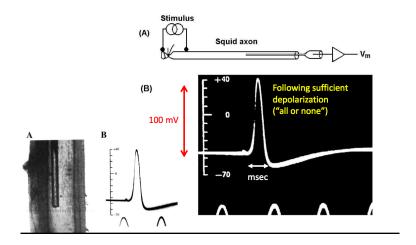
Neuroinformatics, Prague

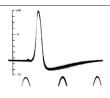
March 27, 2024

Hodkin and Huxley models

First direct (intracellular) recorded action-potential (spike) - 1939!!



Very nice theory



Sir Andrew Fielding Huxley

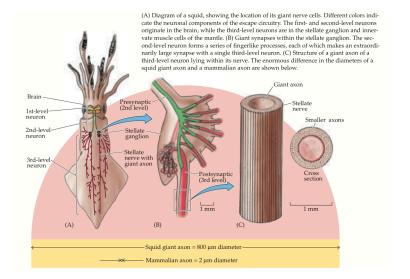
$$I = C_{m} \stackrel{\bullet}{V} + g_{Na} h m^{3} (V - V_{Na}) + g_{K} n^{4} (V - V_{K}) + G_{L} (V - V_{L})$$
 (1)

$$\frac{d}{dt} m = \alpha_m (V) (1 - m) - \beta_m (V) m \qquad (2)$$

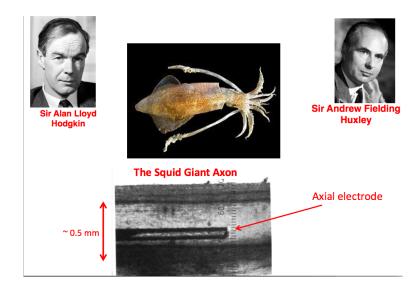
$$\frac{d}{dt} n = \alpha_n (V) (1 - n) - \beta_n (V) n$$
 (3)

$$\frac{d}{dt} h = \alpha_h (V) (1 - h) - \beta_h (V) h \qquad (4)$$

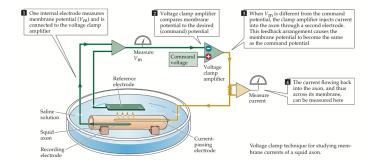
Giant Nerve Cells of Squid



Hodkin and Huxley experiment NOBEL 1963

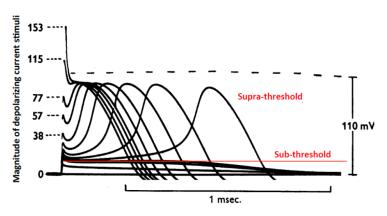


Voltage Clamp Method



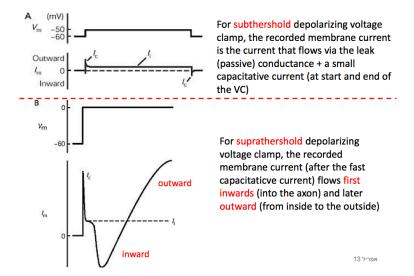
All or None

The "all or none" nature of the spike

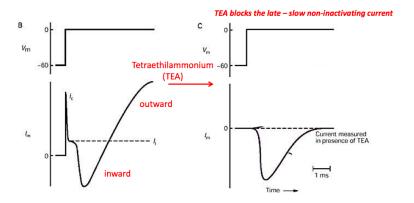


Hodgkin, Huxley and Katz, 1952

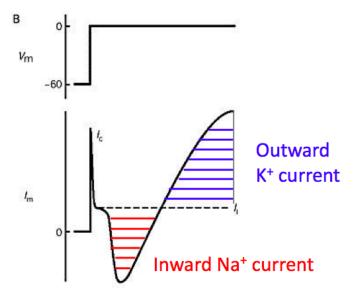
Membrane current in response to voltage clamp (VC)



