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Supervised learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity
we want to predict) are known for all training examples.

Classification
» Nominal dependent variable

» Examples: predict spam/ham based on email contents, predict 0/1/.../9 based on the
image of a number, etc.

Regression
» Quantitative/continuous dependent variable

> Examples: predict temperature in Prague based on date and time, predict height of a
person based on weight and gender, etc.
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Notes

There are more kinds od machine learning:

Self-supervised
e Unsupervised

e Weakly supervised

but this lecture will be about fully supervised learning



Learning: minimization of empirical risk

> Given the set of parametrized strategies 0: X — D, penalty/loss function ¢: S x D — R,
the quality of each strategy ¢ could be described by the risk

R(6) = Z Z P(x,s){(s,d(x)),

seS xeX

but P is unknown.
» We thus use the empirical risk Remp, i.e., average loss on training (multi)set
T = {(X(i),s(i))}f\’zl, xeX,se8:
1 , .
_ () ()
Remp(8) = > (s, 5(xy).

(x0,s(eT

» Optimal strategy 6* = argming Remp(6).
» We assume data 7 are from distribution P(x,s).
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Notes
Examples of some methods: Perceptron, neural networks, classification trees, ...

It is essentially about statistic, out-of distribution data are always problematic. We can help somewhat to make

the methods a bit more robust - to generalize more. Remember regularization trick we learned last week (Laplacian

smoothing)?
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Quiz: Line fitting

We would like to fit a line of the form y = wy + wyx to the following data:

4

The parameters of a line with the best fit will likely be

A

B
Cc
D

Woz—]., W1:—2
WoZ—%, wp =1
W0:3, le—%
wp = 2, le%

Notes
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Linear regression: lllustration

Given a dataset of input vectors %) and the respective values of output variable y(i) e
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For instance, think about fitting

.we would like to find a linear model of this dataset ...

S

)
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Regression

Reformulating Linear algebra in a machine learning language.

Regression task is a supervised learning task, i.e.

> a training (multi)set 7 = {(xV, y@), ... (M y(M)} is available, where

> the labels y() are quantitative, often continuous (as opposed to classification tasks where
y() are nominal).

> Its purpose is to model the relationship between independent variables (inputs)
X = (x1,...,xp) and the dependent variable (output) y.
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Linear Regression

Linear regression uses a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

T

S/\:5()?): wo + wiXi + ...+ WpXp = W0+<V_l;,)_<'> =wy+w X,
where
> Y is the model prediction (estimate of the true value y),
» §(X) is the decision strategy (a linear model in this case),
> wp,...,wp are the coefficients of the linear function (weights), wy is the bias,

» (w,X) is a dot product of vectors w and X (scalar product),

> which can be also computed as a matrix product w ' X if w and X are column vectors, i
matrices of size [D x 1].

®
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Notation remarks
Homogeneous coordinates :
> If we add "1" as the first element of X so that X = (1,x1,...,xp), and

» if we include the bias term wyp in the vector w so that w = (wp, wy, ..., wp), then

y:(S()_(‘):W0~1+W1X1+...+WDXD:<W/,)?>:V_I}T)?.

Matrix notation: If we organize the data 7 into matrices X and Y, such that

1 ... 1
— Y = (v (N)
X <)_(,(1) )_(,(N)> and (y R 2 ),

then we can write a batch computation of predictions for all data in X as
Y= (5(2(”), o 5(2(’“)) - (fﬂz(l), - sz(’V)) — WX

10/52
Notes

What are dimensions of y, w, X?



Two operation phases of ML models

Any ML model has 2 operation phases:

1. learning (training, fitting) of § and
2. application of § (testing, making predictions). o™ .. W
esting data ode! rediction

The strategy  can be viewed as a function of 2 variables: §(X, w).

Model application (Inference): Given w, we can manipulate X to make predictions:

§ = 5(%, W) = 64(%).

Model learning: Given T, we can tune the model parameters w to fit the model to the data:

w* = argmin Remp(d7) = argmin J(w, T),
w w

1
where usually J(w,T) = — Z {(y,d(X,w)). How to train the model?

|T| (X y)ET

11/52
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e §(X, W) represents a whole family of strategies if w is not fixed.
e By fixing w we chose a particular strategy from this family.

e Empirical risk evalautes prediction error on all data points.



