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Overview

s Hidden Markov models

the relationship between states and symbols remains hidden,

three important general tasks to be solved,
= two biological tasks solved with HMMs

characterization /classification of protein families,

gene finding.




Hidden Markov models (HMMs)

= in the Markov models it is clear which state accounts for each symbol of the
observed sequence,

s HMMs distinguish between the observed and hidden part of a problem

multiple states could account for each observed sequence symbol,

the link between states and symbols makes the hidden part of the problem,

m the parameters of an HMM

as in Markov chain models, we have transition probabilities
ar] — P(ﬂ'i — l|’7TZ'_1 — ]-C)

where 7 represents a path (sequence of states) through the model

in addition, emission probabilities decouple states and symbols

where ey (b) is the probability of emitting character b in state k.




Example HMM - dishonest casino

m Consider a dishonest casino

they use a fair die most of the time,

but occasionally they switch to a loaded die,
s HMM model

observable symbols = the outcomes of rolls = {1,2,3,4,5,6},
hidden states = the two dice = {fair, loaded},
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Three important HMM questions

= How likely is a given sequence X given the model M7

P(X|M)=>__P(X,n|M), Forward algorithm,
assume a particular model of casino, calculate the probability of a certain
sequence of rolls,

classification = when having more models, find the best match,
s What is the most probable “path” for generating a given sequence?
m* = argmax_ P (X, 7| M), Viterbi algorithm,
having a sequence of rolls, decide which part is fair and which is not,

segmentation = “split” the sequence among states,

s How can we learn the HMM parameters given a set of sequences?

0* = argmax,P(X |0, M), Forward-Backward (Baum-Welch) algorithm,
having a long sequence of rolls and a rough casino model, learn its probs,

learning = find a model that generalizes well to unseen sequences.




The protein classification task

s Given: amino-acid sequence of a protein,

s Do: predict the family to which it belongs.
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Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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Protein family — a simplified view

m Let us have a multiple sequence alignment for a protein family

— how could we model the family?

— do the aligned query sequences belong to the family?

A CA - ATG-\

T C A A A TZC

ACAOC AGC [ family
A G A - ATZC

A CCG ATOC _

A CAC ATZC query 1
A AAC A TOC query 2
TGCT A TOC query 3
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Protein family — a reasonable HMM

é_'s 1.0 é_.a 1.0 A\ —5 4 é_m 1.0 é : é_.s
G ->Gl.2 > _>G _>G|.2 ->G|.2
TH2 T T T —_8 T
Sequence Probability x 100 Log odds
Consensus A C A C ATC 4.7 6.7
Original ACA - ATG 3.3 4.9
sequences T C A A ATC 0.0075 3.0
ACAC AGC 1.2 5.3
AGA - ATC 3.3 4.9
ACCAG ATC 0.59 4.6
Exceptional T G C T AGG 0.0023 -0.97

Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.
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Profile HMMs

s profile HMMs are used to model families of sequences.

Insert and match states have
emission distributions over
sequence characters

A 0.01
Delete states are silent; they R 0.12
Account for characters missing d 1 (00— d 2 —— d 3 D 0.04
: N 0.29
in some sequences C 001

E 0.03

Q 0.02
Insert states account _ . . . G 0.01
for extra characters I O | 1 I 2 I 3 :
in some sequences .

PANEANYANY

startF— m1_" m2_’ m3

Match states represent
key conserved positions

v

end

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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Multiple alighment of SH3 domain
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Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.
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A profile HMM trained for the SH3 domain

= delete states (silent) = upper line,
m insert states = middle line,
m match states = bottom line,

m line strength ~ transition probability.
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Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.




Profile HMMs

m to classify sequences according to family, we can train a profile HMM to model
the proteins of each family of interest,

m given a sequence x, use Bayes' rule to make classification

P(z|c;)P(ci)
P(ci|z) = Zj P(x|c;)P(¢;)

= use Forward algorithm to compute P(x|c;) for each family ¢;.
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Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.




