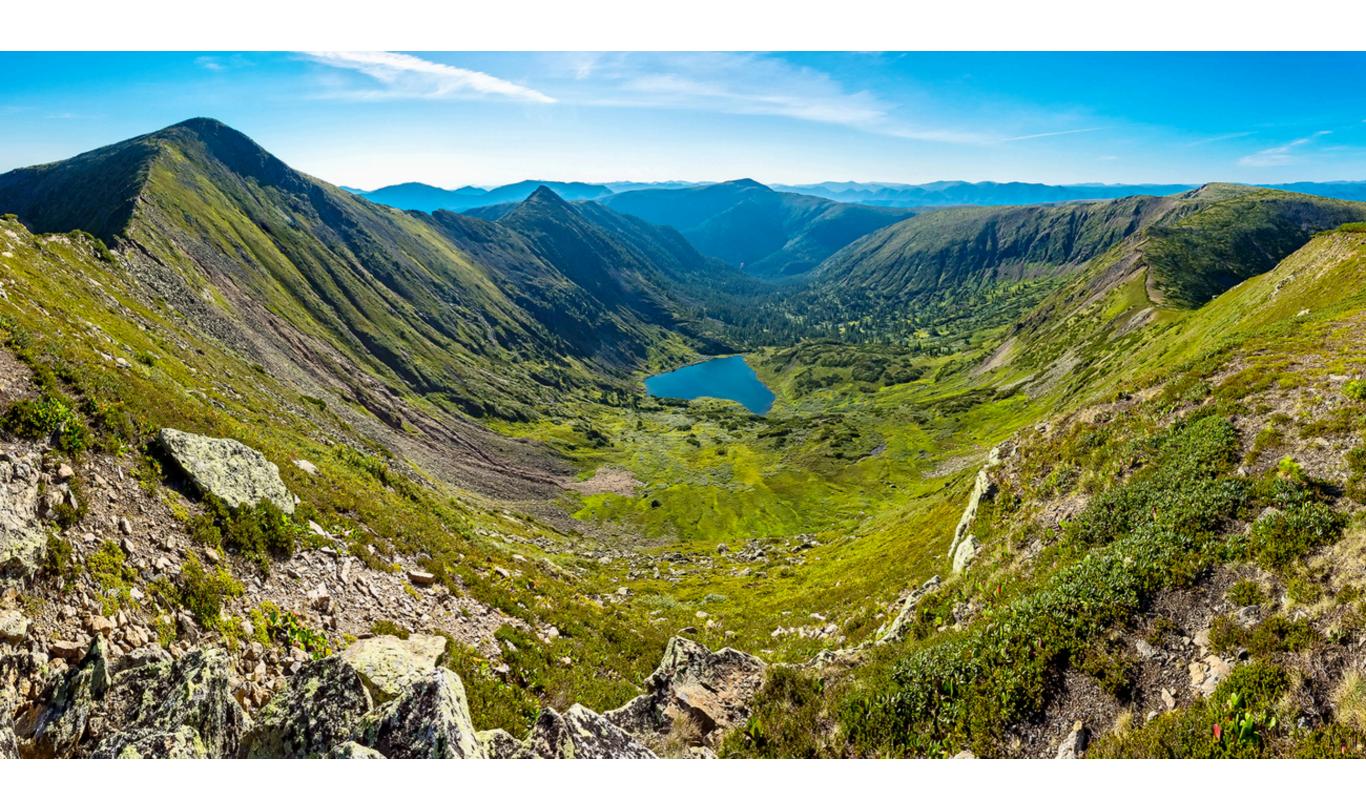
Deep Learning (BEV033DLE) Lecture 4. SGD

Alexander Shekhovtsov

Czech Technical University in Prague

- → Definitions and Main Properties
 - Gradient Descent vs SGD
 - Perceptron as SGD
 - Understanding Convergence
 - Variance Reduction: Running averages, Momentum
 - Implicit regularization



Stochastic Gradient Descent

3

 $L(\theta)$

- Gradient Descent:
 - $g_t = \nabla_{\theta} L(\theta_t)$
 - $\bullet \ \theta_{t+1} = \theta_t \alpha_t g_t$

- ◆ SGD:
 - ullet Noisy gradient $ilde{g}_t$
 - $\mathbb{E}[\tilde{g}_t] = g_t$
 - $\bullet \ \theta_{t+1} = \theta_t \alpha_t \tilde{g}_t$

Empirical Loss Function

- Predictor: $f(x;\theta)$, θ vector of all parameters
- $l(y, f(x; \theta))$ loss of making prediction f(x) when the true state is y
- Expected loss: $\mathbb{E}[l(y, f(x; \theta))]$, $(x, y) \sim p^*$ nature
- Training set: $\mathcal{T} = (x_i, y_i)_{i=1}^n$ i.i.d.
- Empirical loss: $L = \frac{1}{n} \sum_{i} l(y_i, f(x_i; \theta)) =: \frac{1}{n} \sum_{i} l_i(\theta)$
- \bullet Learning problem: $\min_{\theta} L(\theta)$

