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Tomáš Svoboda and Petr Poš́ık
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Supervised learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity
we want to predict) are known for all training examples.

Classification :

I Nominal dependent variable

I Examples: predict spam/ham based on email contents, predict 0/1/. . . /9 based on the
image of a number, etc.

Regression :

I Quantitative/continuous dependent variable

I Examples: predict temperature in Prague based on date and time, predict height of a
person based on weight and gender, etc.
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Notes
There are more kinds od machine learning:

� Self-supervised

� Unsupervised

� Weakly supervised

� . . .

but this lecture will be about fully supervised learning



Learning: minimization of empirical risk

I Given the set of parametrized strategies δ : X → D, penalty/loss function ` : S × D → R,
the quality of each strategy δ could be described by the risk

R(δ) =
∑

s∈S

∑

x∈X
P(x , s)`(s, δ(x)),

but P is unknown.

I We thus use the empirical risk Remp, i.e., average loss on training (multi)set

T = {(x (i), s(i))}Ni=1, x ∈ X , s ∈ S :

Remp(δ) =
1

N

∑

(x(i),s(i))∈T
`(s(i), δ(x (i))).

I Optimal strategy δ∗ = argminδ Remp(δ).

I We assume data T are from distribution P(x , s).
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Notes
Examples of some methods: Perceptron, neural networks, classification trees, . . .

It is essentially about statistic, out-of distribution data are always problematic. We can help somewhat to make

the methods a bit more robust - to generalize more. Remember regularization trick we learned last week (Laplacian

smoothing)?
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Quiz: Line fitting
We would like to fit a line of the form ŷ = w0 + w1x to the following data:

0 1 2 3 4

x

0

1

2

3

4

y
The parameters of a line with the best fit will likely be

A w0 = −1, w1 = −2

B w0 = −1
2 , w1 = 1

C w0 = 3, w1 = −1
2

D w0 = 2, w1 = 1
3
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Linear regression: Illustration

-5

1

0

5

0

1-1 0.50-0.5-1

Given a dataset of input vectors ~x (i) and the respective values of output variable y (i) . . .

. . . we would like to find a linear model of this dataset . . .

. . . minimizing the errors between target values and the model predictions.
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Notes

For instance, think about fitting a plane to Lidar automotive data.



Regression

Reformulating Linear algebra in a machine learning language.

Regression task is a supervised learning task, i.e.

I a training (multi)set T = {(~x (1), y (1)), . . . , (~x (N), y (N))} is available, where

I the labels y (i) are quantitative, often continuous (as opposed to classification tasks where
y (i) are nominal).

I Its purpose is to model the relationship between independent variables (inputs)
~x = (x1, . . . , xD) and the dependent variable (output) y .
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Linear Regression

Linear regression uses a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

ŷ = δ(~x) = w0 + w1x1 + . . .+ wDxD = w0 + 〈~w ,~x〉 = w0 + ~w>~x ,

where

I ŷ is the model prediction (estimate of the true value y),

I δ(~x) is the decision strategy (a linear model in this case),

I w0, . . . ,wD are the coefficients of the linear function (weights), w0 is the bias,

I 〈~w ,~x〉 is a dot product of vectors ~w and ~x (scalar product),

I which can be also computed as a matrix product ~w>~x if ~w and ~x are column vectors, i.e.
matrices of size [D × 1].
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Notation remarks
Homogeneous coordinates :

I If we add “1” as the first element of ~x so that ~x = (1, x1, . . . , xD), and

I if we include the bias term w0 in the vector ~w so that ~w = (w0,w1, . . . ,wD), then

ŷ = δ(~x) = w0 · 1 + w1x1 + . . .+ wDxD = 〈~w ,~x〉 = ~w>~x .

Matrix notation: If we organize the data T into matrices X and Y, such that

X =

(
1 . . . 1

~x (1) . . . ~x (N)

)
and Y =

(
y (1), . . . , y (N)

)
,

then we can write a batch computation of predictions for all data in X as

Ŷ =
(
δ(~x (1)), . . . , δ(~x (N))

)
=
(
~w>~x (1), . . . , ~w>~x (N)

)
= ~w>X.
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Notes

What are dimensions of ~̂y , ~w ,X?



Two operation phases of ML models
Any ML model has 2 operation phases:

1. learning (training, fitting) of δ and

2. application of δ (testing, making predictions).

The strategy δ can be viewed as a function of 2 variables: δ(~x , ~w).