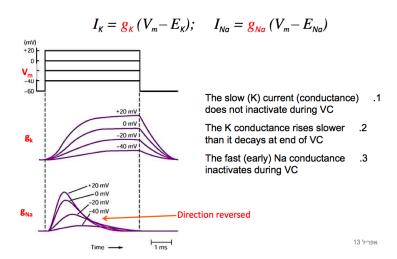
Separating voltage-dependent active (excitable) currents Using pharmacological agents 2 different currents flow via the membrane during the spike



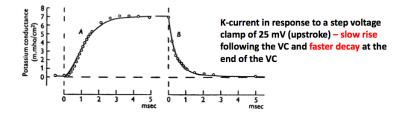
Changing ion concentration at bath with giant axon showed that early current is carried by Na+ ions and late one by K+ ions



Ion currents (K+ and Na+) for various depolarizing voltage clamp (and extracting respective ion conductances)



Fitting an equation for the K current (K-conductance) during/following VC



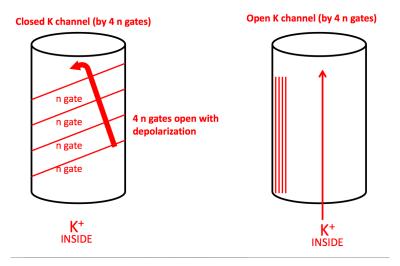
Mathematically – the rising phase of K-current can be described as a power of 4 (namely as $(1 - \exp(-t))^4$ and the decay as $\exp(-4t)$

$$g_{\mathbf{K}} = \bar{g}_{\mathbf{K}} n^4$$

n represents the proportion of K-ion channels in the open state

"These equations may be given a physical basis if we assume that potassium ions can only cross the membrane when four similar particles occupy a certain region of the 2membrane..." Hodgkin AL, Huxley AF. 1952 J Physiol (Lond) 117:500–544

Graphical interpretation of H&H model for the K channel



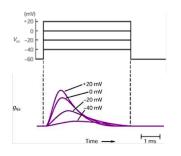
The activation function, n, and the rate functions α_n and β_n

$$g_{\mathbf{K}} = \bar{g}_{\mathbf{K}} n^{4},$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_{n} (1 - n) - \beta_{n} n,$$

where \bar{g}_{K} is a constant with the dimensions of conductance/cm², α_{n} and β_{n} are rate constants which vary with voltage but not with time and have dimensions of [time]⁻¹, n is a dimensionless variable which can vary between 0 and 1.

Similar procedure is used to extract the activation (m) and inactivation (h) parameters for the Na current

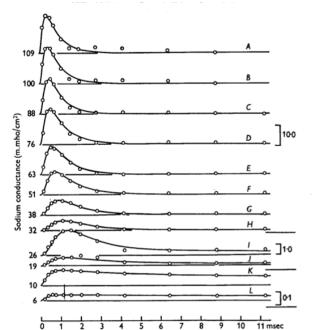


$$g_{Na} = m^3 h \bar{g}_{Na},$$

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m,$$

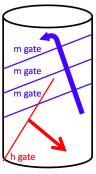
$$\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h,$$

Fitting Na current for different VC depolarizing values



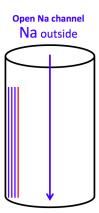
Graphical interpretation of H&H model for the Na channel

Na channel (by 3 activated m gates and 1 inactivated h gate)



3 (fast) m (activated) gates open with depolarization

1 (slow) h (inactivated) gate closes with depolarization



Overlay of the action potential (voltage) and underlying Na and K conductances

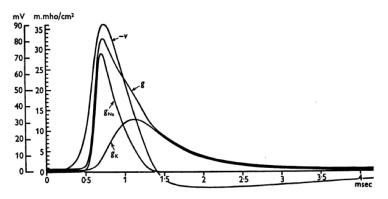


Fig. 17. Numerical solution of eqn. (31) showing components of membrane conductance (q) during propagated action potential (-V). Details of the analysis are as in Fig. 15.