Examples

• Regression in \mathbb{R}^m :

$$f(x;\theta) \in \mathbb{R}^m$$
 – predicted values

Squared error loss:
$$l_i = ||y_i - f(x_i; \theta)||^2$$

ullet Classification with K classes:

$$f(x) \in \mathbb{R}^K$$
 – scores

Predictive probabilities $p(y = k|x) = \operatorname{softmax}(f(x;\theta))_k$

NLL loss:
$$l_i(\theta) = -(\log \operatorname{softmax}(f(x_i; \theta)))_{y_i}$$

SGD for Empirical Loss

- Gradient at current point θ_t : $g_t = \nabla L(\theta_t) = \frac{1}{n} \sum_i \nabla l_i(\theta_t)$
- ullet Make a small step in the steepest descent direction of L:
- $\bullet \ \theta_{t+1} = \theta_t \alpha_t g_t$
- If the dataset is very large, lots of computation to make a small step
- Stochastic Gradient Descent (SGD):
 - Pick M data points $I = \{i_1, \dots i_M\}$ at random
 - Estimate gradient as $\tilde{g}_t = \frac{1}{M} \sum_{i \in I} \nabla l_i(\theta_t)$
 - $\bullet \ \theta_{t+1} = \theta_t \alpha_t \tilde{g}_t$
 - $\{(x_i, y_i) | i \in I\}$ is called a **(mini)-batch**
- "Noisy" gradient \tilde{g}_t :
 - $\mathbb{E}[\tilde{g}_t] = g_t$
 - $\mathbb{V}[\tilde{g}_t] = \frac{1}{M} \mathbb{V}[\tilde{g}_t^1]$, where \tilde{g}^1 is stochastic gradient with 1 sample
 - ullet Diminishing gain in accuracy with larger batch size M
 - In the beginning a small subset of data suffices for a good direction

SGD for Generator

m

5

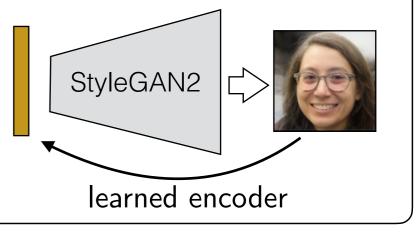
- Problem Setup:
 - Loss: $L(\theta) = \mathbb{E}_{(x,y) \sim p^*}[l(y,f(x;\theta))] + R(\theta)$
 - Training set is given as a generator p^* (fixed training set is a special case)
 - $R(\theta)$ is a regularizer, not dependent on the data
- ◆ SGD:
 - Draw a batch of data $(x_i, y_i)_{i=1}^M$ i.i.d. from p^*
 - $\tilde{g} = \frac{1}{M} \sum_{i} \nabla l(y_i, f(x_i, \theta)) + \nabla R(\theta)$

Why a generator?

Randomized data augmentation

Simulation

Learning from a generative model

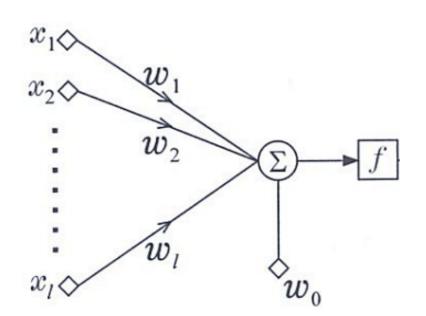


Perceptron

m p

7

Single Layer Perceptron (McCulloch-Pitts neuron 1943):



- Perceptron Algorithm:
 - Training data (x_i, y_i) , $y_i \in \{-1, 1\}$
 - If x_i is classified incorrectly by w_t : $w_{t+1} = w_t + y_i x_i$

Exercise (*): instance of SGD

Frank Rosenblatt





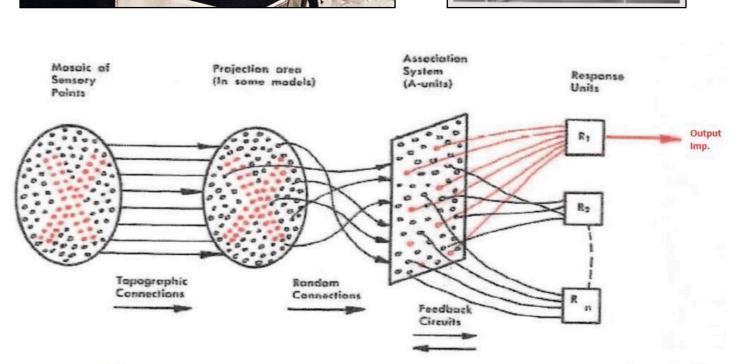


FIG. 2 - Organization of a perceptron.

