Deep Learning (BEV033DLE)
Lecture 4. SGD

Alexander Shekhovtsov

Czech Technical University in Prague

4 Definitions and Main Properties
e Gradient Descent vs SGD
e Perceptron as SGD
e Understanding Convergence
e Variance Reduction: Running averages, Momentum

e [mplicit regularization

Stochastic Gradient Descent

L(0)
foee= ik MeReKOra

¢ Gradient Descent: wg ‘\ 3

® (Jy — VQL(Qt) '

® 0i1="0;—aug; v ’&z"’

"'u@m

¢ SGD:

e Noisy gradient g;

o E[g:] =gt

o 0i1="01— gy

Empirical Loss Function

¢ Problem Setup:
e Predictor: f(x;6), & — vector of all parameters
e [(y,f(x;0)) — loss of making prediction f(x) when the true state is y
e Expected loss: E|l(y, f(x;0))], (z,y) ~ p* — nature
e Training set: T = (x;,y;)1 i.i.d.
e Empirical loss: L=2%"1(y;, f(z4;0)) =1 +>,1;(0)

e Learning problem: m@inL(é’)
¢ Examples
e Regression in R™:
f(x;0) € R™ — predicted values
Squared error loss: I; = ||ly; — f(x:;0)||*
e (lassification with K classes:
f(z) € RE — scores
Predictive probabilities p(y = k|x) = softmax(f(x;0))x
NLL loss: [;(0) = —(logsoftmax(f(x;6)))y,

SGD for Empirical Loss

¢ Gradient Descent (GD):
e Gradient at current point 6;: g = VL(0;) =<5, VI;(6;)
e Make a small step in the steepest descent direction of L:
o 0i1="0;— g

o If the dataset is very large, lots of computation to make a small step

¢ Stochastic Gradient Descent (SGD):
e Pick M data points I = {iy,...75} at random
o Estimate gradient as gy = 7>, ; V1i(6;)
® 011 =0 —augy
o {(x;,y;)|7€ I} is called a (mini)-batch

¢ “Noisy” gradient g;:
o Elg] =g
e V[g:] = +;V[g;], where ' is stochastic gradient with 1 sample
e Diminishing gain in accuracy with larger batch size M

e |n the beginning a small subset of data suffices for a good direction

¢ Problem Setup:
e Loss: L(0)

(fixed training set is a special case)

SGD for Generator

=E (. y)~p[[(y, f(2:0))] + R(0)
e T[raining set is given as a generator p*

e R(0) is a regularizer, not dependent on the data

¢ SGD:

e Draw a batch of data (z;,%;), i.i.d. from p*

Why a generator?
Randomized data augmentation

- (“- v / |
Za G PR y >
Jas | &g\ | =F
~,‘7§‘$’ % S \ 5
;\) ._fN 2 'y -
.~ ‘& -
N et A ‘¥~;‘
T e W .. & -
.,a &N % 5 R,
g v o\ Fa -

.
Learning from a generative model

Simulation

StyleGAN2

learned encoder

Perceptron @ o

7
4 Single Layer Perceptron
(McCulloch-Pitts neuron 1943): Frank Rosenblatt Mark | Perceptron, 1958

£y

Asseciation

Moscic of Projection area System

Senziory iin some models) (A-units) Responie
Peins

Units

¢ Perceptron Algorithm:
e Training data (x;,v:), y; € {—1,1}
o If x; is classified incorrectly by wy:

Output
Imp.

———

Wiyl = W+ Y X5

Connections Coanaclions
—— —_——

Exercise (x): instance of SGD

FIG. 2 — Organization of a perceptron.

NewYork Times: “the embryo of an electronic computer that we expect will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence”

Understanding Convergence

®

® lteration cost:

e GD: O(n) — full data
e SGD: O(M) — mini-batch
¢ Guarantees on convergence rate depend on assumptions. Setup closest to NNs:
e [(0) is bounded from below
e VL(0) is Lipschitz continuous with constant p
e Bounded variance: E|[g(0) — VL(0)|* < o?
(or a slightly stronger but simpler condition E||g(6)]|* < 0?)

¢ Convergence rates: 10% T

e Error at iteration t: best over iterations | s e
expected gradient norm, o G const
ming—1..t—1{|[E[VL(0k)]||}

e GD with step size oy = « S
Error: O(3) 5 10°

e SGD with step size a; = a/\/t
Error: O(%) 107 | 1 +0.1

e SGD with step size oy = « ' t
Error: O() + O(apo?) o2

[Mark Smidt CPSC 540 Lecture 11] work

Understanding Convergence @

¢ Convergence rates: 102 ¢

e GD with step size oy = « | :EB (llei
Error: O(%) GD const
e SGD with step size oy = a/\/t
Error: O(lo\g/(;))
e SGD with step size oy = «

Error: O(3) 4+ O(apo?)

