Neuroinformatics, Prague

March 27, 2024

Hodkin and Huxley models

First direct (intracellular) recorded action-potential (spike) - 1939!!

Very nice theory

Giant Nerve Cells of Squid

Hodkin and Huxley experiment NOBEL 1963

Voltage Clamp Method

All or None

The "all or none" nature of the spike

Hodgkin, Huxley and Katz, 1952

Membrane current in response to voltage clamp (VC)

Separating voltage-dependent active (excitable) currents Using pharmacological agents 2 different currents flow via the membrane during the spike

Changing ion concentration at bath with giant axon showed that early current is carried by $\mathrm{Na}+$ ions and late one by $\mathrm{K}+$ ions

Ion currents ($\mathrm{K}+$ and $\mathrm{Na}+$) for various depolarizing voltage clamp (and extracting respective ion conductances)

$$
I_{K}=g_{K}\left(V_{m}-E_{K}\right) ; \quad I_{N a}=g_{N a}\left(V_{m}-E_{N a}\right)
$$

Fitting an equation for the K current (K-conductance) during/following VC

Mathematically - the rising phase of K-current can be described as a power of 4 (namely as $(1-\exp (-t))^{4}$ and the decay as $\exp (-4 \mathrm{t})$

$$
g_{\mathrm{K}}=\bar{g}_{\mathrm{K}} n^{4}
$$

n represents the proportion of K -ion channels in the open state
"These equations may be given a physical basis if we assume that potassium ions can only cross the membrane when four similar particles occupy a certain region of the 2membrane..." Hodgkin AL, Huxley AF. 1952 J Physiol (Lond) 117:500-544

Graphical interpretation of H\&H model for the K channel

Closed K channel (by 4 n gates)

Open K channel (by 4 n gates)

The activation function, n , and the rate functions α_{n} and β_{n}

$$
\begin{gathered}
g_{\mathrm{K}}=\bar{g}_{\mathrm{K}} n^{4}, \\
\frac{\mathrm{~d} n}{\mathrm{~d} t}=\alpha_{n}(1-n)-\beta_{n} n,
\end{gathered}
$$

where \bar{g}_{K} is a constant with the dimensions of conductance $/ \mathrm{cm}^{2}, \alpha_{n}$ and β_{n} are rate constants which vary with voltage but not with time and have dimensions of [time] ${ }^{-1}, n$ is a dimensionless variable which can vary between 0 and 1.

Similar procedure is used to extract the activation (m) and inactivation (h) parameters for the Na current

$$
\begin{aligned}
g_{\mathrm{Na}} & =m^{3} h \bar{g}_{\mathrm{Na}}, \\
\frac{\mathrm{~d} m}{\mathrm{~d} t} & =\alpha_{m}(1-m)-\beta_{m} m, \\
\frac{\mathrm{~d} h}{\mathrm{~d} t} & =\alpha_{h}(1-h)-\beta_{h} h,
\end{aligned}
$$

Fitting Na current for different VC depolarizing values

Graphical interpretation of H\&H model for the Na channel

Na channel (by 3 activated m gates and 1 inactivated h gate)

Overlay of the action potential (voltage) and underlying Na and K conductances

Fig. 17. Numerical solution of eqn. (31) showing components of membrane conductance (g) during propagated action potential ($-V$). Details of the analysis are as in Fig. 15.

Hodgkin-Huxley model

Figure: Typical form of an action potential; redrawn from an oscilloscope picture from Hodgkin and Huxley (1939).