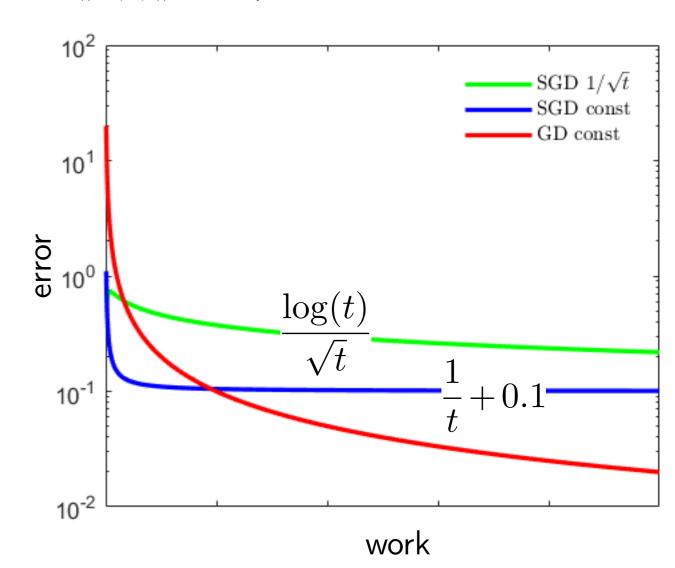
NewYork Times: "the embryo of an electronic computer that we expect will be able to walk, talk, see, write, reproduce itself and be conscious of its existence"

Understanding Convergence

m

8

- Iteration cost:
 - GD: O(n) full data
 - SGD: O(M) mini-batch
- Guarantees on convergence rate depend on assumptions. Setup closest to NNs:
 - $L(\theta)$ is bounded from below
 - $\nabla L(\theta)$ is Lipschitz continuous with constant ρ
 - Bounded variance: $\mathbb{E}\|\tilde{g}(\theta) \nabla \mathcal{L}(\theta)\|^2 \le \sigma^2$ (or a slightly stronger but simpler condition $\mathbb{E}\|\tilde{g}(\theta)\|^2 \le \sigma^2$)
- Convergence rates:
 - Error at iteration t: best over iterations expected gradient norm, $\min_{k=1...t-1} \{ \|\mathbb{E}[\nabla L(\theta_k)]\| \}$
 - GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$
 - SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$
 - SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$



[Mark Smidt CPSC 540 Lecture 11]

Understanding Convergence

m p

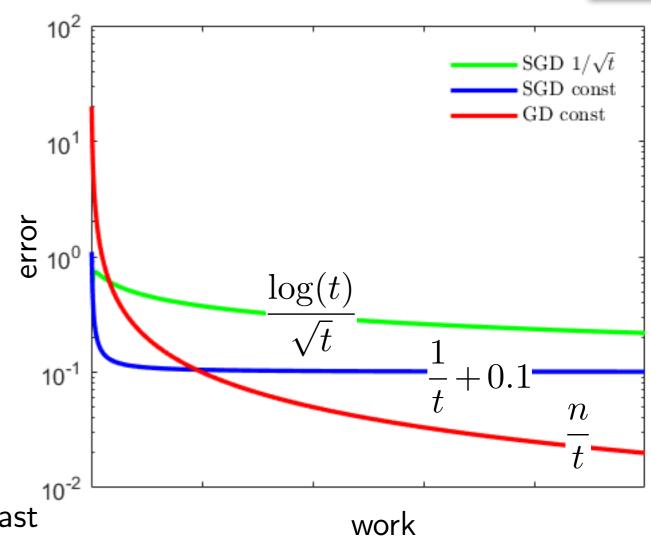
)

Convergence rates:

- GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$
- SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$
- SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$

Insights:

- SGD wins when there is a lot of data
- Convergence with a constant step size is fast but to within a "region" around optimum



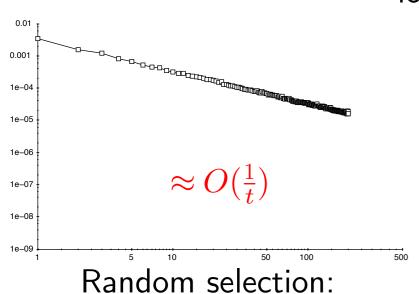
→ Remarks:

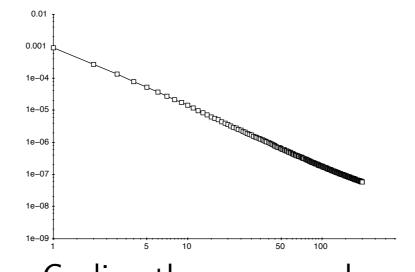
- To have guarantees need to use conservative estimates with very small step sizes, etc.
- Different other setups possible: convex / strongly convex, smooth/non-smooth
- The rate is often faster in practice, but the general picture stays

