Linear Models for Regression and Classification, Learning

Tomáś Svoboda and Petr Pošík
thanks to Matěj Hoffmann, Daniel Novák, Filip Železný, Ondřej Drbohlav
Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 18, 2024

Contents

Supervised learning
Linear Regression
Linear Classification

Direct learning
Towards general classifiers
Accuracy and precision

References

Supervised learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity we want to predict) are known for all training examples.

Supervised learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity we want to predict) are known for all training examples.

Classification :

- Nominal dependent variable
- Examples: predict spam/ham based on email contents, predict $0 / 1 / \ldots / 9$ based on the image of a number, etc.

Supervised learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity we want to predict) are known for all training examples.

Classification :

- Nominal dependent variable
- Examples: predict spam/ham based on email contents, predict $0 / 1 / \ldots / 9$ based on the image of a number, etc.

Regression :

- Quantitative/continuous dependent variable
- Examples: predict temperature in Prague based on date and time, predict height of a person based on weight and gender, etc.

Learning: minimization of empirical risk

- Given the set of parametrized strategies $\delta: \mathcal{X} \rightarrow \mathcal{D}$, penalty/loss function $\ell: \mathcal{S} \times \mathcal{D} \rightarrow \mathbb{R}$, the quality of each strategy δ could be described by the risk

$$
R(\delta)=\sum_{s \in \mathcal{S}} \sum_{x \in \mathcal{X}} P(x, s) \ell(s, \delta(x))
$$

but P is unknown.

Learning: minimization of empirical risk

- Given the set of parametrized strategies $\delta: \mathcal{X} \rightarrow \mathcal{D}$, penalty/loss function $\ell: \mathcal{S} \times \mathcal{D} \rightarrow \mathbb{R}$, the quality of each strategy δ could be described by the risk

$$
R(\delta)=\sum_{s \in \mathcal{S}} \sum_{x \in \mathcal{X}} P(x, s) \ell(s, \delta(x))
$$

but P is unknown.

- We thus use the empirical risk $R_{\text {emp }}$, i.e., average loss on training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, s^{(i)}\right)\right\}_{i=1}^{N}, x \in \mathcal{X}, s \in \mathcal{S}:$

$$
R_{\mathrm{emp}}(\delta)=\frac{1}{N} \sum_{\left(x^{(i)}, s^{(i)}\right) \in \mathcal{T}} \ell\left(s^{(i)}, \delta\left(x^{(i)}\right)\right)
$$

- Optimal strategy $\delta^{*}=\operatorname{argmin}_{\delta} R_{\text {emp }}(\delta)$.
- We assume data \mathcal{T} are from distribution $P(x, s)$.

Contents

```
Supervised learning
Linear Regression
Linear Classification
Direct learning
Towards general classifiers
Accuracy and precision
References
```


Quiz: Line fitting

We would like to fit a line of the form $\hat{y}=w_{0}+w_{1} x$ to the following data:

The parameters of a line with the best fit will likely be
A $w_{0}=-1, w_{1}=-2$
B $w_{0}=-\frac{1}{2}, w_{1}=1$
C $w_{0}=3, w_{1}=-\frac{1}{2}$
D $w_{0}=2, w_{1}=\frac{1}{3}$

Linear regression: Illustration

Given a dataset of input vectors $\vec{x}^{(i)}$ and the respective values of output variable $y^{(i)} \ldots$

Linear regression: Illustration

....we would like to find a linear model of this dataset ...

Linear regression: Illustration

... minimizing the errors between target values and the model predictions.

Regression

Reformulating Linear algebra in a machine learning language.
Regression task is a supervised learning task, i.e.

- a training (multi)set $\mathcal{T}=\left\{\left(\vec{x}^{(1)}, y^{(1)}\right), \ldots,\left(\vec{x}^{(N)}, y^{(N)}\right)\right\}$ is available, where
- the labels $y^{(i)}$ are quantitative, often continuous (as opposed to classification tasks where $y^{(i)}$ are nominal).
- Its purpose is to model the relationship between independent variables (inputs) $\vec{x}=\left(x_{1}, \ldots, x_{D}\right)$ and the dependent variable (output) y.