Example: Simple (univariate) linear regression

Simple regression

> ) = x() je., the examples are described by a single feature (they are 1-dimensional).

» Find parameters wy, wy of a linear model y = wy + wyx
given a training (multi)set 7 = {(x(), y(N)}N

How many lines can be fit to N linearly independent training examples?
» N =1 (1 equation, 2 parameters) = oo linear functions with zero error
» N =2 (2 equation, 2 parameters) = 1 linear function with zero error
» N > 3 (> 2 equation, parameters) = no linear function with zero error

= but we can fit a line which minimizes the “size” of error y —y:

W= (W(>Jk7 Wik) = argmin Remp(Wo, W1) = argmin _/(Wo, wi, T)

wo, w1 wo, w1

12/52
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The least squares method

Choose such parameters w which minimize the mean squared error (MSE)

Y

1 N2
Juse(W) = Z (y(') - ym)
L
= Z <y(') _ 5‘/7/(;(')))

42 — 52
ly ¥ (= )
-”5(2)7?//\(2)) (w1

(=D, 51)

ly® =y
(@, yD)

0

Is there a (closed-form) solution? Explicit solution:

YLD =)D —p) sy
wi = = =

covariance of X and Y

SV (x(0) - %)2

S¢

Notes

; wp =y — wiX
variance X
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Universal fitting method: minimization of cost function J
The landscape of J in the space of parameters wy and w; (for the data below):

02 \

o 20 40 60 80 00
w,

Gradually better linear models found by an optimization method (BFGS):

T L L P
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Notes

Bottom images from left to right correspond to points on the polyline above.



Gradient descent algorithm

Given a function J(wp, wy) that should be minimized,

| 4
| 4
| 4

start with a guess of wy and wy and
change it, so that J(wp, wy) decreases, i.e.

update our current guess of wy and w;y by taking a step in the direction opposite to the
gradient:

w < w —aVJ(wy, wy), ie.

W +— W — « J(wp, wy),

8W,'

where all w;s are updated simultaneously and « is a learning rate (step size).
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Gradient descent for MSE minimization

For the cost function

J(wo, w1) = Ni< — 55(x) ) i( W0+W1X())>

the gradient can be computed as

N
8W0 J(WO’ Wl) = _% ’Z_; (_y(l) - 5W(X(I)))
2 M, ,
Dy T (W0 1) = — Z (y(’) — 5W(X('))) (1)

i=1
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Multivariate linear regression

» <) = (xp, . ,xg))T, i.e. the examples are described by more than 1 feature (they are

D-dimensional).

» Find the parameters w = (wp,...,wp)' of a linear model y = Wl R

given the training (multi)set 7 = {((, y()) N

Training: we would like The model is a hyperplane

for each (i): y() = w1, in the (D + 1)-dimensional space.

Or, in the matrix form: Y = WX

What is the shape of X7
A (D+1)x(D+1)
B(D+1)xN
C Nx(D+1)

D NxN

Notes

17/52




Multivariate linear regression: learning

1. Numeric optimization of J(w, T):

» Works as for simple regression, it only searches a space with more dimensions.

P> Sometimes one needs to tune some parameters of the optimization algorithm to work
properly (learning rate in gradient descent, etc.).

> May be slow (many iterations needed), but works even for very large D.

2. Normal equation

w* = (XXT)7Ixy "

» Method to solve for the optimal w* analytically!
» No need to choose optimization algorithm parameters. No iterations.
> Needs to compute (XX )™, which is O((D + 1)3). Becomes intractable for large D.

Notes

18/52

D could by quite big! Think about pixel values in images! We, humans, are used to low dimensions - world is

3D. Machines work with D < 3 and D > 3 in the same way.
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Classification

Binary classification

Discriminant function

Classification as a regression problem (linear, logistic regression)
What is the right loss function?

Etalon classifier (meeting nearest neighbour and linear classifier)

Acuracy vs precision

20/52
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Quiz: Importance of training examples

Intuitively, which of the training data points should have the biggest influence on the decision
whether a new, unlabeled data point shall be red or blue?

A Those which are closest to data points with the opposite color.

B Those which are farthest from the data points of the opposite color.
C Those which are near the middle of the points with the same color.
D None. All of the data points have the same importance.
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Binary classification task

Let's have a training dataset 7 = {()?'(1),)/(1)), cel ()?’(N),y(N)):
» each example described by a vector X = (x,...,xp),
» labeled with the correct class y € {+1,—1}.