Model application (Inference): Given ~w , we can manipulate ~x to make predictions:

ŷ = δ(~x , ~w) = δ~w (~x).

Model learning: Given T , we can tune the model parameters ~w to fit the model to the data:

~w∗ = argmin
~w

Remp(δ~w ) = argmin
~w

J(~w , T ),

where usually J(~w , T ) =
1

|T |
∑

(~x ,y)∈T
`(y , δ(~x , ~w)). How to train the model?
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Notes

� δ(~x , ~w) represents a whole family of strategies if ~w is not fixed.

� By fixing ~w we chose a particular strategy from this family.

� Empirical risk evalautes prediction error on all data points.



Example: Simple (univariate) linear regression

Simple regression

I ~x (i) = x (i), i.e., the examples are described by a single feature (they are 1-dimensional).

I Find parameters w0,w1 of a linear model ŷ = w0 + w1x
given a training (multi)set T = {(x (i), y (i))}Ni=1.

How many lines can be fit to N linearly independent training examples?

I N = 1 (1 equation, 2 parameters) ⇒ ∞ linear functions with zero error

I N = 2 (2 equation, 2 parameters) ⇒ 1 linear function with zero error

I N ≥ 3 (> 2 equation, parameters) ⇒ no linear function with zero error
⇒ but we can fit a line which minimizes the “size” of error y − ŷ :

~w∗ = (w∗0 ,w
∗
1 ) = argmin

w0,w1

Remp(w0,w1) = argmin
w0,w1

J(w0,w1, T ).
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The least squares method

Choose such parameters ~w which minimize the mean squared error (MSE)

JMSE (~w) =
1

N

N∑

i=1

(
y (i) − ŷ (i)

)2

=
1

N

N∑

i=1

(
y (i) − δ~w (~x (i))

)2
.

x

y

0

w0
|y(1) − ŷ(1)|

|y(2) − ŷ(2)|
|y(3) − ŷ(3)|

(x(1), y(1))

(x(2), y(2))

(x(3), y(3))

ŷ = w0 + w1x

(x(1), ŷ(1))

(x(2), ŷ(2))

(x(3), ŷ(3))

1

w1

Is there a (closed-form) solution? Explicit solution:

w1 =

∑N
i=1(x (i) − x̄)(y (i) − ȳ)
∑N

i=1(x (i) − x̄)2
=

sxy
s2x

=
covariance of X and Y

variance X
w0 = ȳ − w1x̄
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Universal fitting method: minimization of cost function J
The landscape of J in the space of parameters w0 and w1 (for the data below):
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Gradually better linear models found by an optimization method (BFGS):
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Notes

Bottom images from left to right correspond to points on the polyline above.



Gradient descent algorithm

Given a function J(w0,w1) that should be minimized,

I start with a guess of w0 and w1 and

I change it, so that J(w0,w1) decreases, i.e.

I update our current guess of w0 and w1 by taking a step in the direction opposite to the
gradient:

~w ← ~w − α∇J(w0,w1), i.e.

wi ← wi − α
∂

∂wi
J(w0,w1),

where all wi s are updated simultaneously and α is a learning rate (step size).
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Gradient descent for MSE minimization

For the cost function

J(w0,w1) =
1

N

N∑

i=1

(
y (i) − δ~w (x (i))

)2
=

1

N

N∑

i=1

(
y (i) − (w0 + w1x (i))

)2
,

the gradient can be computed as

∂

∂w0
J(w0,w1) = − 2

N

N∑

i=1

(
y (i) − δ~w (x (i))

)

∂

∂w1
J(w0,w1) = − 2

N

N∑

i=1

(
y (i) − δ~w (x (i))

)
x (i)
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Multivariate linear regression
I ~x (i) = (x

(i)
1 , . . . , x

(i)
D )>, i.e. the examples are described by more than 1 feature (they are

D-dimensional).

I Find the parameters ~w = (w0, . . . ,wD)> of a linear model ŷ = ~w>~x
given the training (multi)set T = {(~x (i), y (i))}Ni=1.

Training: we would like
for each (i): y (i) = ~w>~x (i).
Or, in the matrix form: Y = ~w>X

What is the shape of X?