Linear Regression

Linear regression uses a particular regression model which assumes (and learns) linear relationship between the inputs and the output:

$$
\widehat{y}=\delta(\vec{x})=w_{0}+w_{1} x_{1}+\ldots+w_{D} x_{D}=w_{0}+\langle\vec{w}, \vec{x}\rangle=w_{0}+\vec{w}^{\top} \vec{x}
$$

where

- \hat{y} is the model prediction (estimate of the true value y),
- $\delta(\vec{x})$ is the decision strategy (a linear model in this case),
- w_{0}, \ldots, w_{D} are the coefficients of the linear function (weights), w_{0} is the bias,
- $\langle\vec{w}, \vec{x}\rangle$ is a dot product of vectors \vec{w} and \vec{x} (scalar product),
- which can be also computed as a matrix product $\vec{w}^{\top} \vec{x}$ if \vec{w} and \vec{x} are column vectors, i.e. matrices of size $[D \times 1]$.

Notation remarks

Homogeneous coordinates :

- If we add " 1 " as the first element of \vec{x} so that $\vec{x}=\left(1, x_{1}, \ldots, x_{D}\right)$, and
- if we include the bias term w_{0} in the vector \vec{w} so that $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{D}\right)$, then

$$
\widehat{y}=\delta(\vec{x})=w_{0} \cdot 1+w_{1} x_{1}+\ldots+w_{D} x_{D}=\langle\vec{w}, \vec{x}\rangle=\vec{w}^{\top} \vec{x}
$$

Notation remarks

Homogeneous coordinates :

- If we add " 1 " as the first element of \vec{x} so that $\vec{x}=\left(1, x_{1}, \ldots, x_{D}\right)$, and
- if we include the bias term w_{0} in the vector \vec{w} so that $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{D}\right)$, then

$$
\widehat{y}=\delta(\vec{x})=w_{0} \cdot 1+w_{1} x_{1}+\ldots+w_{D} x_{D}=\langle\vec{w}, \vec{x}\rangle=\vec{w}^{\top} \vec{x} .
$$

Matrix notation: If we organize the data \mathcal{T} into matrices \mathbf{X} and \mathbf{Y}, such that

$$
\mathbf{X}=\left(\begin{array}{ccc}
1 & \ldots & 1 \\
\vec{x}^{(1)} & \ldots & \vec{x}^{(N)}
\end{array}\right) \quad \text { and } \quad \mathbf{Y}=\left(y^{(1)}, \ldots, y^{(N)}\right)
$$

then we can write a batch computation of predictions for all data in \mathbf{X} as

$$
\widehat{\mathbf{Y}}=\left(\delta\left(\vec{x}^{(1)}\right), \ldots, \delta\left(\vec{x}^{(N)}\right)\right)=\left(\vec{w}^{\top} \vec{x}^{(1)}, \ldots, \vec{w}^{\top} \vec{x}^{(N)}\right)=\vec{w}^{\top} \mathbf{X}
$$

Two operation phases of ML models

Any ML model has 2 operation phases:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

Two operation phases of ML models

Any ML model has 2 operation phases:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

The strategy δ can be viewed as a function of 2 variables: $\delta(\vec{x}, \vec{w})$.

Two operation phases of ML models

Any ML model has 2 operation phases:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

The strategy δ can be viewed as a function of 2 variables: $\delta(\vec{x}, \vec{w})$.

Model application (Inference): Given \vec{w}, we can manipulate \vec{x} to make predictions:

$$
\widehat{y}=\delta(\vec{x}, \vec{w})=\delta_{\vec{w}}(\vec{x})
$$

Two operation phases of ML models

Any ML model has 2 operation phases:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

The strategy δ can be viewed as a function of 2 variables: $\delta(\vec{x}, \vec{w})$.