The goal:

» Find the classifier (decision strategy/rule) §
that minimizes the empirical risk Remp(9).

22/52
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Discriminant function

Discriminant function f(X):

> It assigns a real number to each observation X. It
may be linear or non-linear.

» For 2 classes, 1 discriminant function is enough. \/
> (which then ‘

It is used to create a decision rule
assigns a class to an observation):

f(x)

)7—5(35)—{ +1 iff f(X) >0, and

X
-1 iff f(X) <0,
ie., ¥y = d(X) = sign (f(X)).
» Decision boundary: {X|f(X) =0}
P> Linear classification: the decision boundaries must be linear.
» Learning then amounts to finding a suitable function f (or its parameters).

23/52
Notes
For a linear classifier, linearity is required for the decision boundary, not for the discriminant function itself!




Example: Female/Male classification based on height

Training (multi)set 7 = {(x(), sONN  x() € x, s0) € S = {F, M}

i 1 2 3 4 5 6 7 8 9 10 11 12
Height x(/) 115 125 130 140 150 155 165 170 175 180 185 190
Gender s()) F F F F F F F M M M M M

Gender y() (+1/-1) -1 -1 -1 -1 -1 -1 -1 41 +1 +1 +1 +1

01- Female/Male classification

A new point to clasify: x? = 163

0.08 [
Which class does x® belong to? §(x®) =?
0.06
0.04 -

0.02 -

or O OO0 O OO Oxxxxx

0.02 . . . . . . . ,
60 80 100 120 140 160 180 200 220
2 = height [cm] 24 /52

Notes

Run onedim_linclass_learning



Example: Linear discr. function, LSQ fit

150

O Female
x Male

f(@) = wiz +wp

05

-05 -

-1.5

Female/Male classification, linear classifiers
T T T

X X X x »

60

80

100 120 140 160 180 200
x = height [cm]

Notes

220
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Example: Corresponding decision strategy

Female/Male classification, linear classifiers
T

2 T T T

O Female
15+ x Male n
f(z) =wiz + wp
H|—d() = sign(f(x)) T

05 —

-05 - -

-1.5 -

2 | | | | | | |
60 80 100 120 140 160 180 200 220

x = height [cm]
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-0.5

1r

Learning linear classifier: naive approach

0.5

Ty

Let's have a dataset of input vectors %) and their classes s().
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Let’s encode the classes corresponding y(7)




Can we do better than fitting a linear function?
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Fitting a better function: Logistic regression
1r °

0.5

T2
o

-0.5 1

Let's have a dataset of input vectors %) and their classes s().

1.5
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Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the

values of a linear function )

=\ Ty
al) = 89T R) =

1
where g(z) = T5ez is the sigmoid function (a.k.a logistic function).
e
Interpretation of the model:
» f5(X) can be interpretted as an estimate of the probability that X belongs to class 1.
» The decision boundary is defined using a level-set/countour {X : f;(X) = 0.5}.
» Logistic regression is a classification model!
>

The discriminant function f3(X) itself is not linear anymore; but the decision boundary is
still linear!

v

Thanks to the sigmoidal transformation, logistic regression is much less influenced by
examples that are far from the decision boundary!
30/52
Notes

Try to draw the course of the function by hand.



LSQ fit of a sigmoid

Sigmoid fit to the data
I

1.5 I T f
o Female
x Male
_ 1
f(m) - 1+e—(wlz+w0) oL
1H S—t2
0.5 _
0 o -2 o c-C <} -
05 ! ! ! ! ! ! !
60 80 100 120 140 160 180 200 220
x = height [cm)]
31/52
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Comparing Linear and Sigmoid LSQ fit

Comparing Linear LSQ with Sigmoid LSQ

2

o Female
= Male
f(z) = wiz + wp

—6(z) = sign(f(z))

150

—6(x) = sign(fy(z))

0.5 —

1’—fs(x)=2<m>_l (

(e _
1 =2 S—C =2 &—C < —
15— -
-2
60 80 100 120 140 160 180 200 220
2 = height [cm]
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What loss function ¢ is suitable?

To train the logistic regression model, one can minimize the Jysg criterion:

» a non-convex, multimodal landscape which is hard to optimize.