A (D + 1)× (D + 1)

B (D + 1)× N

C N × (D + 1)

D N × N

The model is a hyperplane
in the (D + 1)-dimensional space.
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Multivariate linear regression: learning

1. Numeric optimization of J(~w ,T ):
I Works as for simple regression, it only searches a space with more dimensions.
I Sometimes one needs to tune some parameters of the optimization algorithm to work

properly (learning rate in gradient descent, etc.).
I May be slow (many iterations needed), but works even for very large D.

2. Normal equation :

~w∗ = (XX>)−1XY>

I Method to solve for the optimal ~w∗ analytically!
I No need to choose optimization algorithm parameters. No iterations.
I Needs to compute (XX>)−1, which is O((D + 1)3). Becomes intractable for large D.
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Notes

D could by quite big! Think about pixel values in images! We, humans, are used to low dimensions - world is

3D. Machines work with D ≤ 3 and D > 3 in the same way.
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Classification

I Binary classification

I Discriminant function

I Classification as a regression problem (linear, logistic regression)

I What is the right loss function?

I Etalon classifier (meeting nearest neighbour and linear classifier)

I Acuracy vs precision

20 / 52

Notes



Quiz: Importance of training examples

Intuitively, which of the training data points should have the biggest influence on the decision
whether a new, unlabeled data point shall be red or blue?

A Those which are closest to data points with the opposite color.

B Those which are farthest from the data points of the opposite color.

C Those which are near the middle of the points with the same color.

D None. All of the data points have the same importance.
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Binary classification task

Let’s have a training dataset T = {(~x (1), y (1)), . . . , (~x (N), y (N)):

I each example described by a vector ~x = (x1, . . . , xD),

I labeled with the correct class y ∈ {+1,−1}.
The goal:

I Find the classifier (decision strategy/rule) δ
that minimizes the empirical risk Remp(δ).
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Discriminant function

Discriminant function f (~x):

I It assigns a real number to each observation ~x . It
may be linear or non-linear.

I For 2 classes, 1 discriminant function is enough.

I It is used to create a decision rule (which then
assigns a class to an observation):

ŷ = δ(~x) =

{
+1 iff f (~x) > 0, and
−1 iff f (~x) < 0,

i.e., ŷ = δ(~x) = sign (f (~x)).

0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

1.5

x

f(
x
)

I Decision boundary: {~x |f (~x) = 0}
I Linear classification: the decision boundaries must be linear.

I Learning then amounts to finding a suitable function f (or its parameters).
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Notes

For a linear classifier, linearity is required for the decision boundary, not for the discriminant function itself!



Example: Female/Male classification based on height

Training (multi)set T = {(x (i), s(i))}Ni=1, x (i) ∈ X , s(i) ∈ S = {F ,M}

i 1 2 3 4 5 6 7 8 9 10 11 12

Height x (i) 115 125 130 140 150 155 165 170 175 180 185 190

Gender s(i) F F F F F F F M M M M M

Gender y (i) (+1/-1) -1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1

60 80 100 120 140 160 180 200 220
x = height [cm]

-0.02

0

0.02

0.04

0.06

0.08

0.1
Female/Male classification

Female
Male
measured sample

A new point to clasify: xQ = 163

Which class does xQ belong to? δ(xQ) =?
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Notes

Run onedim linclass learning



Example: Linear discr. function, LSQ fit

60 80 100 120 140 160 180 200 220
x = height [cm]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Female/Male classification, linear classifiers

Female
Male
f(x) = w1x + w0
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Example: Corresponding decision strategy

60 80 100 120 140 160 180 200 220
x = height [cm]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Female/Male classification, linear classifiers

Female
Male
f(x) = w1x + w0

/(x) = sign(f(x))

26 / 52

Notes



Learning linear classifier: naive approach

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Let’s have a dataset of input vectors ~x (i) and their classes s(i).

Let’s encode the classes corresponding y (i) = −1 or y (i) = 1.

Let’s fit a linear discriminant function by minimizing MSE as in regression.

The contour line y = 0 . . . -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

. . . then forms a linear decision boundary in the original 2D space.
But is such a classifier good in general?
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Can we do better than fitting a linear function?
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Fitting a better function: Logistic regression

-1 -0.5 0 0.5 1
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-0.5

0

0.5

1

Let’s have a dataset of input vectors ~x (i) and their classes s(i).

Let’s encode the classes corresponding y (i) = 0 or y (i) = 1.

Let’s fit a sigmoidal discriminant function by minimizing MSE as in regression.