Hodgkin-Huxley model

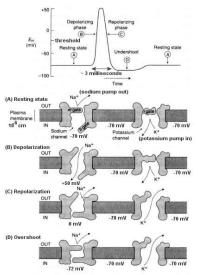
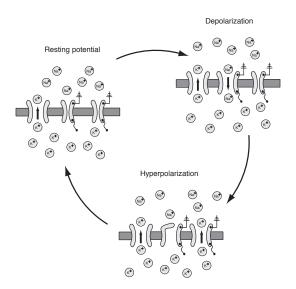


Figure: Typical form of an action potential; redrawn from an oscilloscope picture from Hodgkin and Huxley (1939).

The minimal mechanisms

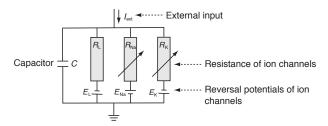


HH stucture

- $ightharpoonup I_{ion} = \hat{g_{ion}}(V E_{ion})$
- ▶ voltage and time dependent variables n(V, t), m(V, t), h(V, t)

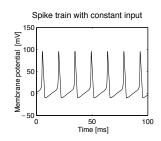
$$\hat{g_K}(V,t) = g_K n^4$$

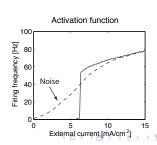
 $\hat{g_{Na}}(V,t) = g_{Na} m^3 h$



Hodgkin-Huxley equations and simulation

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= -g_{K}n^{4}(V - E_{K}) - g_{Na}m^{3}h(V - E_{Na}) - g_{L}(V - E_{L}) + I_{ext}(t) \\ \tau_{n}(V)\frac{\mathrm{d}n}{\mathrm{d}t} &= -[n - n_{0}(V)] \\ \tau_{m}(V)\frac{\mathrm{d}m}{\mathrm{d}t} &= -[m - m_{0}(V)] \\ \tau_{h}(V)\frac{\mathrm{d}h}{\mathrm{d}t} &= -[h - h_{0}(V)] \\ \frac{\mathrm{d}x}{\mathrm{d}t} &= -\frac{1}{\tau_{x}(V)}[x - x_{0}(V)] \to x(t + \Delta t) = (1 - \frac{\Delta t}{\tau_{x}})x(t) + \frac{\Delta t}{\tau_{x}}x_{0} \end{split}$$





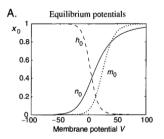
Ion channels resistance

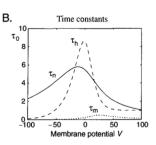
$$x(0) = \frac{\alpha}{\alpha + \beta}, t_{x} = \alpha\beta, x \in \{n, m, h\}$$

$$\alpha_{n} = \frac{10 - V}{100(e^{\frac{10 - V}{100} - 1)}}, \beta_{n} = 0.125e^{-\frac{V}{80}}$$

$$\alpha_{m} = \frac{25 - V}{10(e^{\frac{25 - V}{100} - 1)}}, \beta_{m} = 4e^{-\frac{V}{18}}$$

$$\alpha_{h} = 0.07e^{\frac{V}{20}}, \beta_{h} = \frac{1}{e^{\frac{30 - V}{10}} + 1}$$