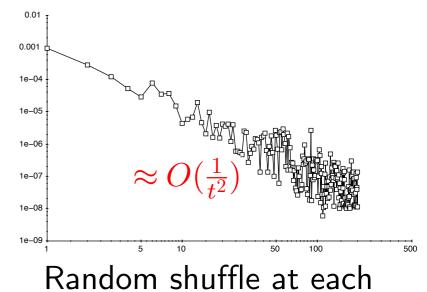
- **How to Draw Data Points?**
- How should we draw data points for SGD:
 - every time select randomly with replacement
 - shuffle the data once
 - shuffle at each epoch but draw without replacement
- Empirical evidence:

Bottou (2009): "Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms"

logistic regression d = 47,152, n = 781,256







slope = -1.0003

Cycling the same random shuffle: slope=-1.8393

epoch: slope=-2.0103

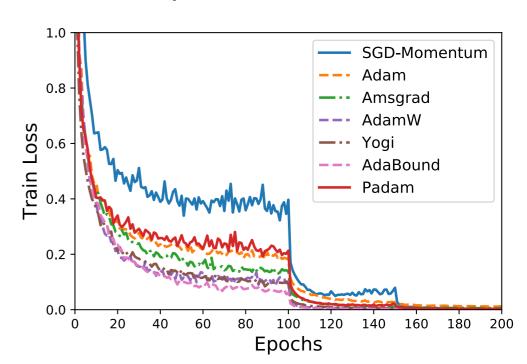
A simple consideration:

Drawing n times with replacement from the dataset of size n some points may not be selected – efficiently using a subset of data per epoch.

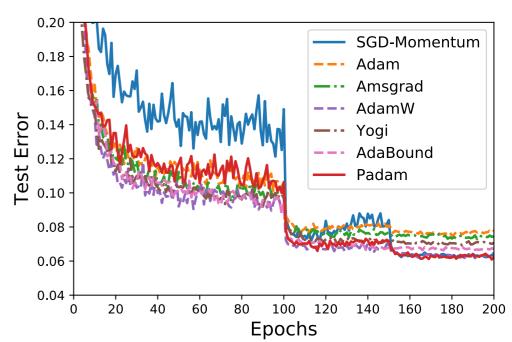
Learning Rate Schedule

11

- (Basic) common practice: decrease learning rate in steps
 - ullet Example: start with lpha=0.1 then decrease by factor of 10 at epochs 100 and 150
- Comments
 - Consistent with the idea of fast convergence to a region
 - After the sep size decrease, "1/n" rate replays
 - Many other empirically proposed schedules



(a) Train Loss for VGGNet



(d) Test Error for VGGNet

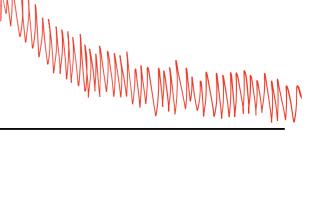
Courtesy: [Chen et al. "Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks"]

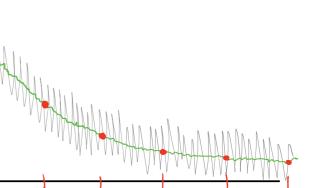
12

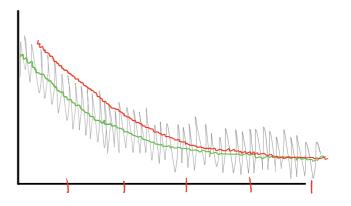
- ♦ Batch Estimate
 - Batch mean: $\tilde{L} = \frac{1}{M} \sum_{i \in I} l_i$
 - Unbiased, but high variance
- → Training data mean
 - $L = \frac{1}{n} \sum_{i=1}^{n} l_i$
 - Unbiased, zero variance, but may be too costly
- ♦ Average using all last known loss values

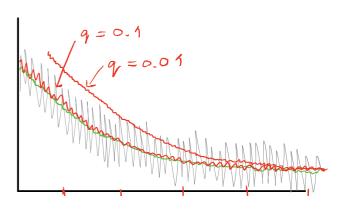
•
$$\hat{L} := \frac{1}{n} \left(\sum_{i \in I} l_i^{\text{new}} + \sum_{i \notin I} l_i^{\text{old}} \right)$$

- Low variance, hysteresis 1 epoch
- Need to remember losses for full dataset
- Running Averaging
 - $\hat{L}^{t+1} := (1-q)\hat{L}^t + q\tilde{L}$
 - Variance-hysteresis tradeoff controlled by q
 - Need to remember only the running average loss