The contour line y = 0.5 . . . -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

. . . then forms a linear decision boundary in the original 2D space.
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Logistic regression model
Logistic regression uses a discriminant function which is a nonlinear transformation of the

values of a linear function

f~w (~x) = g(~w>~x) =
1

1 + e−~w
>~x
,

where g(z) =
1

1 + e−z
is the sigmoid function (a.k.a logistic function).

Interpretation of the model:

I f~w (~x) can be interpretted as an estimate of the probability that ~x belongs to class 1.

I The decision boundary is defined using a level-set/countour {~x : f~w (~x) = 0.5}.
I Logistic regression is a classification model!

I The discriminant function f~w (~x) itself is not linear anymore; but the decision boundary is
still linear!

I Thanks to the sigmoidal transformation, logistic regression is much less influenced by
examples that are far from the decision boundary!

30 / 52

Notes

Try to draw the course of the function by hand.



LSQ fit of a sigmoid

60 80 100 120 140 160 180 200 220
x = height [cm]

-0.5

0

0.5

1

1.5
Sigmoid fit to the data

Female
Male
f(x) = 1

1+e!(w1x+w0)
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Comparing Linear and Sigmoid LSQ fit

60 80 100 120 140 160 180 200 220
x = height [cm]
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2
Comparing Linear LSQ with Sigmoid LSQ

Female
Male
f(x) = w1x + w0

/(x) = sign(f(x))

fs(x) = 2
1

1
1+e!(w1x+w0)

2
! 1

/(x) = sign(fs(x))
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What loss function ` is suitable?

To train the logistic regression model, one can minimize the JMSE criterion:

I a non-convex, multimodal landscape which is hard to optimize.

Logistic regression uses a loss function called cross-entropy :

J(~w , T ) =
1

N

N∑

i=1

`(y (i), f~w (~x (i))), where

`(y , ŷ) =

{
− log(ŷ) if y = 1

− log(1− ŷ) if y = 0
,

which can be rewritten in a single expression as

`(y , ŷ) = −y · log(ŷ)−(1− y) · log(1− ŷ).

I Easier to optimize for numerical solvers.

0 0.5 1

ŷ

0.5

1

1.5

2

2.5

3

3.5

co
st
(y
,
ŷ
)

− log(ŷ)
− log(1− ŷ)
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MSE vs cross entropy loss
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Various loss functions
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x = height [cm]

-0.5

0

0.5

1

1.5
Sigmoid fit to the data

Female
Male
f(x) = 1

1+e!(w1x+w0)

f(x) by cross-entropy loss

Sigmoidal f (x) can be also interpreted as P(s = Male | x): direct learning of a
discriminative model .

Cross-entropy loss strongly penalizes hard errors, complete mismatches.
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Alternative idea: Etalons

Represent each class by a single example called etalon ! (Or by a very small number of
etalons.)

60 80 100 120 140 160 180 200

height [cm]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Female/Male classification

Female
Male
Female-etalon
Male-etalon

eF = ave({x (i) : s(i) = F}) = 140
eM = ave({x (i) : s(i) = M}) = 180

xQ = 163
Based on etalons: dQ = δ(xQ) = ?

A dQ = F

B dQ = M

C Both classes equally likely

D Cannot provide any decision

Classify as dQ = argmins∈S dist(xQ , es)

What type of function is dist(xQ , es)?
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Based on etalons: dQ = M



Etalon classifier is a Linear classifier!

Assuming dist(x , e) = (x − e)2, then

argmin
s∈S

dist(x , es) = argmin
s∈S

(x − es)2 = argmin
s∈S

( x2
︸︷︷︸
const.

−2esx + e2s ) =

= argmin
s∈S

(−2esx + e2s ) = argmax
s∈S

( esx − 1

2
e2s

︸ ︷︷ ︸
linear function of x

)

Multiclass classification: each class s has a linear discriminant function fs(x) = asx + bs and

δ(x) = argmax
s∈S

fs(x)

Binary classification: a single linear discriminant function g(x) is sufficient and

δ(x) =

{
s1 if g(x) ≥ 0,
s2 if g(x) < 0.
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Example: F/M – Linear discriminant functions based on etalons
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#104 Female/Male classification
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#104 Female/Male classification

Female
Male
Female-etalon
Male-etalon
Female-discr-func
Male-discr-func
Etalon-sep-func

Discriminant functions for 2 classes:

fF (x) = aF x + bF =

= eF x − 1

2
e2F = 140x − 9800

fM(x) = aMx + bM =

= eMx − 1

2
e2M = 180x − 16200

A single discr. func. separating 2 classes:

g(x) = fF (x)− fM(x) =

= −40x + 6400
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Example: F/M – Can we do better etalons?
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#104 Female/Male classification
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Female-etalon
Male-etalon
Female-discr-func
Male-discr-func
Etalon-sep-func
Perceptron-sep-func

Linear classifiers based on average etalons
make some errors.