4 Insights:

e SGD wins when there is a lot of data ot
107 ' ! ! !
e Convergence with a constant step size is fast

but to within a “region” around optimum

work

4 Remarks:

e To have guarantees need to use conservative estimates with very small step sizes, etc.
e Different other setups possible: convex / strongly convex, smooth/non-smooth

e The rate is often faster in practice, but the general picture stays

How to Draw Data Points? @
4+ How should we draw data points for SGD: 10

e every time select randomly with replacement

e shuffle the data once

e shuffle at each epoch but draw without replacement
4 Empirical evidence:

Bottou (2009): “Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms”
logistic regression d = 47,152, n = 781,256

0.01

0.001 ¢

11111

11111

1e-09 1e-09 1e-09
1 10 50 100 500 5 10 50 100

Random selection: Cycling the same random Random shuffle at each
slope=—1.0003 shuffle: slope=—1.8393 epoch: slope=—2.0103

5 10 50 100 500

¢ A simple consideration:
Drawing n times with replacement from the dataset of size n some points may not be

selected — efficiently using a subset of data per epoch.

Learning Rate Schedule @

¢ (Basic) common practice: decrease learning rate in steps 11

e Example: start with @ = 0.1 then decrease by factor of 10 at epochs 100 and 150

4 Comments

e (Consistent with the idea of fast convergence to a
region

o After the sep size decrease, “1/n" rate replays

e Many other empirically proposed schedules

Courtesy: [Chen et al. “Closing the Generalization Gap of
Adaptive Gradient Methods in Training Deep Neural Networks']

Train Loss

Test Error

1.0
—— SGD-Momentum
08 ‘ —=- Adam
' —-- Amsgrad
—=- AdamW
0.6-_ —-- Yogi
\ AdaBound
0.4 -
0.2 A
0.0 : . : , , : |
0 20 40 60 80 100 120 140 160 180 200
Epochs
(a) Train Loss for VGGNet
0.20 1=
| —— SGD-Momentum
0187 ‘\ ——- Adam
0.16 - “ —-- Amsgrad
,\ —=- AdamW
0141 I —-- Yogi
0.12 - "~ ‘ A As s AdaBound
\Qm A{.; . Whi — Padam
o0 T WA
NS b vicas
0.06
0.04

0 20 40 60 80 100 120 140 160 180 200
Epochs

(d) Test Error for VGGNet

How to Measure the Progress?

4 Batch Estimate

e Batch mean: L—Mzzel

e Unbiased, but high variance

4 Training data mean

L= %Z?ﬂli

e Unbiased, zero variance, but may be too costly 1

4 Average using all last known loss values

A

o Lim (i 1+ g 1)
e [ow variance, hysteresis 1 epoch

e Need to remember losses for full dataset

4 Running Averaging

@:O-/]

® l/\;t—i_l = (1—Q)l/\;t—|—qz l,/ﬁ/~¢>oﬂ

e Variance-hysteresis tradeoff controlled by g

e Need to remember only the running average loss

Same Applied to Gradient — Variance Reduction
4+ SGD
e Batch mean: =+ ..,V

e Need a small step size

+ GD
e Full gradient: g = %Z;;Vli

e Too costly \\W

4 Stochastic Average Gradient (SAG)
o §im L (e (VI)™ + 50,4, (V1))

e Improved convergence rates (convex analysis)

e Need to remember gradients

4 SGD with filtered gradient (SGD with momentum)
e g:=(1-¢q)g+qg

e Variance-hysteresis tradeoff controlled by q

e Remember only the running average gradient

13

First Order Filter @ o

¢ General setup: 14
X, k=1,...,t — independent random variables _
* Tk e v EWA weights ¢ =0.2
e ¢; €(0,1]

e First order filter: ;= (1 —q)pe—1+ q: Xs
¢ Exponentially Weighted Average (EWA):

e Constant ¢; = ¢

o 1= (1—q)uo+qX;

o o= (1-q)*u+(1—q)gX1+qX,

° ...
Y
o u=1-q) '+ > (1-9) " "eXy (1=q)
1<k<t
= wopo+), wrpXg _ _
1<k<t Running mean weights

¢ Running mean: _EEEEEEEEESEEEEEEEEEE

¢ Qt:%

o 11 =0uo+ X4
o ="+ X
® [lty] = H%Mt + H%Xtﬂ = %Mt—l + H%(Xt +Xt+1)

4 Averaging over past gradients reduces variance, but introduces a hysteresis bias

Hysteresis Bias

¢ With variance sufficiently low — GD with momentum. Consider g is noise-free

Equivalent form of SGD with EWA gradient (x):
o Velocity: vy := pvi_1+g
o Step: (975 = 975_1 — EV¢

Gradient descent

Gradient descent with momentum

¢ The "heavy ball"' method
e Friction (1 < 1) and slope forces build up velocity
e Cancels “noise” in the incorrect prediction of the function change, helpful to

overcome plateaus
e The inertia may lead to oscillatory behavior (not good)

15

“Nesterov" Momentum @

¢ Common Momentum 16
o Velocity: viy1 = pve+ g(ay)

Lt+1
o Step: Tiy1 = X4 — €V

The step consists of momentum and current gradient

The momentum part of the step is known in advance

Can make it before computing the gradient:

¢ Nesterov Momentum
e Leading sequence: y; = T+ — vy —eg(yt)
o Velocity: vy 1 = pvr+ g(yy)

o Step: Ty =y —<G(Yt)

Lt+1
Takes advantage of the known part of the step

Less overshooting

¢ (%) Can express as steps on the leading sequence alone:
o Velocity: v = pve+ g(ye)
° Step: Y1 =y — 5(§(yt) "’lwtﬂ)

The two sequences eventually converge

Implicit Regularization

Implicit Regularization

MNIST CIFAR-10
0.06} — Training | —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢ |
0.5_ _
0.041
S 5 %4 |
0-027 0.2
0.01r 0.1
94 8 16 32 64 128 256 512 1K 2K 4K 948 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

4 We increase the network capacity but generalization improves, why?
e There exist global minima that generalize poorly

e SGD somehow finds a good global minimum

Smaller Batch Size -> More Regularization @ o

4+ Typically choose batch size to fully utilize parallel throughput (in GPUs 19
means ~10"4 independent arithmetic computations in parallel)

4 Limited by memory

4 Smaller batch -> noisier gradient -> implicit regularization

Synthetic data

Decision boundary of batch size 1 Decision boundary of batch size 5 Decision boundary of batch size 30

NLP data

93.5

e—e Dropout: No
9—® Dropout: Yes

Lei et al. (2018) “Implicit Regularization of Stochastic
Gradient Descent in Natural Language Processing:

test sccuracy

Observations and Implications”

| 1 1 1 | L 1
0 5 10 15 20 25 30 35
batch size

Implicit Regularization @

4 Logistic (or multinomial) regression: 20

. A—0 _
argmin,, £(w) + Allwl/ > w — max margin w.r.t. |||, [1]

GD for min,, £(w) iteration can be written as:

wit! = w' + argmin ((Aw, VL(wh))+ %HAUJH%)
Aw
t— o0 sz“ > max margin w.r.t. |- |2 2]
4 Linear model with any Ioss
mlnL ZE (W, Tp) 5 Yn)- W — set of optimal solutions

SGD iteration, generalizing the norm:

il — ' + argmin ((Aw, @L’(wt» -+ %Hﬁng)
Aw
t — o0 w® — point in W, nearest to w' in ||+ ||, [3]

w

¢ SGD induces implicit p-norm regularization, helping to improve p-norm margin

1] Rosset et al. (2004) Margin Maximizing Loss Functions
2] Soudry et al. (2018) "The Implicit Bias of Gradient Descent on Separable Data"

3] Gunasekar et al. (2018) "Characterizing Implicit Bias in Terms of Optimization Geometry"

Implicit Regularization by SGD / SMD

. . : 21
¢ Consider step proximal problem: min(V f(xg),x — xo) + Al|z — 20/}
XT
e i.e., p-norm stochastic mirror descent
® Using different p leads to solutions with different properties
. . wo 300000 1 l 1 :
Initial point mmm [1-norm
,',’,' \ 250000 B 12-norm
/,’ . \ B 13-norm
R | \ 200000 @ 110-norm
o I,’ ’,' \ 2150000
l,' N 100000
' Manifold of 50000
Woc wSMD—l10 optimal solutions
> 8.00 0.01 0.02 0.03 0.04 0.05

Absolute Value of Weights

e Different sparsity and generalization

e lterates tend to argmin, c ||w —wyl|Z,

the closest point in the respective norm a §
§
" SMD I-norm SMD 2-norm (SGD) SMD 3-norm SMD 10-norm 3 p= 10
1-norm BD 141 9.19 x 10° 4.1 x 10* 2.34 x 10° = % o Y
2-norm BD 3.15 x 10° 562 1.24 x 103 6.89 x 10° = : $ p = 3
3-norm BD 4.31 x 10* 107 53.5 1.85 x 102 > 8 Gl
10-norm BD 6.83 x 10" 972 791 x107° 2.72x107° 7 92 D=)
[
- - . o p=1
[Azizan et al. (2019) Stochastic Mirror Descent on Overparameterized o
Nonlinear Models: Convergence, Implicit Regularization, and Generalization] g
an 1 L - 1

(*) EWA: How Much Variance Reduction? @

¢ General setup

e X; — independent random variables

e g, < (0,1]

e Running mean: p; = (1 —q¢)ps—1+q:Xs is a r.v.
¢ Expectation:

o Elu] =(1—q)E|us—1] + ¢:E[X:] — running average of expectations
t

o B[] = woE[po] + > wiE[Xy]
k=1
e In context of SGD with learning rate ¢ — 0, all E[X}] are the same and p; is an

unbiased estimate
¢ Variance:

o V]u]=(1- Qt)2Y[Mt—1] +q; V[X{]
o Viu]=wiVo+ g_:l wy, VI X]

. . . ¢ /
e Variance reduction of running mean: >, _ w; = Zk:u% z%

2
e Variance reduction of EWA: Z};:Owi = 1_((11_(1)2 — in the limit of large ¢

x) Equivalent window size of EWA: n=2—-1. E.g. ¢=0.1 <> n=19
q

4 Can use EWA with a decreasing q series for a progressive smoothing

22