The minimal mechanisms

Depolarization

HH stucture

- $I_{\text {ion }}=$ gion $_{\hat{i o n}}\left(V-E_{i o n}\right)$
- voltage and time dependent variables $n(V, t), m(V, t), h(V, t)$

$$
\begin{gathered}
\hat{g_{K}}(V, t)=g_{K} n^{4} \\
\hat{g_{N a}}(V, t)=g_{N a} m^{3} h
\end{gathered}
$$

Hodgkin-Huxley equations and simulation

$$
\begin{aligned}
C \frac{\mathrm{~d} V}{\mathrm{~d} t} & =-g_{\mathrm{K}} n^{4}\left(V-E_{\mathrm{K}}\right)-g_{\mathrm{Na}} m^{3} h\left(V-E_{\mathrm{Na}}\right)-g_{\mathrm{L}}\left(V-E_{\mathrm{L}}\right)+l_{e x t}(t) \\
\tau_{\mathrm{n}}(V) \frac{\mathrm{d} n}{\mathrm{~d} t} & =-\left[n-n_{0}(V)\right] \\
\tau_{\mathrm{m}}(V) \frac{\mathrm{d} m}{\mathrm{~d} t} & =-\left[m-m_{0}(V)\right] \\
\tau_{\mathrm{h}}(V) \frac{\mathrm{d} h}{\mathrm{~d} t} & =-\left[h-h_{0}(V)\right] \\
\frac{d x}{d t} & =-\frac{1}{\tau_{x}(V)}\left[x-x_{0}(V)\right] \rightarrow x(t+\Delta t)=\left(1-\frac{\Delta t}{\tau_{x}}\right) x(t)+\frac{\Delta t}{\tau_{x}} x_{0}
\end{aligned}
$$

Ion channels resistance

$$
\begin{aligned}
x(0) & =\frac{\alpha}{\alpha+\beta}, t_{x}=\alpha \beta, x \in\{n, m, h\} \\
\alpha_{n} & =\frac{10-V}{100\left(e^{\left.\frac{10-v}{10}-1\right)}, \beta_{n}=0.125 e^{-\frac{v}{80}}\right.} \\
\alpha_{m} & =\frac{25-V}{10\left(e^{25-V}-1\right)}, \beta_{m}=4 e^{-\frac{V}{18}} \\
\alpha_{h} & =0.07 e^{\frac{v}{20}}, \beta_{h}=\frac{1}{e^{\frac{30-v}{10}}+1}
\end{aligned}
$$

Matlab implementation

```
%%% Integration of Hodgkin--Huxley equations with Euler method
    clear; figure;%%`lf;
유ᄋ Setting parameters
    % Maximal conductances (in units of mS/cm^2); 1=K, 2=Na, 3=R
    g(1)=36; g(2)=120; g(3)=0.3;
    % Battery voltage ( in mV); 1=n, 2=m, 3=h
    E(1)=-12; E(2)=115; E(3)=10.613;
    % Initialization of some variables
    I_ext=0; V=-10; x=zeros(1,3); x(3)=1; t_rec=0;
    % Time step for integration
        dt=0.01;
%⿳亠二口斤口⿱亠⿻口丿又丶 Integration with Euler method
    for t=-30:dt:5000
        if t==10; I_ext=6; end % turns external current on at t=10
        if t==400; I_ext=0; end % turns external current off at t=40
    %}\mathrm{ alpha functions used by Hodgkin-and Huxley
        Alpha(1)=(10-V)/(100*(exp((10-V)/10)-1));
        Alpha(2)=(25-V)/(10*(exp((25-V)/10)-1));
        Alpha(3)=0.07* exp(-V/20);
    % beta functions used by Hodgkin-and Huxley
        Beta(1)=0.125* exp(-V/80);
        Beta(2)=4*exp(-V/18);
        Beta(3)=1/(\operatorname{exp}((30-V)/10)+1);
    % tau_x and x_0 (x=1,2,3) are defined with alpha and beta
        tau=1./(Alpha+Beta);
        x_0=Alpha.*tau;
    % leaky integration with Euler method
        x=(1-dt./tau).*x+dt./tau.*x_0; % % X is m,n,h
    % calculate actual conductances g}\mathrm{ with given }n,m,
        gnmh(1)=g(1)*x(1)^4;
        gnmh(2)=g(2)*x(2)^ 3*x(3);
        gnmh(3)=g(3);
    % Ohm's law
        I=gnmh. *(V-E);
    q}\mathrm{ update voltage of membrane
        V=V+dt*(I_ext-sum(I));
    % record some variables for plotting after equilibration
        if t>=0;
            t_rec=t_rec+1;
            x plot(t_rec)=t;
            y_plot(t_rec)=V;
        end
```