A perceptron algorithm may be used to find
a zero-error classifier (if one exists).
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Etalons in multidimensional spaces

−1.5 −1 −0.5 0 0.5 1 1.5
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Pentagon data
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minimum distance from etalons

From T = {(~x (i), s(i))}, extract one etalon ~es for each class s ∈ S.
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Etalons in multidimensional spaces (cont.)

Extract etalon for each class s:

~es = ave({~x (i) : s(i) = s})

Decision strategy

δ(~x) = argmin
s∈S

‖~x − ~es‖2

The corresponding decision boundaries halve the
distances between pairs of etalons.
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Digit recognition – average-based etalons

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

Figures from [7].
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Keep in mind, that using the average to compute the etalon is a kind of handcrafted heuristics. In general, it

does not optimize (minimize) any loss function.
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Notes



Bayesian classification vs Discriminant functions

Decision based on discriminant function:

δ(~x) = argmax
s∈S

f (~x , s)

Decision based on posterior prob. (Bayes):

δ(~x) = argmax
s∈S

P(s|~x) = argmax
s∈S

P(~x | s)P(s)

P(~x)

If we choose

f (~x , s) = P(~x | s)P(s),

the two methods coincide.
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

x1

x 2

Pentagon data
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Notes
Normal distribution for general dimensionality D:

N (~x |~µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp{−1

2
(~x − ~µ)>Σ−1(~x − ~µ)}

Discriminant function:

s∗ = argmax
s∈S

f (~x , s) = argmax
s∈S

P(s)N (~x |~µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp{−1

2
(~x − ~µ)>Σ−1(~x − ~µ)}

How about learning f (~x , s) directly without explicit modeling of underlying probabilities?

What about f (~x , s) = ~w>s ~x + ws0



Etalon classifier: generalization to higher dimensions

δ(~x) = argmin
s∈S

‖~x − ~es‖2 = argmin
s∈S

(~x>~x − 2~e>s ~x + ~e>s ~es) =

= argmin
s∈S

(
~x>~x − 2

(
~e>s ~x −

1

2
(~e>s ~es)

))
=

= argmax
s∈S

(
~e>s ~x −

1

2
(~e>s ~es)

)
=

= argmax
s∈S

(~w>s ~x + ws0) = argmax
s∈S

gs(~x).

Linear function (plus offset)

gs(~x) = ~w>s ~x + ws0, where ~w s = ~es and ws0 = −1

2
~e>s ~es .
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Notes
The result is a linear discriminant function – hence etalon classifier is a linear classifier.

We classify into the class with highest value of the discriminant function.
~w s is a generalized etalon. How do we find it? Such that it is better than just the mean of the class members in
the training set.



Learning and decision

Learning stage - learning models/function/parameters from data.

Decision stage - decide about a query ~x .

What to learn?

I Generative model : Learn P(~x , s). Decide according to argmaxs P(s|~x).

I Discriminative model : Learn directly P(s|~x) and use it for decisions.

I Discriminant functions : Learn fs(~x) and decide according to argmaxs fs(~x).
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Notes

Generative models because by sampling from them it is possible to generate synthetic data points ~x .
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Accuracy vs precision

https://commons.wikimedia.org/wiki/File:Precision versus accuracy.svg
48 / 52

Notes

Accuracy: how close (is your model) to the truth. Precision: how consistent/stable your model is.

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg


Accuracy, trueness, precision

I Trueness : closeness of the average to the correct value (systematic error, bias)

I Precision : closeness of individual measurements (variance, repeatability, reproducibility)

I Accuracy : contains both trueness and precision

https://en.wikipedia.org/wiki/Accuracy and precision
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Notes

In German:

� Accuracy: Richtigkeit

� Precision: Präzision

� Both together: Genauigkeit

In Czech:

� Accuracy: Pravdivost (ďŕıve také správnost).

� Precision: Preciznost (ďŕıve také shodnost).

� Both together: Přesnost.

Think about terms bias and error. I

https://en.wikipedia.org/wiki/Accuracy_and_precision
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