Matlab implementation

```
%% Integration of Hodgkin--Huxley equations with Euler method
  clear: figure:%clf:
%% Setting parameters
 % Maximal conductances (in units of mS/cm^2): 1=K, 2=Na, 3=R
 g(1)=36; g(2)=120; g(3)=0.3;
 % Battery voltage ( in mV); 1=n, 2=m, 3=h
 E(1)=-12; E(2)=115; E(3)=10.613;
 % Initialization of some variables
  I ext=0; V=-10; x=zeros(1,3); x(3)=1; t rec=0;
 % Time step for integration
   dt=0.01:
%% Integration with Euler method
 for t=-30:dt:500
     if t==10: I ext=6: end % turns external current on at t=10
     if t==400; I ext=0; end % turns external current off at t=40
  % alpha functions used by Hodgkin-and Huxley
    Alpha(1)=(10-V)/(100*(\exp((10-V)/10)-1));
    Alpha(2)=(25-V)/(10*(exp((25-V)/10)-1));
    Alpha(3)=0.07*\exp(-V/20);
  % beta functions used by Hodgkin-and Huxley
     Beta(1)=0.125*exp(-V/80);
    Beta(2)=4*exp(-V/18):
     Beta(3)=1/(exp((30-V)/10)+1):
  % tau x and x 0 (x=1,2,3) are defined with alpha and beta
     tau=1./(Alpha+Beta);
    x 0=Alpha.*tau;
  % leaky integration with Euler method
    x=(1-dt./tau).*x+dt./tau.*x 0;
                                           % x is m,n,h
  % calculate actual conductances g with given n, m, h
    gnmh(1)=g(1)*x(1)^4;
    gnmh(2)=g(2)*x(2)^3*x(3);
    gnmh(3)=g(3);
  % Ohm's law
     I=gnmh.*(V-E);
  % update voltage of membrane
    V=V+dt*(I ext-sum(I));
 % record some variables for plotting after equilibration
     if t>=0;
          t rec=t rec+1;
          x plot(t rec)=t;
          y plot(t rec)=V;
```

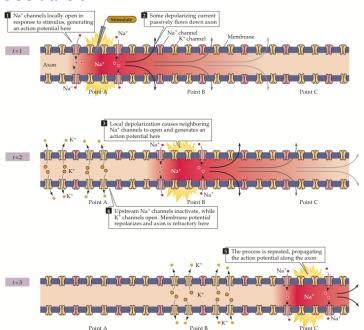
Refractory period

- waiting for inactivation of sodium channels about 1 ms
- absolute refractory period limiting firing rate to 1000Hz
- hyperpolarizing activity further limits the neuron's rate
- relative refractory period
- brainstem neurons 600Hz, cortical neurons 3Hz

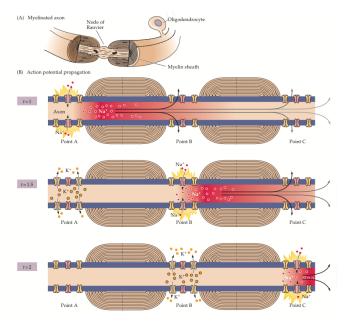
Propagation of action potentials

- action potentials=spikes travel about 10 m/s.
- non-loss signal transfer SLOW
- myelin = FAST lossy signal transfer in axon
- ► Ranvier nodes = AP regeneration
- myelination happens after second year of age
- Alzheimer deased DESmyelination!

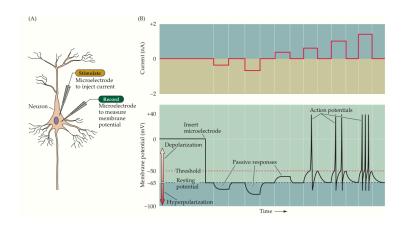
NON-LOSS transfer



LOSSY transfer



Stimulation of neuron



HH - simplification: Hugh Wilson model for neocortical neurons

- ▶ h = 1 n
- $ightharpoonup au_m \approx m_0(V)$
- ▶ h = 1 no inactivation of the fast Na^+ channel combining leakage and Na channel, only for cortical neurons
- R describes recovery of membrane potential
- 2 differential equations

$$C\frac{dV}{dt} = -g_K R(V - E_K) - g_{Na}(V)(V - ENa) + I_{ext}(t)$$

$$\tau_R \frac{dR}{dt} = -[R - R_0(V)]$$

Wilson model

- more realistic mammalian neocortical neurons
- lacktriangleright two more channels types ightarrow more diverse firing
- ▶ cation C_a^{2+} described by gating variable T
- ▶ slow hyperpolarizing current Ca²⁺-mediated K⁺ described by gating variable H

$$C\frac{dV}{dt} = -g_{Na}(V - E_{Na}) - g_{K}R(V - E_{K}) - g_{T}(V - E_{T}) - g_{H}H(V - E_{H} - E_{H})$$

