DEEP LEARNING: ASSIGNMENTS WITH SOLUTIONS

Assignment 1 (Gradient Verification in Lab 2). Let £ be the loss function, depending on
the parameter w and let J = % be the derivative of £ in w.

a) Let Aw be a (random) vector of length € and AL = L(w + Aw) — L(w). Show that
the (correctly computed) derivative must satisfy

‘Aﬁ —(J, Aw)‘ <L e. (D

b) Assume that £ is twice differentiable and let AL = 1(L(w + Aw) — L(w — Aw)).
Show that the derivative in this case must satisfy even a stronger condition

}AE —{J, Aw>| < &2 2)

Conclude that this condition is easier to check with limited numerical accuracy.

Solution.

a) By definition of derivative, there must hold
L(w+ Aw) = L(w) + JAw + o(||Aw]]). 3)

Since L is a scalar-valued function J is a row vector and JAw = (J, Aw). We can express

(J; Aw) = L{w + Aw) = L{w) + o [[Aw]]). O]
Denoting AL = L(w + Aw) — L(w) (as in the assignment), there must hold
[(J; Aw) — AL| = of[|Awl]) = ofe), (5)
which is equivalent to
(J, Aw) — AL| <€ e. (0)

b) Since L is twice differentiable, we can write its second order Taylor expansion about
w:

£+ Aw) = £(w) 4+, Aw) + 2 {Aw, HAw) + o | Au?), ™

where H is the Hessian matrix. Consider now the displacement —Aw, the second order
expansion for it reads:

Lw— Aw) = L(w) — (J, Aw) + %(Aw, HAw) + o || Aw]?). 8)

Note that the sign of quadratic form (Aw, H Aw) has not changed. Subtracting these two
expansions we obtain:

L(w+ Aw) — L(w — Aw) = 2(J, Aw) + o || Aw||?).)

Rearranging and denoting AL = 1(L(w + Aw) — L(w — Aw)), we obtain

((J. Aw) = AL) = of|| Aw|?), (10)

which is equivalent to
[(J, Aw) — AL| < &% (11)
[

Assignment 2 (Backprop normalized linear).
Let x € R". Consider the following normalized linear layer (known as “weight normal-
ization”):

w]z +b;

Yi =
' [|wi]

Y

where w; € R" fori = 1...m, b; € R and ||w;|| is the Euclidean norm of vector w;.
Given the gradient of the loss function in y, g := V,£ € R™, compute gradients of the
loss in w, b, x.

Solution. We will use the total derivative rule

%:Zd_ﬁ.ayi :Zgiayi' (12)

Since y; depends only on b; and not on b; for j # ¢ for V,L we have

ac _ ayz' _ 9
b~ Yob, fwil

(13)

For VL we have
Oy W5
= 2 = 14
3~ Loy, = L o
Since y; depends only on w; and not on w; for j # ¢ for V,,L we have

Zglayz Zgl(——i- w; x+b)H U‘Tg) (15)

Assignment 3 (Backprop recurrent sequence).
Let z € RY be a vector with components z; for i = 1,... N and consider a layer per-
forming the following computation:

yi = a(r; + xi0)+b fori=1...N —2. (16)

Given the gradient of the loss function in y, g := V,£ € RY™2, compute the gradient of
the loss in a, b and x.

Solution.

N—

dc Oyl
TR

N— 2

N—-2
Z ayz => g (17)

=1

. = anz
s g Zgz Tt Tiga). (18)
N2 N2 ag; if j <2,
dx] Zgz Z Zgz =il + [j=i+2]) = { a(g; + gj—2) if j=2,...N -2,
=1 ag;—2 if j > N — 2.
(19)

]

Assignment 4 (Stochastic Gradient Quantization). Sometimes randomized procedures
are used to quantize the gradients for a faster communication in a distributed system (if
we want to parallelize training).

Let the gradient ¢ € R"™ be computed at the worker. The worker can sends a quantized
gradient g € {0, 1}" to the server, using only 1 bit per coordinate. The worker additionally
sends two real numbers to the server a, b and the server reconstructs the gradient as ag+b.
How to chose the quantization procedure in a randomized way so that E[ag + b] = ¢ and
hence we preserve the guarantee of an unbiased (but more noisy) gradient estimate? Is
the choice of a and b satisfying this assumption unique? How to choose a and b such that
E[ag + b] = ¢ and the variance of ag + b is minimal?

