.




Finding minimum number of changes for a given tree

m brute force approach
for each possible assignment of states to the internal nodes, calculate the
number of changes,

report the minimum number of changes found,
runtime is O(NEY)
k = number of characters (4 for DNA), N = number of leaves,

m Fitch's two-pass algorithm
firstly traverses tree from leaves to root determining set of possible states
(e.g. nucleotides) for each internal node,

secondly traverses tree from root to leaves picking ancestral states for
internal nodes,

deals with the uniform costs of changes,
finds the best assignment in O(Nk).




Fitch’s algorithm: step 1 = post-order

= do a post-order (from leaves to root) traversal of tree,

m determine possible states R; of internal node ¢ with children 7 and &

B RjURk,iijﬂRk;:q)
Z R; N Ry, otherwise
m this step calculates the number of changes required

# of changes = # union operations.

(AT
{CT}In{AGT}= |[{T}
{AGT}
Cru{m= |cT) {GT)
C T G T A T
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Fitch’s algorithm: step 2 = pre-order

= do a pre-order (from root to leaves) traversal of tree,

= select state r; of internal node j with parent :

{Ti, ifr; € Rj
ry =

arbitrary state € R}, otherwise

(T}

{T}

{CT}

C T

{AGT)

{GT}

G

T

A T
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Weighted parsimony

m instead of assuming all state changes are equally likely, use different costs
S(a,b) for different changes,

m the modification of Fitch's algorithm proposed by Sankoff & Cedergren,
m 1st post-order step of algorithm propagates costs up through tree,
= the goal is to determine cost R;(a) of assigning character a to node i,

m for leaves

Ri(a) = {O, if a is character at leaf,

00, otherwise
m for an internal node ¢ with children 7 and &

Ri(a) = miny(R;(b) + S(a,b)) + miny(Ri(b) + S(a, b))

a
|l'
a—>b

J

b




Example: weighted parsimony

R[A]=0,R[C]=w,R[G]=0,R[T]=o 1
R,[A]=w,R,[C]=o0,R,[G]=0,R,[T]=0
R|IA|=R|G|+S5(4,G)+ R, [T+ S5S(A4,T) -

5 3 4 5
RIT|=RIG|+ST.G)+RITI+ST.T) @ T A

R[A]=0,R[C]=00,R[G]=00,R[T]=o0

RI[A]zmin(RZ[A]+S(A,A), ey RZ[T]+S(A,T)) + RJA]+S5(4, 4)

R[T)=min(R,[A]+S(T,A), ... . R[T1+S(T,T)) + R[A]+S(T, 4)

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.




Weighted parsimony: step 2 = pre-order

= do a pre-order (from root to leaves) traversal of tree

for root node: select minimal cost character,

for each internal node: select the character that resulted in the minimum
cost explanation of the character selected at the parent,




Example: weighted parsimony

m Consider the two simple phylogenetic trees shown below,
m and the symmetric cost matrix for assessing nucleotide changes,

m the tree on the right has a cost of 0.8,

a C g t
“ “ a 0} 08| 02] 09
c 0.8 0| 0.7} 0.5
g 021 0.7 0] 0.1
t a C a t C t 0.9 05| 0.1 0

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

= show how the weighted parsimony determines the cost of the tree on the left,
m what are the minimal cost characters for the internal nodes in the tree?

= which of the two trees would the maximum parsimony approach prefer?




Example: weighted parsimony

“ a c g t

t a ¢ t loolos|o1] o
Ri(a)=0+08=038

R,(c)=08+0=0.38
Ry(g)=02+0.7=0.9
R()=09+05=14

R(a)=09+min{0.8, 0.8+0.8, 0.2+0.9, 09+1.4}=1.7
R(c)=0.5+min{0.8+0.8, 0.8, 0.7+0.9, 0.5+1.4}=1.3
R(g)=0.1+min{0.2+0.8, 0.7+0.8, 0.9, 0.1+1.4}=1.0
R(t)=0+min{0.9+0.8, 0.5+0.8, 0.1+0.9, 1.4} =1.0
Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

s [he minimal cost characters for node 1 are either g or t. The tree costs 1.0.

m [ he minimal cost character for node 3 is g.

= The maximum parsimony approach would prefer the other tree (1.0>0.8).




Exploring the space of trees: nearest neighbor interchange

m For any internal edge in a tree
— there are 3 ways the four subtrees can be grouped,
m nearest neighbor interchanges move from one grouping to another.

— it represents the simplest tree structure rearrangement (only local).

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

37/50 B4M36BIN Phylogenetic trees



Heuristic hill-climbing with nearest neighbor interchange

given: set of leaves L
create an initial tree ¢t incorporating all leaves in L
best-score = parsimony algorithm applied to ¢
repeat
for each internal edge e in ¢
for each nearest neighbor interchange
t'+ tree with interchange applied to edge e in t

score = parsimony algorithm applied to ¢
if score < best-score
best-score = score

best-tree = t
t = best-tree
until stopping criteria met




Exact method: branch and bound

m Each partial tree represents a set of complete trees,
m parsimony score on a partial tree = lower bound on the best score in the set,

m search by repeatedly selecting the partial tree with the lowest lower bound.