Profile HMM accuracy

30 T T T T

profile HMM-based

# methods
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Jaakola et al., ISMB 1999,

m classifying 2447 proteins into 33 families,

m X-axis represents the median # of negative sequences that score as high as a
positive sequence for a given family’s model.

13/22 B4M36BIN Hidden Markov models



Pfam database — a large collection profile HMMs

EMBL-EBI :

HOME | SEARCH | BROWSE | FTP | HELP | ABOUT ll ‘ﬂm

Pfam 34.0 (March 2021, 19179 entries)

The Pfam database is a large collection of protein families, each represented by multiple sequence
alignments and hidden Markov models (HMMs). Less...

Proteins are generally composed of one or more functional regions, commeonly termed domains. Different
combinations of domains give rise to the diverse range of proteins found in nature. The identification of
domains that occur within proteins can therefore provide insights into their function.

Pfam also generates higher-level groupings of related entries, known as clans. A clan is a collection of
Pfam entries which are related by similarity of sequence, structure or profile-HMM.

The data presented for each entry is based on the UniProt Reference Proteomestd but information on
individual UniProtkB sequences can still be found by entering the protein accession. Pfam full alignments
are available from searching a variety of databases, either to provide different accessions (e.g. all
UniProt and NCBI GI) or different levels of redundancy.

QUICK LINKS YOU CAN FIND DATA IN PFAM IN VARTIOUS WAYS...
SEQUENCE SEARCH Analyze your protein sequence for Pfam matches
VIEW A PFAM ENTRY View Pfam annotation and alignments

VIEW A CLAN See groups of related entries
VIEW A SEQUENCE Look at the domain organisation of a protein sequence

VIEW A STRUCTURE Find the domains on a PDB structure

KEYWORD SEARCH Query Pfam by keywords

JUMP TO |enlerawannﬁsicmnrl[) |m

http://pfam.xfam.org/
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The gene finding task

s Given: an uncharacterized DNA sequence,
m Do: locate the genes in the sequence, including the coordinates of individual

exons and introns.
DNA
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Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.




Eukaryotic gene structure and evidence for gene finding

= . sequence signals (e.g. splice junctions) involved in gene expression,
0 . statistical properties that distinguish protein-coding DNA,
m : signal and content properties that are conserved across related

sequences (e.g. syntenic regions of the mouse and human genome).

Transcription
ala\rt

~

promoter > VTR cereccacecereeacac

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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Gene finding: search by content

= Encoding a protein affects the statistical properties of a DNA sequence

some amino acids more frequent (Leu more prevalent than Trp),
different numbers of codons for different amino acids (Leu/6, Trp/1),
for a given amino acid, one codon often more frequent than others

x codon preference in E.coli and H. sapiens:

