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Lecture 4: Simplified neuron



The leaky integrate-and-fire neuron

τm
dv(t)

dt
= −(v(t)− EL) + RI(t), (1)

v(t f) = ϑ. (2)

lim
δ→0

v(t f + δ) = vres, (3)
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The leaky integrate-and-fire neuron - analytical solution

▶ Very short input current

τm
dv(t)

dt
+ v(t) = 0

v(t) = exp−(
t

−τm
)

▶ Constant small current RI < θ

dv
dt

= 0

v = RI

v(t) = RI(1 − exp−(
t

−τm
) +

v(t = 0)
RI

exp−(
t

−τm
))

(4)



The leaky integrate-and-fire neuron - CODE



The leaky integrate-and-fire neuron (cont.)

A.  External input RI      = 8 mV < threshold
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The LIF-neuron (cont.): Gain function
▶ Gain transfer activation
▶ The inverse of the first passage time t f defines the firing rate
▶ Spikes occurs at t = t f = 0, let’s substitute v(t = 0) = vres,

v(t) = ϑ into (4), tref is absolutory refractory period

t f = −τm ln(
ϑ− RI

vres − RI
)

r̄ = (t ref − τm ln
ϑ− RI

vres − RI
)−1

(5)
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Spike-time variability
▶ Inter-spike interval (ISI)
▶ IF neuron - constant ISI CV = 0, A-cortical cell(Broadmann

area), B- sumulation from spike train
▶ regular firing in V1: CV = 0.5 . . . 1

CV =
σ

µ

pdf exp(x , λ) = λe−λx

pdf poisson(x , λ) =
x∑

i=1

λi e
−λ

i!

(6)



Poisson Spike Train - CODE



Sources of noise

▶ diffuse propagation of neurotransmitter across synaptic cleft
▶ propagation of the membrane potential along dendtries with

varying geometry
▶ biochemical processes
▶ probabilistic nature of transmitter release by axonal spikes
▶ simulation of all these irregularities by INCLUDING NOISE



Noise models I

▶ Stochastic threshold

ϑ → ϑ+ η1(t)

▶ Random reset

v res → ures + η2(t)

▶ Noisy integration

τm
dv
dt

→ −v(t) + RIext + η3(t) (7)



Noise models II



Variability of real neuron
▶ Model (7): normally distributed current Iext

Iext = Iext + η, η ∈ N(0,1)
▶ Normal pdf → very good approximation considering independent

synaptic inputs from many equally distributed neurons
▶ Simulation: RÎext = 12mV , ϑ = 10mV
▶ log normal pdf

pdf lognormal(x ;µ, σ) =
1

xσ
√

2π
exp(

−(log(x)− µ)2

2σ2
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The LIF-neuron noise simulation I

▶ real neuron with 5000 presynaptic neuron
▶ 10 % simulation → 500 Poisson-distributed spike trains (6) with

refractory corrections
▶ mean firing rate = 20 Hz, after correction 19.3 Hz, refractory

constant 2 ms.
▶ each presynaptic spike → EPSP in form of α function (??)
▶ ω = 0.5 → regular firing, CV = 0.12, average rate 118 Hz.
▶ ω = 0.25 → irregular firing, CV = 0.58, average rate 16 Hz. The

CV > lower bound found in experiments



The LIF-neuron noise simulation II
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