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Overview

m Gene expression and its profiling

what it is and why we measure gene expression,
new information about what genes do under various conditions,

to understand gene function, discover relationships between genes,
= technologies

RNA sequencing
m statistical gene expression models

Poisson and negative binomial distribution,

generalized linear modesl,
m outcomes of the statistical analysis

focus on deregulated genes whose expression changes with changes in ex-
perimental conditions,

also clustering, dimensionality reduction, classification, correlation analysis.




Gene expression

m Cells must be able to respond to changes in their environment

regulation of transcription and translation is critical to this adaptivity,

genes unchanged, the changes in the abundance of particular proteins,

the process by which information from a gene is used in the synthesis of a
functional gene product (protein, functional RNA),

its complex multi-level regulation is the basis for cellular differentiation,
development, morphogenesis and the versatility and adaptability.
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Gene expression profiling

m Gene expression profiling

the measurement of the activity (expression) of thousands of genes at once,
repeated many times under different experimental conditions,

followed by statistical analysis
(differential expression, clustering, enrichment analysis),

new information about what genes do under various conditions,
= helps in gene annotation

sequential similarity has its limitations,

it cannot identify novel functions of genes/proteins.

m in this lecture, focus on

the genes with statistically significant change in expression levels between
two experimental conditions (fold change/expression ratio # 1),

commonly diseased vs healthy, treated vs untreated, wildtype vs strain X.




Gene expression profiling

s How to examine the RNA quantity?

— DNA microarrays

* dedicated probes,
* hybridization,

* next generation sequencing,

= [ypical outcome:

— a read count data table,
— axes: transcripts/genes

samples/libraries,

— entries: the read counts.
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RNA sequencing

Samples of Interest Isolate RNAs Generate cDNA, fragment,
size select, add linkers

(e.g. tumour) — —

Condition 2 ) ) / ) ) e e
(e.g. normal) : —
Poly (A) tail I— E——
oremRlA Map to Genome, transcriptome and predicted exon junctions ._ { Sequence ends

Inron

Short reads —-— — —

100s of millions
of paired reads

Short insert 10s of billions
bases of sequence

Short reads split by infron

l Downstream analysis

Mackenzie: RNA-seq: Basics, Applications and Protocol.
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Read mapping

RNA-Seq reads
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Read count as a random variable

m Consider the read count for a transcript observed in a set of samples

the read count is a non-negative discrete variable,

the simplest way is to model it with the

* it expresses the probability of a given number of events k occurring in
a fixed interval of time or space,

* these events occur with a constant mean rate A,

* these events appear independently

Ake—A
k!

f(ks A) =

in the case of RNA-seq data

* event = a read matches a transcript,
* fixed space = transcipt, samples = realizations of random variable.




RNA-seq data and Poisson distribution

= Poisson distribution assumes that mean and variance are equal (given by \)

this is often not true for RNA-Seq data.
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RNA-seq data and negative binomial distribution

s Employ the instead

in a sequence of independent and identical Bernoulli trials with success
probability p, we observe k success trials before the r-th failure

f(k;r,p) = (k+]:_ 1)(1 -p)'p"

mean is smaller than variance
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RNA-seq data and negative binomial distribution

m NB distribution allows to fit overdispersed count data

— we can compare fits of Poisson and NB model to decide whether overdis-
persion occurs.
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Mean and variance in RNA-seq data (ReCount project)

Pooled gene-level variance (log10 scale)
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https://github.com/bioramble/sequencing
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Differential expression

= Up to now, we have seen expression distributions in all the samples,
m there could be whose influence has to be considered,
= let us have the following experiment

response variable: read count for a transcript ¢,

factor to study: treatment with a new drug d,

experimental design: 70 units/people, a randomly selected half is treated
with d, the rest of people untreated/placebo,

m possible outcomes

d regulates the mean transcription level of ¢ or it remains unchanged.
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Generalized linear model (GLM)

m [here could be more experimental variables that influence the expression

multiple factors of interest,

other confounders that could not be fully controlled: age of people in the
study, personnel that carries out the experiment, cell distribution in the
bulk sample, etc.

a multivariate model is generally needed,
= linear regression model

its assumptions (linearity, homoscedasticity, normality) not met here,

E(Y) = pyix = o+ 1. X1+ 8o Xo+ -+ + 5,X),

introduces a link function g, often non-linear,

g(E(Y)) = glpy)x) = Bo+ BiXq + BoXo + - - - + B, X,

for count response models (Poisson, NB) g=log().