13

→ SGD

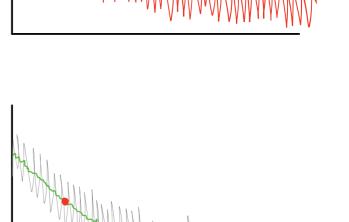
- Batch mean: $\tilde{g} = \frac{1}{M} \sum_{i \in I} \nabla l_i$
- Need a small step size

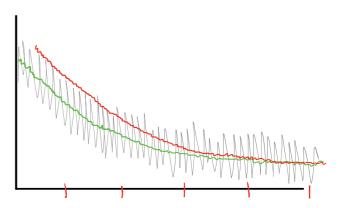
→ GD

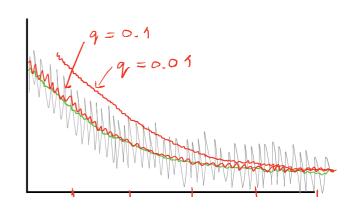
- Full gradient: $g = \frac{1}{n} \sum_{i=1}^{n} \nabla l_i$
- Too costly
- ◆ Stochastic Average Gradient (SAG)

•
$$\tilde{g} := \frac{1}{n} \left(\sum_{i \in I} (\nabla l_i)^{\text{new}} + \sum_{i \notin I} (\nabla l_i)^{\text{old}} \right)$$

- Improved convergence rates (convex analysis)
- Need to remember gradients
- ◆ SGD with filtered gradient (SGD with momentum)
 - $g := (1-q)g + q\tilde{g}$
 - Variance-hysteresis tradeoff controlled by q
 - Remember only the running average gradient



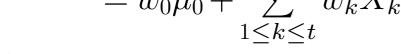




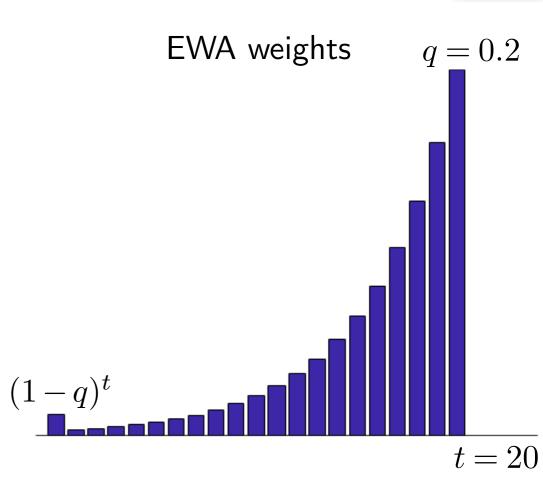
First Order Filter

4

- General setup:
 - X_k , k = 1, ..., t independent random variables
 - $q_t \in (0,1]$
 - First order filter: $\mu_t = (1 q_t)\mu_{t-1} + q_t X_t$
- Exponentially Weighted Average (EWA):
 - Constant $q_t = q$
 - $\mu_1 = (1-q)\mu_0 + qX_1$
 - $\mu_2 = (1-q)^2 \mu_0 + (1-q)qX_1 + qX_2$
 - ...
 - $\mu_t = (1-q)^t \mu_0 + \sum_{1 \le k \le t} (1-q)^{t-k} q X_k$ = $w_0 \mu_0 + \sum_{k \le t} w_k X_k$



- Running mean:
 - $\bullet \ q_t = \frac{1}{t}$
 - $\bullet \ \mu_1 = 0\mu_0 + X_1$
 - $\mu_t = \frac{t-1}{t} \mu_{t-1} + \frac{1}{t} X_t$
 - $\mu_{t+1} = \frac{t}{t+1}\mu_t + \frac{1}{t+1}X_{t+1} = \frac{t-1}{t+1}\mu_{t-1} + \frac{1}{t+1}(X_t + X_{t+1})$
- ♦ Averaging over past gradients reduces variance, but introduces a hysteresis bias

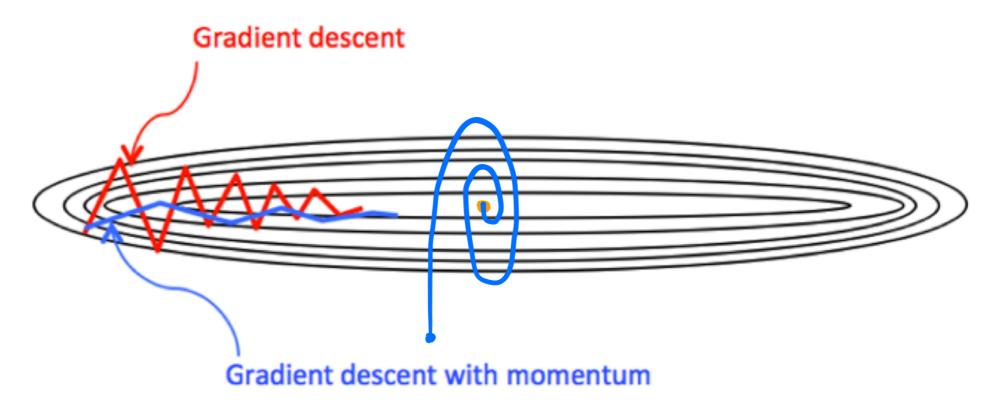


Running mean weights

Hysteresis Bias

Equivalent form of SGD with EWA gradient (\star) :