Logistic regression uses a loss function called cross-entropy : i
N
1 _ .
Jw,T) =5 z;e(ym, fis (%1))), where "
=
Sy — —log(y) ify=1 52
e(y’y)_{log(lf/) ify=0" g2
“15
which can be rewritten in a single expression as ’
~ ~ ~ 0.5
Uy,y) = —y -log(y)—(1 —y) - log(1 — ).

» Easier to optimize for numerical solvers.

33/52
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MSE vs cross entropy loss

Various loss functions

Sigmoid fit to the data
T T T

= 15 ‘
45 _-7(”1 e o Female
- x Male
4 —log(9) 1H _ 1 x x X % »ono
. ——log(1—79) f(z) = Tre (urerug)
—1{(x) by cross-entropy loss
05+ -
0 6—o-0—o0—0-6—0 ©o o
05 L L L L L L L
: : 60 80 100 120 140 160 180 200 220
0 0.2 0.4 0.6 0.8 1

- 2 = height [cm]

Yy
Sigmoidal f(x) can be also interpreted as P(s = Male | x): direct learning of a
discriminative model

Cross-entropy loss strongly penalizes hard errors, complete mismatches.

34 /52
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Alternative idea: Etalons

Represent each class by a single example called etalon ! (Or by a very small number of

etalons.)
. Female/Male classification eF = ave({x(i) : S(i) _ F}) _ 140
o8l O Female B 0 . () _ B
X Male em = ave({x") : s'") = M}) =180
06| Kl Female-etalon
O Male-etalon
04r xQ =163
ozf Based on etalons: d? = §(x®) =7
of O OO0 O 00 OxxExx A d®—F
-0.2
B d?®=M
-04r
06| C Both classes equally likely
08} D Cannot provide any decision
—160 8‘0 1(;0 léO 14‘10 léO 15‘50 260
height [cm]

Classify as d? = argmin g dist(x?, e;)
35/52

Based on etalons: d® = M

Notes trtypeof fumction s dist(x g5 )7



Etalon classifier is a Linear classifier!
Assuming dist(x, ) = (x — e)?, then

argmindist(x, e;) = argmin(x — e5)? = argmin(_ x> —2esx + €2) =
seS seS seSs comst

. 1
= argmin(—2esx + €2) = argmax(  esx — ~e2 )
ses s€s 2

linear function of x

Multiclass classification: each class s has a linear discriminant function f;(x) = asx + bs and

d(x) = argmax f5(x)
seS

Binary classification: a single linear discriminant function g(x) is sufficient and

[ s ifg(x) >0,
o) = { s; if i(x) <0.
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Example: F/M — Linear discriminant functions based on etalons

2 x10* Female/Male classification

Discriminant functions for 2 classes:

O Female
®  Male
157 [ Female-etalon / fr(x) = apx + b =
B Male-etalon 1
1 | |[===Female-discr-func — eFx — *6,2: — 140x — 9800
Male-discr-func 2

g
E
S
£ sl m(x) = ayx + by =
1,
S = epyx — —epy = 180x — 16200
5 of O 00 O 00 Ox &l x 2 M
E
05 . . .
A single discr. func. separating 2 classes:
-1 L L L L L L i
60 80 100 120 140 160 180 200 g(X) = fF(X) — f/\//(X) =
height [cm]
5 x10* Female/Male classification = —40x + 6400
O Female
X Male
151 [ remale-etalon 37/52
1 Male-etalon : Notes

1 | |[===Female-discr-func
Male-discr-func

Etalon-sep-func

05

value of discriminant functipns

or O OO x
-0.55
1 I I I I I I |
60 80 100 120 140 160 180 200

height [cm]



Example: F/M — Can we do better etalons?

value of discriminant functions

-0.5

4
25 x10

Female/Male classification

o
N %
O
O

151

Female

Male
Female-etalon
Male-etalon

Male-discr-func
Etalon-sep-func

= Perceptron-sep-func

Linear classifiers based on average etalons
make some errors.

e e / A perceptron algorithm may be used to find

a zero-error classifier (if one exists).

0.5

60

80 100 120 140 160 180 200
height [cm]
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Etalons in multidimensional spaces

Pentagon data minimum distance from etalons
1.5 15
1 . 1t

x *

x,’(‘)§< x * *: *
05 T R 05} x , *

X o) -ﬂ‘*;
x O

-1 -1t
_15 i i i i i i _15 L L i L L i
-15 -1 -0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5 1 15
X X

1 1

From T = {(7), s(0)}, extract one etalon &, for each class s € S.
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Etalons in multidimensional spaces (cont.)