Refractory period

- waiting for inactivation of sodium channels about 1 ms
- absolute refractory period limiting firing rate to 1000 Hz
- hyperpolarizing activity further limits the neuron's rate
- relative refractory period
- brainstem neurons 600 Hz , cortical neurons 3 Hz

Propagation of action potentials

- action potentials=spikes travel about $10 \mathrm{~m} / \mathrm{s}$.
- non-loss signal transfer - SLOW
- myelin = FAST lossy signal transfer in axon
- Ranvier nodes = AP regeneration
- myelination happens after second year of age
- Alzheimer deased - DESmyelination!

NON-LOSS transfer

$1 \mathrm{Na}^{+}$channels locally open in response to stimulus, generating an action potential here

2. Some depolarizing current passively flows down axon
Na^{+}channel K^{+}channel $\uparrow \quad$ Membrane rand

Point C

LOSSY transfer

$t=2$

Stimulation of neuron

HH - simplification: Hugh Wilson model for neocortical neurons

- $h=1-n$
- $\tau_{m} \approx m_{0}(V)$
- $h=1$ no inactivation of the fast Na^{+}channel combining leakage and Na channel, only for cortical neurons
- R describes recovery of membrane potential
- 2 differential equations

$$
\begin{aligned}
C \frac{d V}{d t} & =-g_{K} R\left(V-E_{K}\right)-g_{N a}(V)(V-E N a)+l_{\text {ext }}(t) \\
\tau_{R} \frac{d R}{d t} & =-\left[R-R_{0}(V)\right]
\end{aligned}
$$

Wilson model

- more realistic mammalian neocortical neurons
- two more channels types \rightarrow more diverse firing
- cation C_{a}^{2+} described by gating variable T
- slow hyperpolarizing current Ca^{2+}-mediated K^{+}described by gating variable H

$$
\begin{aligned}
C \frac{d V}{d t} & =-g_{N a}\left(V-E_{N a}\right)-g_{K} R\left(V-E_{K}\right)-g_{T}\left(V-E_{T}\right)-g_{H} H\left(V-E_{H}\right. \\
\tau_{R} \frac{d R}{d t} & =-\left[R-R_{0}(V)\right] \\
\tau_{T} \frac{d T}{d t} & =-\left[T-T_{0}(V)\right] \\
\tau_{H} \frac{d H}{d t} & =-[H-3 T(V)] \\
g_{N a}(V) & =17.8+0.476 V+33.8 V^{2} \\
R_{0}(V) & =1.24+3.7 V+3.2 V^{2} \\
T_{0}(V) & =4.205+11.6 V+8 V^{2}
\end{aligned}
$$

Wilson model:results

- RS: regular spiking neuron
- FS: fast spiking neuron
- CS: continously spiking neuron
- IB: bursting neuron

B. Regular spiking neuron

C. Bursting neuron

Matlab implementation

```
%% Integration of Wilson model with the Euler method
    clear; clf;
%% Parameters of the model: 1=K,R 2=Ca,T 3=KCa,H 4=Na
    g(1)=26; g(2)=2.25; g(3)=9.5;g(4)=1;
    E(1)=-.95; E(2)=1.20; E(3)=E(1); E(4)=.50;
%% Initial values
    dt=.01; I_ext=0; v=-1; x=zeros(1,4);
    tau(1)=dt./4.2; tau(2)=dt./14; tau(3)=dt./45; tau(4)=1;
%% Integration
    t_rec=0;
    for t=-100:dt:200
        switch t;
            case 0; I_ext=1;
        end
    x0(1)=1.24 + 3.7*V + 3.2*V^2;
    x0(2)=4.205 + 11.6*V + 8 *V^2;
    x0(3)=3*x(2);
    x0(4)=17.8 + 47.6*V +33.8*V^2;
    x=x-tau.*(x-x0); %rem x(4)=x0(4) because tau(4)=1
    I=g.**.*(V-E);
    V=V+dt*(I_ext-sum(I));
    if t>=0;
            t_rec=t_rec+1;
            x_plot(t_rec)=t;
            y_plot(t_rec)=V;
        end
    end % time loop
%% Plotting reults
    plot(x_plot,100*y_plot); xlabel('Time'); ylabel('Membrane potential');
```


