Multiple Sequence Alignment

Jiří Kléma

Department of Computer Science,
Czech Technical University in Prague
Lecture based on Mark Craven's class at University of Wisconsin

IDA

http://cw.felk.cvut.cz/wiki/courses/b4m36bin/start

Overview

- Multiple sequence alignment (MSA)
- the algorithmic task,
- biological motivation
* why pairwise alignment is sometimes not enough,
- what is needed to score an alignment of multiple sequences?
- can be done in a similar way as in the pairwise case,
- othe options abvailable too,
- optimal solution
- dynamic programming,
- not truly applicable for larger sequence sets.
- heuristic solutions
- progressive alignment,
- statistical approaches (hidden Markov models, fast Fourier transform).

Multiple sequence alignment: task definition

- Given
- a set of k sequences, $k>2$,
- a method for scoring an alignment,
- Do
- determine the correspondences between the sequences such that the alignment score is maximized,
- Example

1tlk	ILDMDVVEGSAARFDCKVEGY--PDPEVMWFKDDNP--VKESR----HFQ
AXO1 RAT	RDPVKTHEGWGVMLPCNPPAHY-PGLSYRWLLNEFPNFIPTDGR---HFV
AXO1_RAT	ISDTEADIGSNLRWGCAAAGK--PRPMVRWLRNGEP--LASQN----RVE
AXO1_RAT	RRLIPAARGGEISILCQPRAA--PKATILWSKGTEI--LGNST----RVT
AXO1_RAT	DINVGDNLTLQCHASHDPTMDLTFTWTLDDFPIDFDKPGGHYRRAS
NCA2_HUMAN	PTPQEFREGEDAVIVCDVVSS--LPPTIIWKHKGRD--VILKKDV--RFI
NCA2_HUMAN	PSQGEISVGESKFFLCQVAGDA-KDKDISWFSPNGEK-LTPNQQ---RIS
NCA2_HUMAN	IVNATANLGQSVTLVCDAEGF--PEPTMSWTKDGEQ-- IEQEEDDE-KYI
NRG_DROME	RRQSLALRGKRMELFCIYGGT--PLPQTVWSKDGQR--IQWSD----RIT
NRG_DROME	PQNYEVAAGQSATFRCNEAHDDTLEIEIDWWKDGQS-- IDFEAQP--RFV

Durbin et al.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids

Motivation for MSA

- determine evolutionary history of a set of sequences
- at what point in history did certain mutations occur?
- establish input data for phylogenetic analyses,
- discover a common motif in a set of sequences
- e.g. DNA sequences that bind the same protein,
- characterize a set of sequences
- e.g. a protein family,
- build a (simplifying) profile model for such a set,
- establish input data e.g. for a profile HMM,
- build profiles for sequence-database searching
- PSI-BLAST generalizes a query sequence into a profile to search for remote relatives.

Scoring a multiple alignment

- ideally it should
- be position-specific (some positions more conserved than others),
- consider evolutionary relationships among sequences (a phylogenetic tree),
- in practice, many simplifying assumptions made
- usually, the individual columns of an alignment considered independent

$$
\operatorname{Score}(m)=G+\sum_{i} S\left(m_{i}\right)
$$

- where G is a gap function and $S\left(m_{i}\right)$ the score of the i-th column,
- we will discuss two methods to estimate $S\left(m_{i}\right)$
- sum of pairs (SP),
- minimum entropy.

Scoring a multiple alignment: sum of pairs

- compute the sum of the pairwise scores

$$
S\left(m_{i}\right)=\sum_{l<m} s\left(m_{i}^{l}, m_{i}^{m}\right)
$$

$-m_{i}^{l}=$ character of the l-th sequence in the i -th column,
$-s(a, b)=$ substitution score for a and b,

- seems to be perfectly natural, however
- each sequence is scored as if it descended from the $k-1$ other sequences instead of a single ancestor,
- does not perfectly fit with log-odds pairwise substitution scores

$$
\log \frac{p_{a b c}}{p_{a} p_{b} p_{c}} \neq \log \frac{p_{a b}}{p_{a} p_{b}}+\log \frac{p_{a c}}{p_{a} p_{c}}+\log \frac{p_{b c}}{p_{b} p_{c}}=\log \frac{p_{a b} p_{a c} p_{b c}}{p_{a}^{2} p_{b}^{2} p_{c}^{2}}
$$

Scoring a multiple alignment: minimum entropy

- basic idea
- characters in each column can be seen as a message,
- columns that can be communicated using few bits are good,
- try to minimize the entropy of each column,

$$
S\left(m_{i}\right)=-\sum_{a} c_{i a} \log _{2} p_{i a}
$$

- $c_{i a}=$ count of character a in column i,
$-p_{i a}=$ probability of character a in column i,
- analogically, stems from a model that assumes
- independent residues within the column as well as between columns, then the probability of a column m_{i} is

$$
P\left(m_{i}\right)=\prod_{a} p_{i a}^{c_{i a}}
$$

Dynamic programming approach

- can find optimal alignments using dynamic programming,
- generalization of methods for pairwise alignment
- consider k-dimension matrix for k sequences (instead of 2-dimensional matrix),
- each matrix element represents alignment score for k subsequences (instead of 2 subsequences)
$\alpha_{i_{1}, i_{2}, \ldots, i_{k}}=$ the maximum score of an alignment up to the subsequences ending with $x_{i_{1}}^{1}, x_{i_{2}}^{2}, \ldots, x_{i_{k}}^{k}$,
- given k sequences of length n
- space complexity is $\mathcal{O}\left(n^{k}\right)$.