oo F 0.57 oco 5 0.11 TUATD ¥ 0.533 Us0 C 0.42 UUU F 0.46 UCU S 0.19 URAU Y 0.44 UGU C 0.46
Toc F 0.43 occ 5 0.11 UAC ¥ 0.47 OeC C 0.58 UuC F 0.54 UCC S 0.22 UAC Y 0.56 UGC C 0.54
UOA L 0.15 UCA 5 0.15 TAR * 0.64 TGA * 0.36 UUA L 0.08 UCA § 0.15 UAA * 0.30 UGA * 0.47
s L 0.12 UCG 5 0.16 TaGc = 0.00 UG W 1.00 UUG L 0.13 UCG S 0.05 UAG * 0.24 UGG W 1.00
Coo L 0.12 CCO P 0.17 CAU H 0.55 CGU R 0.36 CUU L 0.13 CCU P 0.29 CAU H 0.42 CGU R 0.08
COC L 0.10 CCOC P 0.13 CAC H 0.45 CGC R 0.44 CiC L 0.20 CCC P 0.32 CAC H 0.58 CGC R 0.18
COr L 0.05 CCA P O0O.14 CRAQ 0.30 CGAR 0.07 CUA L 0.07 CCAPO.286 CARQO0.27 CGARO0.11
COG L 0.46 CCOG P 0.55 CAG QO 0.70 CE& R 0.07 CUG L 0.40 CCG P 0.11 CAG 0 0.73 CGG R 0.20
AT I 0.58 ACO T 0.148 AR N 0.47 AGTD 5 0.14 AUU I 0.36 ACUT 0.25 AAU N 0.47 AGU S 0.15
AOC I 0.35 RCOC T 0.47 RAC N 0.33 AGC 5 0.33 AUC I 0.47 ACC T 0.36 AAC N 0.53 AGC S 0.24
AUA I 0.07 ACA T 0.13 ARR K 0.73 AGA R 0.02 AUA I 0.17 ACA T 0.28 ARA K 0.43 AGA R 0.21
AOG M 1.00 ACG T 0.24 ARG K 0.27 AGG R 0.03 AUG M 1.00 ACG T 0.11 AAG K 0.57 AGGR 0.21
GUO W 0.25 GCO A 0.11 GRU D 0.65 GGUO G 0.29 GUU V 0.18 GCU A 0.27 GAU D 0.4¢ GGU G 0.16
GUOC vV 0.12 GOC A 0.31 GAC D 0.35 GEC G 0.46 GUCV0.24 GCCA0.40 GACD 0.54 GGC G 0.34
GUA WV 0.17 GCA A 0.21 GRR E 0.70 GEA G 0.13 GUA V 0.12 GCA A 0.23 GAR E 0.42 GGA G 0.25
GUGE W 0.40 GCG A 0.38 GAG E 0.30 GGG G 0.12 GUG V 0.4¢6 GCG A 0.11 GAG E 0.58 GGG G 0.25
[Codon/a.a./fraction per codon per a.a.] [Cedon/a.a./fraction per codon per a.a.]

E. coli K12 data from the Codon Usage Database Homo sapiens data from the Codon Usage Database

www.geneinfinity.org www.geneinfinity.org




The GENSCAN HMM for eukaryotic gene finding

Each shape denotes a functional unit of
a gene or genomic region and is

represented by a submodel in the HMM y

Pairs of intron/exon units represent ~
the different ways an jntron can interrupt

a coding sequence (after 15! base in codon,
after 2" base or after 3" base)

Complementary submodel
(not shown) detects genes on
opposite DNA strand

Figure fram Burge & Karlin, Journal of Molecular Biology, 1997

Forward (+) strand
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GENSCAN HMM and its submodels

sequence feature model

exons 5th order inhomogenous
introns, intergenic regions 5th order homogenous

poly-A, translation initiation, promoter Oth order, fixed-length

splice junctions tree-structured variable memory

s Exon submodel

for each “word”, consider its position with respect to the reading frame,

use an inhomogeneous Markov chain.

reading frame

A
N N I

GCTACGGAGCTTCGGAGZC

|G C T A C G G is in 3rd codon position
|C T ACGG G is in 18t position
TACGGA A is in 2nd position




A fifth-order inhomogenous Markov chain

AAAAA

AAAAA

CTACA

start

CTACC

CTACA

CTACG

CTACC

CTACT

CTACG

CTACT

GCTAC

TTTTT

GCTAC

position 2

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

TTITTT

position 3

AAAAA
TACAA transition:
TACAC to states
TACAG |inpos2
TACAT

TITIT

position 1
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Inference with the gene-finding HMM

s Given: an uncharacterized DNA sequence,
s find: the most probable path through the model for the sequence

this path will specify the coordinates of the predicted genes (including
intron and exon boundaries),

the Viterbi algorithm is used to compute this path.

CEATCCETRORATC GATCGEATTAGCTAGCTTAGC TAGGAGAGCATCCATC GRATCGAGEAGCAGCCTATATAAATC A

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.




Other issues in Markov models

= There are many interesting variants and extensions of the models/algorithms
we considered here
separating length /composition distributions with semi-Markov models,
modeling multiple sequences with pair HMMs,
learning the structure of HMMs,
going up the Chomsky hierarchy: stochastic context free grammars,

discriminative learning algorithms (e.g. as in conditional random fields).