Extract etalon for each class s: minimum distance from etalons
15;

& = ave({x\) : s() = ¢})

Decision strategy

. e oo 05t
0(X) = argmin||X — &]|
s€
The corresponding decision boundaries halve the
distances between pairs of etalons.

41/52
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Digit recognition — average-based etalons

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D923 456789

Figures from [7].
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Notes
Keep in mind, that using the average to compute the etalon is a kind of handcrafted heuristics. In general, it
does not optimize (minimize) any loss function.




Contents

Towards general classifiers

43 /52
Notes




Bayesian classification vs Discriminant functions

Decision based on discriminant function: 15 Pentagon data
0(X) = argmax f(X, s)
seS " *
o x X ¢ oo
Decision based on posterior prob. (Bayes): 05l X X Xx f::}*ﬁ
x o
x O @
P 0%
d(X) = argmax P(s|X) = argmaxw S A AA§°O -
seS seS 'D(X) AA (S)& .
A %Aguz\
05 A oA Ny
If we choose 208
-1F
f(X,s) = P(X]s)P(s),

15 i i i i i i
-1.5 -1 -0.5 0 0.5 1 1.5

the two methods coincide. X,
44 /52
Notes

Normal distribution for general dimensionality D:

. _ 1 1 1, \Te—1/o -

N(X|i, ) = (2n)0/2 |E[1/2 exp{—g(x — i) T (X= )}
Discriminant function:
s* = argmax F(%, 5) = argmax P(S)N (R, ) = —— - _exp{— (% — i) £ (% — ji)}
— R BT emypr [ TP :

How about learning f(X,s) directly without explicit modeling of underlying probabilities?

What about f(X,s) = wJ X + wso



Etalon classifier: generalization to higher dimensions

§5(X) = argmin ||X — &||*> = argmin(x "X — 28l x + &l &) =
seS seS
1
— argmin (sz —2(elx - f(ajas))) _
seS 2
1
= argmax <é’5T)_<’ — (é'zé’s)> =
ses 2
— argmax (W, X + wsp) = argmax gs(%).
ses seS
Linear function (plus offset)
= T = = 1 1.,
gs(X) = wy X + wsg, where ws=28&s and ws = —Ees €s.

45 /52

Notes
The result is a linear discriminant function — hence etalon classifier is a linear classifier.
We classify into the class with highest value of the discriminant function.
Ws is a generalized etalon. How do we find it? Such that it is better than just the mean of the class members in
the training set.



Learning and decision

Learning stage - learning models/function/parameters from data.

Decision stage - decide about a query X.

What to learn?
> Generative model : Learn P(X,s). Decide according to argmax, P(s|X).
» Discriminative model : Learn directly P(s|X) and use it for decisions.

» Discriminant functions : Learn f;(X) and decide according to argmax, f;(X).

46 /52

Notes

Generative models because by sampling from them it is possible to generate synthetic data points X.
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Accuracy vs precision

(b)

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg 48/52

Notes

Accuracy: how close (is your model) to the truth. Precision: how consistent/stable your model is.



https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy, trueness, precision

Reference value

Probability Accuracy
density

«— \Value
Precision

» Trueness : closeness of the average to the correct value (systematic error, bias)
» Precision : closeness of individual measurements (variance, repeatability, reproducibility)

> Accuracy : contains both trueness and precision

https://en.wikipedia.org/wiki/Accuracy_and_precision

49 /52

Notes

In German:
e Accuracy: Richtigkeit
e Precision: Prazision
e Both together: Genauigkeit

In Czech:
e Accuracy: Pravdivost (dFive také spravnost).
e Precision: Preciznost (dFive také shodnost).
e Both together: P¥esnost.

Think about terms bias and error. |

# Dichte

Mangel an /

Richtigkeit

Man

an Prazision

richtiger _Wer-t:
Wert


https://en.wikipedia.org/wiki/Accuracy_and_precision
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References |

Further reading: Chapter 18 of [6], or chapter 4 of [1], or chapter 5 of [2]. Many figures
created with the help of [3]. You may also play with demo functions from [7].
Human deciding and predicting under noise, [4] (in Czech [5])
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