$$\tau_{R}\frac{dR}{dt} = -[R - R_{0}(V)]$$

$$\tau_{T}\frac{dT}{dt} = -[T - T_{0}(V)]$$

$$\tau_{H}\frac{dH}{dt} = -[H - 3T(V)]$$

$$g_{Na}(V) = 17.8 + 0.476V + 33.8V^{2}$$

$$R_{0}(V) = 1.24 + 3.7V + 3.2V^{2}$$

$$T_{0}(V) = 4.205 + 11.6V + 8V^{2}$$

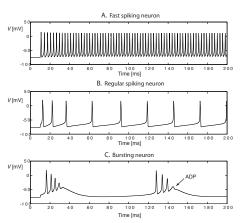
Wilson model:results

RS: regular spiking neuron

FS: fast spiking neuron

CS: continously spiking neuron

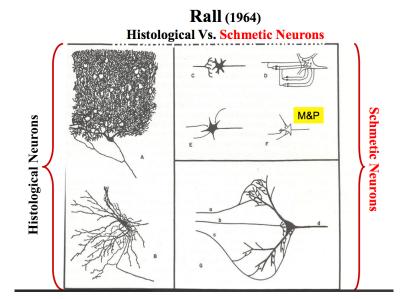
► IB: bursting neuron



Matlab implementation

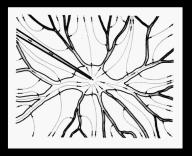
```
%% Integration of Wilson model with the Euler method
clear; clf;
%% Parameters of the model: 1=K,R 2=Ca,T 3=KCa,H 4=Na
 q(1)=26; q(2)=2.25; q(3)=9.5; q(4)=1;
 E(1)=-.95; E(2)=1.20; E(3)=E(1); E(4)=.50;
%% Initial values
dt=.01; I_ext=0; V=-1; x=zeros(1,4);
 tqu(1)=dt./4.2: tqu(2)=dt./14: tqu(3)=dt./45: tqu(4)=1:
%% Integration
t_rec=0;
 for t=-100:dt:200
   switch t;
      case 0; I_ext=1;
   end
   \times 0(1)=1.24 + 3.7*V + 3.2*V^2;
  \times 0(2) = 4.205 + 11.6*V + 8 *V^2:
  x0(3)=3*x(2);
   \times 0(4)=17.8 + 47.6*V +33.8*V^2;
  x=x-tau.*(x-x0); %rem x(4)=x0(4) because tau(4)=1
  I=a.*x.*(V-E);
  V=V+dt*(I_ext-sum(I));
   if t>=0:
      t rec=t rec+1:
      x_plot(t_rec)=t;
       y_plot(t_rec)=V;
   end
 end % time loop
%% Plotting reults
 plot(x_plot,100*v_plot); xlabel('Time'); ylabel('Membrane potential');
```

Physiology versus Neurons Models



Physiology versus Neurons Models

Understand experimental synaptic potentials recorded at the soma



- 1. Most of the input current flows into the dendrites (not directly to soma)
- 2. Dendrites are non-isopotential electrical devices
 - (i) voltage attenuates from synapse to soma;
 - (ii) it takes time (delay) for the PSP to reach the soma;
- (iii) somatic EPSP/IPSP shape is expected to change with synaptic location

Dendrit Cable Theory

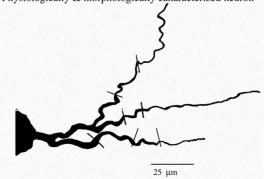
Rall Cable Theory for Dendrites

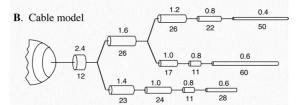
Understanding (mathematically) the impact of (remote) dendritic synapses (the input) on the soma/axon (output) region