Solution. Clearly, given g;, with a deterministic choice of §; € {0, 1} we cannot achieve
the property E[ag + b] = ¢ for all coordinates and would have a systematic error. Let us
choose g; € {0, 1} at random, with probability P(g;=1) = /3;. We then have E[ag; + b] =
af3; + b and can make all coordinates unbiased by setting

b
gi=2—, (20)

a

however the probabilities /3; need to be in the range [0, 1] and therefore a and b must
satisfy

i — b
0<% <1 v 1)
a
Assuming that a > 0, it is equivalent to
b<g;<a-+b Vi (22)

The choice of a and bis clearly non-unique: as long as b < min; g; =t mand a + b >
max; g; =: M, we can satisfy the expectation requirement.

3

Let us determine a and b that give the least variance to the estimate ag; + b for some fixed
i. The variance of a Bernoulli variable with probability 3; is given by ;(1 — ;). The
variance of ag; + b is respectively

99— b _gi_b
(I -

) = (s —b)(a+b— g). (23)

To minimize this variance subject to the constraints on a and b we need to solve the
problem

migl(gi—b)(a+b—gi) st. b<m;a+b>M. (24)
Notice that in the objective both (g; —b) and (a+b— g;) are non-negative when constraints
are satisfied. The first factor is minimized by choosing b = m. The second factor is
minimized by choosing a = M — b = M — m. Notice that this solution does not depend
on the particular coordinate i. Therefore variances of all components of the gradient are
simultaneously minimized by this choice of a and b. 0

Assignment 5 (SGD + L2). Consider a regularized loss function L(6) = L(6) + 3|0||.
Let g be a stochastic gradient estimate of L at . Note that the regularization part of the
objective, %H@ ?_is known in a closed form and so its gradient g, is non-stochastic.

a) Design an SGD algorithm that applies momentum (exponentially weighted averaging)
to g only but not to g,..

b) Is it equivalent to an SGD with the momentum applied to both g and g, but possibly
with a different settings of A\, momentum and learning rate?

Solution.

a) The gradient of the regularizer at 6" is given by g, = A\". Let §' be stochastic gradient
of L(0) at 0": g* = VyL(#"). We will use the momentum form of SGD with EWA (lecture
4):
ot = ot 4 gt (25a)
Ot = 6" — a(v' + M), (25b)

where « 1s the learning rate and ;. is momentum.

b) If we apply the momentum to both g and g,., we obtain a seemingly different algorithm:

V=gt 4 gt 4+ NG (26a)

Ot = 6" — V", (26b)

The question is whether the first algorithm can be converted into the second one by choos-

ing \', o/, i/ appropriately. To verify this, we will reduce each algorithm to a recurrent
relation in main sequence 6 only. In the algorithm (25) we have for two time steps:

0"t = 0" — a(v' + \OY); (27a)

0 =01 — (' + AT, (27b)

Multiplying the second equation by x and subtracting from the first we obtain
Ot — = 0" — pd T — a(gt 4+ N — peth). (28)
Rearranging we get the recurrence:
0 = (14— aX)f" — u(l —aN)f ! — agt (29)
Similarly, in algorithm (26) two time steps express as:

ot = 6" — /v (30a)
0 = 0 — oL, (30b)

Multiplying the second equation by x’ and subtracting from the first we obtain

Ot — 0 = 0" — O — (5 + NEY). (31
Rearranging we get the recurrence:

O = (1+p —a'\N)0" — ot — /. (32)

The two recurrent sequences 6! can be made equal by equating the coefficients at §¢, §*~1
and g'. We get three equations in three unknowns X, i/, o

T+ —a'N=1+4p—a, (33a)
p=p(l —ar), (33b)
o =a. (33¢)

We trivially find o/ and ;//, and solve for A’ from the first equation:
N=(—p+aN)/d =(u+pad—p+ad)/a=pr+ = (p+ 1)\ (34)

We obtained that the two algorithms are equivalent up to changing the regularization
strength only. If we used EWA form (with ¢ and 1 — ¢), the equivalence can be shown by
the same method. 0

