Deep Learning (BEV033DLE)
Lecture 2.

Czech Technical University in Prague

¢ Neural networks are universal approximators
¢ Testing networks & loss functions

¢ Generalisation errors for neural classifiers & regressors
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Neural networks are universal approximators if we do not restrict the network architecture

Boolean functions: Every boolean function f: {£1}"™ — {£1} can be written in
conjunctive normal form, i.e. as a conjunction over disjunctive clauses.

Theorem 1. Every boolean function can be represented by a network with binary units and
two layers.

Remark 1. Notice, that the number of neurons in such a two layer network can grow
exponentially with n. Implementing e.g. the parity function in DNF/CNF will require
O(2" 1) neurons. It can be implemented much more efficiently by a deep network e.g. with
O(nlogn) neurons if we do not restrict its depth.

Real valued functions: consider real valued functions f: [0,1]" — R that are Lipshitz

continuous
|f(x) = f(a")] < plle—2'|| V2" €0,1]"

To approximate such function by a network:

Partition the domain : [0,1]™ into sufficiently small boxes.

Design a network that first decides which box the input vector belongs to and then
predicts the average value of f at this box.
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Theorem 2. (Cybenko, 1989) Every smooth function on |0,1]™ can be approximated 3/9

arbitrarily well by a network with sigmoid units and two layers. In other words, given a
smooth function f: [0,1]" — R and an € > 0, there is a sum

N
G(z) = Zozj S(ijas +b;)
j=1

s.t. |f(x)—G(x)| <e for all x €[0,1]™.
Remark 2.

® There are also “dual” universal approximation theorems that restrict the width of the
network (i.e. number of units per layer) and allow arbitrary network depth.

¢ We limit the expressive power once we fix a network architecture.
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Given a network, we want to validate its performance on a test set. How /arge shall we
choose this set & what precisely shall we measure?

® The relation between input features € X and hidden states y € ) is given by a joint
probability distribution p(x,y), which is unknown.

® The network h: X — ) predicts hidden states y, given input features .

® The loss #(y,y") defines the cost incurred by a wrong prediction 3’ = h(x), if the true
hidden state was y. Examples:

e classification, y is categorical: 0/1 loss £(y,y") = [y # v']

e classification, y is a sequence: Hamming distance (y,y") = _.[vi # v/]

e regression, y € R™: L1 norm £(y,y") = ||ly —v'|]1

We want to estimate the risk, i.e. the expected loss

R() = pep)lh@) ~ 3 Lly,h(x) = Ryn(h)

(z,y)eT™

where 7™ = {(27,47) | j=1,...,m} is a test set of i.i.d. examples z,y ~ p(x,y).
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How large shall we choose the size m of the test set 77

Answer: Upper bound the deviation |Rym(h) — R(h)]

T™ ~pla,y) = IP’(|R(h) — Ryn(h)| > g) <77

¢ Chebyshev inequality: P(]R(h) — Rym(h)| > 6) < Hew:hiz))]
converges slowly for m — oc.

- 2m52

¢ Hoeffding inequality: P(|R(h) — Rym(h)| > 5) < 2e (BO%

where AN =400 — CLonin.-

Example 1. Consider a classifier with 0/1 loss. What test set size m ensures that

Rym(h)—0.01 < R(h) < Rym(h)+0.01 with probability 95%?7?
Answer: By using Hoeffding inequality, we get m ~ 2-10%.
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Given an i.i.d. training set 7™ = {(«7,3?) | 7=1,...,m}, we want to train a network
y = h(x,w) by minimising its empirical risk, i.e. expected loss on the training set

1 :
— Z E(y, h(aj,w)) — min
(z,y)eT™

Often we can not minimise this objective by gradient descent: e.g. classification with 0/1
loss. Let us make a virtue of necessity and consider another learning criterion: the negative
log-likelihood.

@ last layer of the network: class scores + softmax, its outputs hy(x,w) are interpreted as
conditional class probabilities hy(x,w) = py(y = k|x)

@ the learning criterion (NLL) reads

1 1
—— E 10g P = —— E log hy(x,w) — mi
- o0gPw(y| ) - og h,(x,w) — min

(z,y)ET™ (z,y)ET™ v
and is differentiable in w.

Advantage: we can estimate the prediction uncertainty.
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Generalisation error (bounds) We fix a network architecture. This defines an infinite
network class H. We choose the network h,, € H with the best performance on a training
set 7. For this we minimise the learning criterion by stochastic gradient descent (SGD).

We would expect the following behaviour for training sets 7™ with fixed size m.

under-fitting over-fitting

. Test risk

Risk

~N

~ ‘Training risk
sweet spot T -

Sa - =
Capacity of H

Can we bound the generalisation error of the network h,, = argming, 4, Rym(h)?
T ~p(@,y) = P(1R(n) — Rym(h)| > ) <77

¢ We can not apply the Hoeffding inequality here (why?)
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ML theory provides generalisation bounds assuming that we can uniformly bound the
deviation between risk and empirical risk, i.e. bound sup;,c4/|R(h) — Ryrm(h)|

Finite H: We train a network and keep several checkpoints with best training accuracy.
Then we want to choose the best network from this set H by comparing their performance
on some validation set 7. How large shall we choose m?

Answer: use the generalised Hoeffding inequality for a finite set of predictors

2

2me
P( R(R) — Rrm(h ) 921 |e (ALP
max| R(h) — B (h)| > ) < 2[H]e

Infinite 7{: Vapnik-Cervonenkis theory provides such a uniform bound in terms of
VC-dimension, i.e. the size of the largest set of data points x that can be classified by
predictors from H in any possible way (the set is shattered by H)

These bounds are however not tight enough for deep networks. Large networks with > 10°
parameters would require billions of training examples. Neural networks in typical
applications are in an over-parametrised regime outside of the plot in the previous slide.
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Example 2 (Zhang et al., ICLR, 2018). Image classification
on CIFAR (10 classes, ~ 5-10* training examples, tackled
by networks with ~ 10° parameters. The networks learned
by SGD and additional regularisers (e.g. data augmentation,
dropout, etc.) Achieved accuracy > 95%, generalisation
error < 5%. Such networks can learn data with random 0 e e
labels! 1.e. the training set is shattered by H. housand steps
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Double descent phenomenon: Current ongoing research seems to indicate that SGD,
when used for training over-parametrised networks, is choosing smooth predictors with small
norm. This leads to the following unexpected behaviour:

]
0.6- == Test
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Belkin et al., PNAS, 2019: network with a single hidden layer learned on MNIST
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