- Velocity: $v_t := \mu v_{t-1} + \tilde{g}$
- Step: $\theta_t = \theta_{t-1} \varepsilon v_t$



- ◆ The "heavy ball" method
 - ullet Friction (μ < 1) and slope forces build up velocity
 - Cancels "noise" in the incorrect prediction of the function change, helpful to overcome plateaus
 - The inertia may lead to oscillatory behavior (not good)

"Nesteroy" Momentum

- Common Momentum
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(x_t)$
 - Step: $x_{t+1} = x_t \varepsilon v_{t+1}$

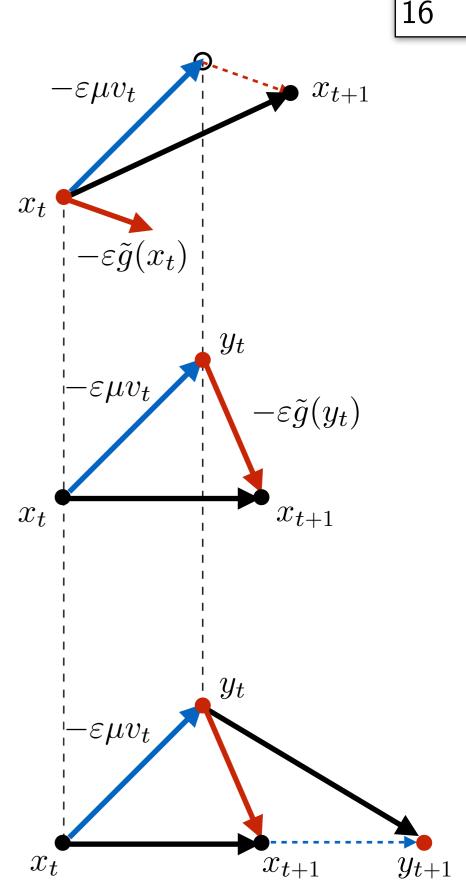
The step consists of momentum and current gradient The momentum part of the step is **known in advance** Can make it before computing the gradient:

- Nesterov Momentum
 - Leading sequence: $y_t = x_t \varepsilon \mu v_t$
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(y_t)$
 - Step: $x_{t+1} = y_t \varepsilon \tilde{g}(y_t)$

Takes advantage of the known part of the step Less overshooting

- \bullet (\star) Can express as steps on the leading sequence alone:
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(y_t)$
 - Step: $y_{t+1} = y_t \varepsilon (\tilde{g}(y_t) + \mu v_{t+1})$

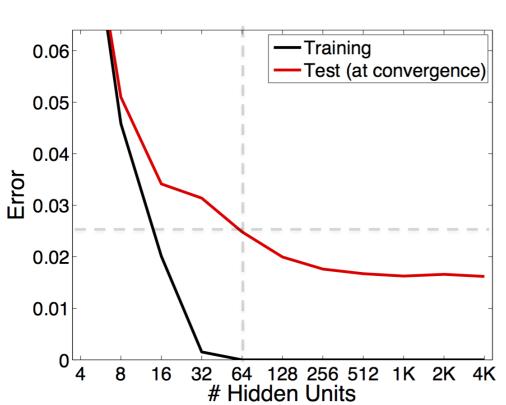
The two sequences eventually converge



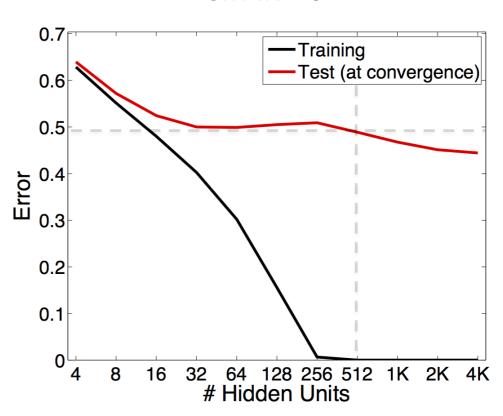
Implicit Regularization

Implicit Regularization

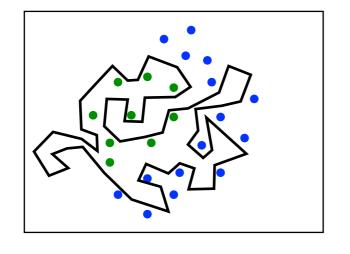
MNIST

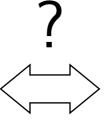


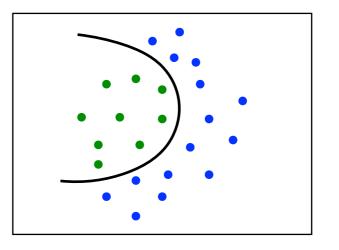
CIFAR-10



- ♦ We increase the network capacity but generalization improves, why?
 - There exist global minima that generalize poorly
 - SGD somehow finds a good global minimum