4
pa— — P
2 2 1
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Exact method: branch and bound

given: set of leaves L
initialize () with a partial tree with 3 leaves from L
repeat
t+ tree in () with lowest lower bound
if t has incorporated all leaves in L
return ¢
else
create new trees
(by adding next leaf from L to each branch of ?)
compute lower bound for each tree
put trees in () sorted by lower bound




Exact method: branch and bound (improved version)

given: set of leaves L
use heuristic method to grow initial tree t’
initialize () with a partial tree with 3 leaves from L
repeat
t<+ tree in () with lowest lower bound
if £ has incorporated all leaves in L
return ¢
else
create new tTrees
(by adding next leaf from L to each branch of t)
for each new tree n
if lower-bound(n) < score(t’)
put n in () sorted by lower bound




Comments on parsimony methods

m Branch and bound is a complete search method
guaranteed to find optimal solution,

= may be much more efficient than exhaustive search

m in the worst case, it is no better,

m branch and bound efficiency depends on

the tightness of the lower bound,
the quality of the initial tree,

m we described parsimony calculations in terms of rooted trees

but we described the search procedures in terms of unrooted trees,
it is not a big problem as

x unweighted parsimony: minimum cost is independent of where root is
located,

x weighted parsimony: minimum cost is independent of root if substitution
cost Is a metric.




Probabilistic phylogenetic methods

= A probabilistic alternative to parsimony

instead of cost S(a,b) of a substitution occurring along a branch, it uses
a probability P(child = a|parent =),

for a given tree, instead of finding a minimal cost assignment to the an-
cestral nodes, it sums the probabilities of all possible ancestral states,

instead of finding a tree with minimum cost, it finds a tree that
(probability of the data given the tree),

m this approach aims to minimize the effect of implicit parsimony simplifications

substitution costs are rather arbitrary and the most parsimonious tree crit-
ically depends on them,

parsimony methods require assignments of character states to the ancestral
nodes, the best assignment does not have to be the true one.




Probabilistic model setup

s We observe n sequences 2!, ..., 2",

= we are given a tree T and want to model the Pz, ... 2™T)
likelihood = probability of observation (sequences) given model (tree),

= for simplicity, consider that our sequences are of length 1 (just one character),

m to generalize to longer sequences, assume independence of each position

each column of an ungapped multiple alignment tretaed independently,

probability of sequences = product of probability of each position/column,
= the states of internal nodes given by random variables X"*! .. . X?"1
assume a rooted binary tree,
m the branch lengths will be ignored for the sake of simplicity
P(child = a|parent = b) instead of P(child = a|parent = b, time).




Probabilistic model setup

= [ he probability of any particular configuration of states at all tree nodes
2n—2
P(z',... 2™ T) = g || Pa'[a*")
i=1
q,2n—1 is the prior probability of the state of the root node,

«(1) is the index of the parent node of node 7,

= key assumption

state of node 7 is of the states of its ancestors
given the state of its parent,

= we only care about the probability of the observed (extant) sequences

= need to marginalize (sum over possible values of ancestral states) to obtain

the likelihood
2n—2

P(r', . 2"T)= Y  qer || P('a*")
-1 1=1

xn+1.

AR

xQ”




Felsenstein’s algorithm

m [here is an exponential number of terms in the previous likelihood sum!
m dynamic programming to the rescue once again!

= subproblem: P(Lj|a): probability of the leaves below node k, given that the
residue at £ is a,

m Recurrence:

P(Lila) = ZP bla)P(L;|b)P(cla)P(L;|c) =
— ZP bla)P(L;|b) >~ P(cla)P(Ljlc

where 7 and j are the children nodes of £,

b and c represent the states of node ¢ and node j, respectively.




Felsenstein’s algorithm

m Initialize: kK =2n —1
m Recursion:

if k£ is a leaf node

0, otherwise

1, ifa=2"
P(Lila) = { .

else, compute P(L;|a) and P(L,|a) for all a at daughters ¢ and j
P(L;|a) ZP bla)P(Li|b) Y~ P(cla)P(Ljlc

m lermination:

likelihood is equal to

> P(L* a)gq

a




Concluding remarks on maximum likelihood methods

m Very similar to the weighted parsimony case,
= main differences are at

leaf nodes,

minimization versus summation for internal nodes,
m can it be used to infer ancestral states as well?

instead of summing, we would maximize,
as in the parsimony case, we would need to keep track of the maximizing
assignment,

= substitution probabilities P(a|b) can be derived from principled mathematical
models and/or estimated from data.




What is probability for the following set of residues?

b
A C G T
A 0.7 0.1} 01| 0.1
‘ 3 ‘ C 0.1 07| 01| 0.1
G 4 |G 0.1 01| 07| 0.1
T 0.1 0.1 01| 0.7
Assume the above conditional probability matrix
P(b|a) for all branches
A C G T
| 0 0 0
0 0 0 1
0 0 1 0
0.07 0.01 0.01 0.07
0.0058 0.0022 0.0154 0.0058

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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What is probability for the following set of residues?

= In leaf nodes the simple 0/1 rule,

= in internal nodes
P(L4|A) = P(A|A)P(L1|A)P(T|A)P(Ls|T) =0.7x 1 x 0.1 x 1 =0.07
P(L4|C) = P(A|C)P(L4|A)P(T|C)P(Ls|T) = 0.1 x 1 x 0.1 x 1 = 0.01

the other options in the leaf nodes lead to trivial zero probabilities and do
not influence the sum,

P(Ls|A) = P(GIA)P(L3|G) Y~ P(b|A)P(Lu|b) =
be{ACGT}
= 0.1 x 1(0.7 x 0.07 + 0.1 x 0.01 + 0.1 x 0.01 + 0.1 x 0.07) = 0.0058

= the probability of residues given the tree (with the uniform nucleotide priors)

Y P(Ls|z)q, = 0.25(0.0058 + 0.0022 + 0.0154 + 0.0058) = 0.0073