Dynamic programming approach

$$
\alpha_{i_{1}, i_{2}, \ldots, i_{k}}=\max \left\{\begin{array}{l}
\alpha_{i_{1}-1, i_{2}-1, \ldots, i_{k}-1}+s\left(x_{i_{1}}^{1}, x_{i_{2}}^{2}, \ldots, x_{i_{k}}^{k}\right) \\
\alpha_{i_{1}, i_{2}-1, \ldots, i_{k}-1}+s\left(-, x_{i_{2}}^{2}, \ldots, x_{i_{k}}^{k}\right) \\
\alpha_{i_{1}-1, i_{2}, \ldots, i_{k}-1}+s\left(x_{i_{1}}^{1},-, \ldots, x_{i_{k}}^{k}\right) \\
\ldots \\
\alpha_{i_{1}, i_{2}, \ldots, i_{k}-1}+s\left(-,-, \ldots, x_{i_{k}}^{k}\right) \\
\ldots
\end{array}\right.
$$

Find a path through k-dimensional matrix

- Time complexity is
$-\mathcal{O}\left(k^{2} 2^{k} n^{k}\right)$ if we use sum of pairs,
$-\mathcal{O}\left(k 2^{k} n^{k}\right)$
if column scores can be computed in $\mathcal{O}(k)$ as with entropy.

Heuristic alignment methods

- DP approach is exponential in the number of sequences
- heuristic methods used for larger k,
- progressive alignment
- construct a succession of pairwise alignments,
- star approach,
- tree approaches, like CLUSTALW,
- iterative refinement
- given a multiple alignment (say from a progressive method),
- remove a sequence, realign it to profile of other sequences,
- repeat until convergence.

Star alignment

- given: k sequences x_{1}, \ldots, x_{k} to be aligned
- do:
- pick one sequence x_{c} as the "center"
* either try each sequence as the center, pick the one with the best multiple alignment,
* or compute all pairwise alignments and select x_{c} that maximizes $\sum_{i \neq c} \operatorname{sim}\left(x_{i}, x_{c}\right)$,
- for each $x_{i} \neq x_{c}$ determine an optimal alignment between x_{i} and x_{c},
- merge pairwise alignments
* "once a gap, always a gap",
* shift entire columns when incorporating gaps,
- return: multiple alignment resulting from aggregate.

Star alignment: example

- Pick the center and align against it . Merge pairwise alignments

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Tree alignments

- basic idea
- organize multiple sequence alignment using a guide tree
* leaves represent sequences,
* internal nodes represent alignments,
- determine alignments from bottom of tree upward
- return multiple alignment represented at the root of the tree,
- one common variant is the CLUSTALW algorithm [Thompson et al. 1994]
- progressive alignment in CLUSTALW
- depending on the internal node in the tree, we may have to align
* a sequence with a sequence,
* a sequence with a profile (partial alignment),
* a profile with a profile,
- in all cases we can use dynamic programming
* for the profile cases, use sum of pairs scoring.

Tree alignment: example

- The whole guide tree and one particular profile alignment
- pairwise alignment, always shift entire columns.

Profile alignment: example

- Scoring scheme
- if $x_{i}=y_{j}$ then $s(i, j)=1$ otherwise $s(i, j)=-1$, gap penalty $=2$,
- sum of pairs method,
- profiles never brake (no shifts inside of them)
- the last alignment below is not allowed,
- score only between profiles, within-profile scores remain constant.

$\begin{array}{llllll}-8 & 4 & 4 & 4-5-3 & 4\end{array}$ score=1

| T-GTAAC
 T-GT-AC |
| :--- |\quad| ATGT--C |
| :--- |
| ATGTGGC |
| $-4-844-5-34$ |
| SCOIE=-7 |

Multiple sequence alignment summary

- as with pairwise alignment, can compute local and global multiple alignments,
- dynamic programming is not feasible for most cases
- heuristic methods usually used instead,
- some frequently used tools
- Clustal Omega - progressive alignment that uses profile HMMs to model groups of sequences,
- MAFFT - iterative method that uses Fast Fourier Transform,
- T-Coffee - consistency-based method suitable for small alignments,
- alignment visualization and quality control
- heuristic alignments often contain errors,
- smaller alignments can be visually inspected and manually curated,
- for larger alignments e.g., remove low quality alignment blocks.