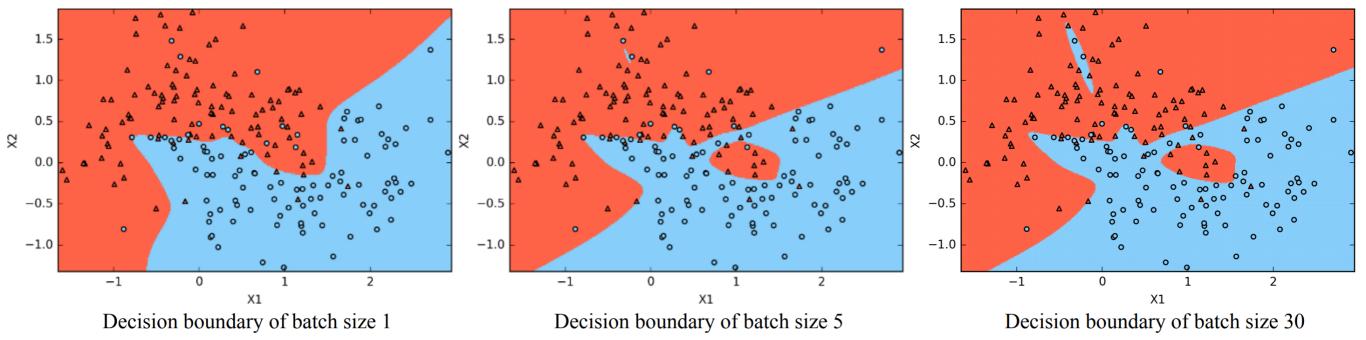




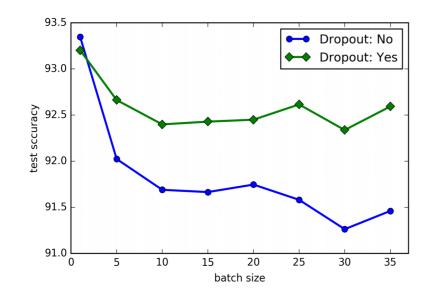


- → Typically choose batch size to fully utilize parallel throughput (in GPUs means ~10^4 independent arithmetic computations in parallel)
- ◆ Limited by memory
- ♦ Smaller batch -> noisier gradient -> implicit regularization

Synthetic data



NLP data



Lei et al. (2018) "Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing:

Observations and Implications"

0

Logistic (or multinomial) regression:

$$\operatorname{argmin}_{w} \mathcal{L}(w) + \lambda \|w\|_{p}^{p} \qquad \qquad \xrightarrow{\lambda \to 0}$$

 $\xrightarrow{\lambda \to 0} \qquad \qquad w \to \text{max margin w.r.t. } \|\cdot\|_p$

[1]

GD for $\min_{w} \mathcal{L}(w)$ iteration can be written as:

$$w^{t+1} = w^t + \operatorname*{argmin}_{\Delta w} \left(\langle \Delta w, \nabla \mathcal{L}(w^t) \rangle + \frac{1}{2\varepsilon} \|\Delta w\|_2^2 \right)$$

$$t \to \infty$$
 $\frac{w^t}{\|w^t\|} \to \max \text{ margin w.r.t. } \|\cdot\|_2$

[2]

◆ Linear model with any loss:

$$\min_{w} \mathcal{L}(w) := \sum_{n=1}^{N} \ell(\left\langle w, x_n \right\rangle, y_n).$$
 \mathcal{W} – set of optimal solutions

SGD iteration, generalizing the norm:

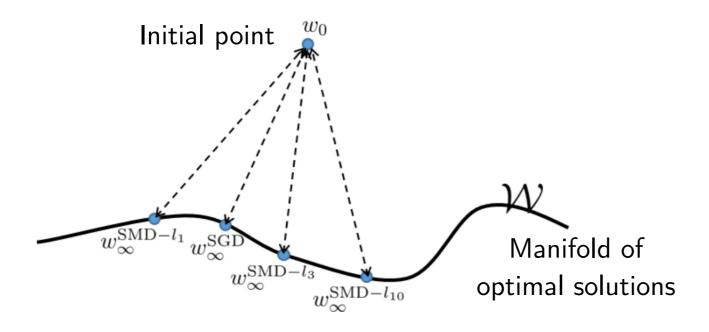
$$\begin{split} w^{t+1} &= w^t + \operatorname*{argmin}_{\Delta w} \left(\langle \Delta w, \tilde{\nabla} \mathcal{L}(w^t) \rangle + \tfrac{1}{2\varepsilon} \|\Delta w\|_p^p \right) \\ t &\to \infty \qquad w^t \to \text{point in } \mathcal{W} \text{, nearest to } w^0 \text{ in } \| \cdot \|_p \end{split}$$