Physiology versus Neurons Models

Rall (1964)

Histological Vs. Schmetic Neurons

Physiology versus Neurons Models

Understand experimental synaptic potentials recorded at the soma

1. Most of the input current flows into the dendrites (not directly to soma)
2. Dendrites are non-isopotential electrical devices
(i) voltage attenuates from synapse to soma;
(ii) it takes time (delay) for the PSP to reach the soma;
(iii) somatic EPSP/IPSP shape is expected to change with synaptic location

Dendrit Cable Theory

Rall Cable Theory for Dendrites

Understanding (mathematically) the impact of (remote) dendritic synapses (the input) on the soma/axon (output) region

Wilfrid Rall

Cylindric model

A. Physiologically \& morphologically caharacterized neuron

Voltage attenuation
Synaptic potentials attenuate from the synapse origin towards other regions of the dendrites

Axial and membrane current

synapse

Passive cable equations

$$
\frac{r_{m}}{r_{i}} \div \frac{{ }^{2} V(x, t)}{x^{2}} \quad r_{m} c_{m} \frac{V(x, t)}{t} \quad V(x, t)=0
$$

$$
\frac{{ }^{2} V}{X^{2}}=\frac{V}{T}+V(X, T) \quad \begin{aligned}
& \mathrm{x}=\mathrm{x} / \lambda \\
& \mathrm{T}=\mathrm{t} / \tau_{\mathrm{m}}
\end{aligned}
$$

Compartmental models

A. Chain of compartments C. Compartmental reconstruction

B. Branching compartments

Cable theory

- discretization - compartments like branching $j, j+1, j+1$

$$
\begin{aligned}
\lambda^{2} \frac{\partial V_{m}(x, t)}{\partial x^{2}}-\tau_{m} \frac{\partial V_{m}(x, t)}{\partial t}-V_{m}(x, t)+V_{0} & =R_{m} l_{\text {inj }}(x, t) \\
\lambda & =\sqrt{\frac{d R_{m}}{2 R_{i}}} \\
\tau_{m} & =R_{m} C_{m} \\
V_{m} & =V_{0} e-\frac{x}{\lambda} \\
\frac{\partial V_{m}(x, t)}{\partial x^{2}} \leftarrow \frac{V_{j+1}-2 V_{j}(t)+V_{j-1}(t)}{\left(x_{j-1}-x_{j}\right)^{2}} &
\end{aligned}
$$

Steady state condition

("Sealed-end" boundary) dV/dX $=0$; $x=L$

$$
\frac{{ }^{2} V}{X^{2}}=\frac{V}{\pi}+V(X, T)
$$

Simulating voltage attenuation

Rall and Rinzel, 1973

Simulators

Further Readings

Mark F. Bear, Barry W. Connors, and Michael A. Paradiso (2006), Neuroscience: exploring the brain, Lippincott Williams \& Wilkins , 3rd edition.
Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell (2000), Principles of neural science, McGraw-Hill, 4th edition
Gordon M. Shepherd (1994), Neurobiology, Oxford University Press, 3rd edition.
Christof Koch (1999), Biophysics of computation; information processing in single neurons, Oxford University Press
Christof Koch and Idan Segev (eds.) (1998), Methods in neural modelling, MIT Press, 2nd edition.
C. T. Tuckwell (1988), Introduction to theoretical neurobiology, Cambridge University Press.
Hugh R. Wilson (1999) Spikes, decisions and actions: dynamical foundations of neuroscience, Oxford University Press. See also his paper in J. Theor. Biol. 200: 375-88, 1999.