GLM with a negative binomial distribution

m Transcript read count is a generalized linear function of exp. conditions

i — transcript index, j — sample index, r — covariate (treatment) index,
si; — transcript and sample specific factor,
Zjr — treatment r of sample 7,

Bir — logarithmic fold change for transcript ¢ contributed by covariate 7,

m Observed read count Y;; of a transcript ¢ in sample j
Y;; =~ NB(mean = p;;, dispersion = «;)
= Mean read count proportional to the true transcript count g;;
E(Yi;) = pij = sijqi
= Nonlinear (log) link function

E(Y;:
10g ( ])_




The Pasilla gene RNA-seq experiment

= Pasilla (PS) gene knock-down

the Drosophila melanogaster ortholog of mammalian NOVA1/2,
PS gene regulates alternative splicing of pre-mRNA,

s Experiment: Pasilla is depleted (treated) and RNA-seq is measured,
= Control: wild type (untreated) RNA-seq is measured,
s What genes are differentially expressed in response to Pasilla depletion?

m see Brooks et al.: Conservation of an RNA regulatory map between Drosophila
and mammals. Genome Res. 2011.

Drosophila melanogaster, https://www.yourgenome.org




The Pasilla experiment, experimental design

m 7 samples available

condition: 3 of them treated (PS depleted), 4 untreated (wild type),

data type: 3 single-read samples and 4 paired-end read samples,

m experimental design in GLM

gY) = X5,
Y: (normalized) transcript counts,

X: covariates (condition, data type, interactions),

build GLM for =~ 15,000 transcripts.

untreatedl untreatedZ untreated3 untreated4

FEgnOO00003 4] 0 4] 0

FEgnOO00008 a2 161 Ta T
treatedl treatedl treateds
FEgnOO000003 0 0 1
FEBgnOOO0000E 140 gg 70

Count matrix (two transcripts shown only).

treatedl
treatedZ
treated3
untreatedl
untreateds
untreated3
untreated4

condition Type
treated single-read
treated paired-end
treated paired-end
untreated single-read
untreated single-read
untreated paired-end
untreated paired-end

Sample information.




Pasilla, relationships between sample expression profiles

s Employ dimensionality reduction (PCA) and/or clustering (hierarchical).
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Pasilla, differentially expressed genes

= Can be found e.g., with DESeq2 tool (R package)
— it implements NB GLM,

— improved with shrinkage estimators for dispersion and fold change.

library ("DESeg2™)
dds <- DESegDataSetFromMatrix(countData = cts, colData = coldata, design = ~ condition)
res «<- results (dds, contrast=c("conditcion","creaced", "untreaced"))

resfrdered <- res[order(resipvalue),]

FBgn0039155
s | P
: 1log2 fold change (MLE): condition treated vs untreated —
: Wald test p-value: condition treated vs untreatced °
¢ DataFrame with 1054 rows and & columns z 8 n
baseMean logZ2FoldChange 1fcSE stat pvalue padj §

: <numerick> <numerick <numerick> <numeric> <numerick> <numericx g
: 730.568 -4.81574 0.1631240 -27.3098 3.24447=-16%4 2.7181%=-140 -% 8
: FBgnQ025111 1501.448 2.89995 0.1273576 22.7701 9.07164e-115 3.80147e-111 1S o
¢ FBgnQ029167 3706.024 -2.19691 0.0979154 -22.4368 1.72030e-111 4.80595=-108 2 o
¢ FBgnQ003360 4342.832 —-3.17954 0.1435677 -22.1466 1.12417=-108 2.35542=-105 ©
: FBgnQO35085 638.219 -2.56024 0,1378126 -18.5777 4.B86845e-77 8.1604%2-74 °

. .. - .. . . - 3 - °
: FBgn0O037073 973.1016 -0.252146 0.1009872 -2.49681 0.0125316 0.0999489 o
: FBgn0O029976 2312.5885 -0.221127 0.0885764 -2 0.0125443 0.0999489 I I
. FBgnOO30838  24.8064 0.957645 0.3836454  2.49 0.01255432 0.0999489 untreated treated
: FBgnQ03%9260 1088.27686 -0.259253 0.1038739 -2.49585 0.0125656 0.0999489 group
: FBgnD034753 7775.2711 0.393515 0.15767489 2.49574 0.0125696 0.0999489

DESeq?2 outcome, Love et al.: RNA-seq workflow. An example of DEG,
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Pasilla, differentially expressed genes

m Can be visualised with MA plot or Volcano plot

— the dots correspond to transcripts,

— differential expression supported by a high fold change and small p-value.
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Summary

s RNA-sequencing

NGS technique that examines quantity and sequences of RNA in a sample,
can be used for gene expression profiling between samples,

also to study alternative splicing events associated with diseases,
identification of allele-specific expression, etc.

= negative binomial generalized linear models (NB GLM:s)

case studies show their usefulness on datasets with different characteristics,
find more differentially expressed genes with statistical evidence,

the genes truly biologically relevant (could be validated e.g., by gPCR),
m other issues

RNA-seq quality control
x FASTQ raw reads, the read numbers, GC content, base quality scores,
feature count normalization

x sequencing depth, gene length, RNA composition.