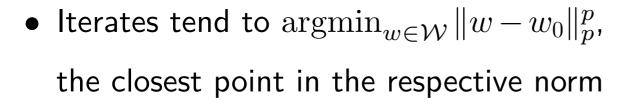
[3]

- SGD induces implicit p-norm regularization, helping to improve p-norm margin
- [1] Rosset et al. (2004) Margin Maximizing Loss Functions
- [2] Soudry et al. (2018) "The Implicit Bias of Gradient Descent on Separable Data"
- [3] Gunasekar et al. (2018) "Characterizing Implicit Bias in Terms of Optimization Geometry"

Implicit Regularization by SGD / SMD

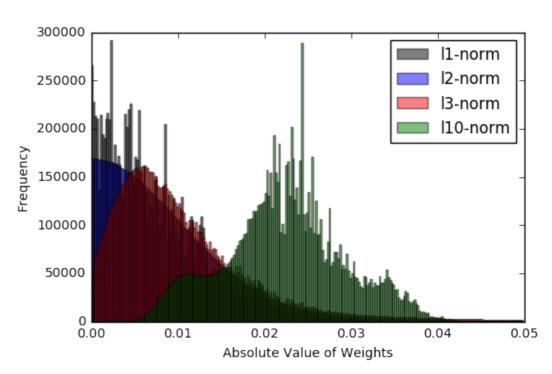
- Consider step proximal problem: $\min_{x} \langle \nabla f(x_0), x x_0 \rangle + \lambda \|x x_0\|_p^p$
 - i.e., p-norm stochastic mirror descent
- lacktriangle Using different p leads to solutions with different properties



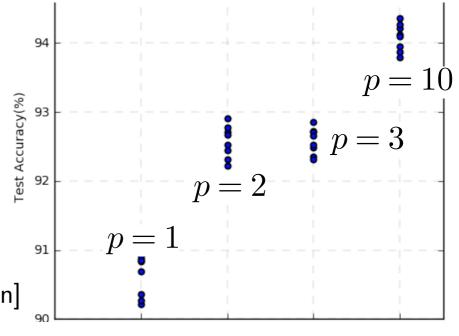


	SMD 1-norm	SMD 2-norm (SGD)	SMD 3-norm	SMD 10-norm
1-norm BD	141	9.19×10^{3}	4.1×10^{4}	2.34×10^{5}
2-norm BD	3.15×10^3	562	1.24×10^{3}	6.89×10^{3}
3-norm BD	4.31×10^{4}	107	53.5	1.85×10^{2}
10-norm BD	6.83×10^{13}	972	7.91×10^{-5}	2.72×10^{-8}

[Azizan et al. (2019) Stochastic Mirror Descent on Overparameterized Nonlinear Models: Convergence, Implicit Regularization, and Generalization]



Different sparsity and generalization



EWA: How Much Variance Reduction?

- General setup
 - X_t independent random variables
 - $q_t \in (0,1]$
 - Running mean: $\mu_t = (1 q_t)\mu_{t-1} + q_t X_t$ is a r.v.
- Expectation:
 - $\mathbb{E}[\mu_t] = (1 q_t)\mathbb{E}[\mu_{t-1}] + q_t\mathbb{E}[X_t]$ running average of expectations
 - $\mathbb{E}[\mu_t] = w_0 \mathbb{E}[\mu_0] + \sum_{k=1} w_k \mathbb{E}[X_k]$
 - In context of SGD with learning rate $\varepsilon \to 0$, all $E[X_k]$ are the same and μ_t is an unbiased estimate
- Variance:

 - $\mathbb{V}[\mu_t] = (1 q_t)^2 \mathbb{V}[\mu_{t-1}] + q_t^2 \mathbb{V}[X_t]$ $\mathbb{V}[\mu_t] = w_0^2 \mathbb{V}_0 + \sum_{k=1}^t w_k^2 \mathbb{V}[X_k]$
 - Variance reduction of running mean: $\sum_{k=0}^{t} w_k^2 = \sum_{k=1}^{t} \frac{1}{t^2} = \frac{1}{t}$
 - Variance reduction of EWA: $\sum_{k=0}^{t} w_k^2 = \frac{q^2}{1-(1-q)^2}$ in the limit of large t
 - (*) Equivalent window size of EWA: $n = \frac{2}{q} 1$. E.g. $q = 0.1 \leftrightarrow n = 19$
 - ◆ Can use EWA with a decreasing q series for a progressive smoothing