Wilfrid Rall

Cylindric model

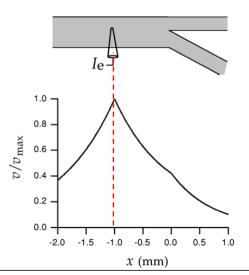
A. Physiologically & morphologically caharacterized neuron



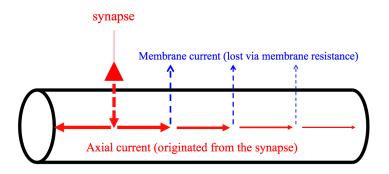


Voltage attenuation

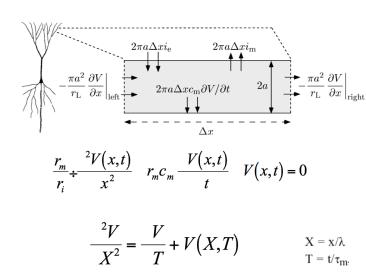
Synaptic potentials attenuate from the synapse origin towards other regions of the dendrites



Axial and membrane current



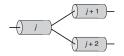
Passive cable equations



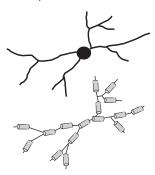
Compartmental models

A. Chain of compartments

B. Branching compartments



C. Compartmental reconstruction



Cable theory

ightharpoonup discretization - compartments like branching j, j+1, j+1

$$\lambda^{2} \frac{\partial V_{m}(x,t)}{\partial x^{2}} - \tau_{m} \frac{\partial V_{m}(x,t)}{\partial t} - V_{m}(x,t) + V_{0} = R_{m} I_{inj}(x,t)$$

$$\lambda = \sqrt{\frac{dR_{m}}{2R_{i}}}$$

$$\tau_{m} = R_{m} C_{m}$$

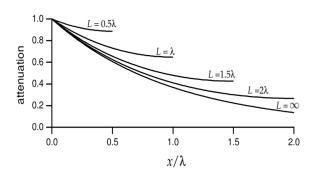
$$V_{m} = V_{0} e - \frac{x}{\lambda}$$

$$\frac{\partial V_{m}(x,t)}{\partial x^{2}} \leftarrow \frac{V_{j+1} - 2V_{j}(t) + V_{j-1}(t)}{(x_{j-1} - x_{j})^{2}}$$

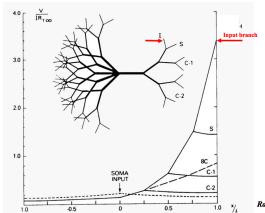
Steady state condition

("Sealed-end" boundary) dV/dX = 0; x=L

$$\frac{{}^{2}V}{X^{2}} = \frac{V}{T} + V(X,T)$$

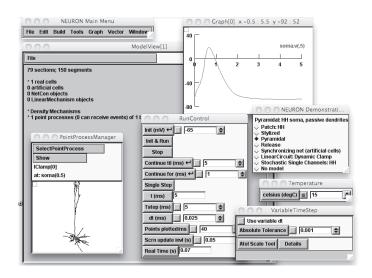


Simulating voltage attenuation



Rall and Rinzel, 1973

Simulators



Further Readings

- Mark F. Bear, Barry W. Connors, and Michael A. Paradiso (2006), Neuroscience: exploring the brain, Lippincott Williams & Wilkins, 3rd edition.
- Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell (2000), **Principles of neural science**, McGraw-Hill, 4th edition
- Gordon M. Shepherd (1994), **Neurobiology**, Oxford University Press, 3rd edition.
- Christof Koch (1999), **Biophysics of computation**; **information processing in single neurons**, Oxford University Press
- Christof Koch and Idan Segev (eds.) (1998), **Methods in neural** modelling, MIT Press, 2nd edition.
- C. T. Tuckwell (1988), Introduction to theoretical neurobiology, Cambridge University Press.
- Hugh R. Wilson (1999) **Spikes, decisions and actions: dynamical foundations of neuroscience**, Oxford University Press. See also his paper in J. Theor. Biol. 200: 375–88, 1999.