Model application (Inference): Given \vec{w}, we can manipulate \vec{x} to make predictions:

$$
\widehat{y}=\delta(\vec{x}, \vec{w})=\delta_{\vec{w}}(\vec{x})
$$

Model learning: Given \mathcal{T}, we can tune the model parameters \vec{w} to fit the model to the data:

$$
\vec{w}^{*}=\underset{\vec{w}}{\operatorname{argmin}} R_{\operatorname{emp}}\left(\delta_{\vec{w}}\right)=\underset{\vec{w}}{\operatorname{argmin}} J(\vec{w}, \mathcal{T}),
$$

Two operation phases of ML models

Any ML model has 2 operation phases:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

The strategy δ can be viewed as a function of 2 variables: $\delta(\vec{x}, \vec{w})$.
Model application (Inference): Given \vec{w}, we can manipulate \vec{x} to make predictions:

$$
\widehat{y}=\delta(\vec{x}, \vec{w})=\delta_{\vec{w}}(\vec{x})
$$

Model learning: Given \mathcal{T}, we can tune the model parameters \vec{w} to fit the model to the data:

$$
\vec{w}^{*}=\underset{\vec{w}}{\operatorname{argmin}} R_{\operatorname{emp}}\left(\delta_{\vec{w}}\right)=\underset{\vec{w}}{\operatorname{argmin}} J(\vec{w}, \mathcal{T}),
$$

where usually $J(\vec{w}, \mathcal{T})=\frac{1}{|\mathcal{T}|} \sum_{(\vec{x}, y) \in \mathcal{T}} \ell(y, \delta(\vec{x}, \vec{w}))$. How to train the model?

Example: Simple (univariate) linear regression

Simple regression

- $\vec{x}^{(i)}=x^{(i)}$, i.e., the examples are described by a single feature (they are 1-dimensional).
- Find parameters w_{0}, w_{1} of a linear model $\hat{y}=w_{0}+w_{1} x$ given a training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.

Example: Simple (univariate) linear regression

Simple regression

- $\vec{x}^{(i)}=x^{(i)}$, i.e., the examples are described by a single feature (they are 1-dimensional).
- Find parameters w_{0}, w_{1} of a linear model $\hat{y}=w_{0}+w_{1} x$ given a training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.

How many lines can be fit to N linearly independent training examples?
$-N=1$ (1 equation, 2 parameters) $\Rightarrow \infty$ linear functions with zero error

- $N=2$ (2 equation, 2 parameters) $\Rightarrow 1$ linear function with zero error
- $N \geq 3$ (>2 equation, parameters) \Rightarrow no linear function with zero error \Rightarrow but we can fit a line which minimizes the "size" of error $y-\widehat{y}$:

$$
\vec{w}^{*}=\left(w_{0}^{*}, w_{1}^{*}\right)=\underset{w_{0}, w_{1}}{\operatorname{argmin}} R_{\mathrm{emp}}\left(w_{0}, w_{1}\right)=\underset{w_{0}, w_{1}}{\operatorname{argmin}} J\left(w_{0}, w_{1}, \mathcal{T}\right) .
$$

The least squares method

Choose such parameters \vec{w} which minimize the mean squared error (MSE)

$$
\begin{aligned}
J_{M S E}(\vec{w}) & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\widehat{y}^{(i)}\right)^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\vec{w}}\left(\vec{x}^{(i)}\right)\right)^{2} .
\end{aligned}
$$

Is there a (closed-form) solution?

The least squares method

Choose such parameters \vec{w} which minimize the mean squared error (MSE)

$$
\begin{aligned}
J_{M S E}(\vec{w}) & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\widehat{y}^{(i)}\right)^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\vec{w}}\left(\vec{x}^{(i)}\right)\right)^{2} .
\end{aligned}
$$

Is there a (closed-form) solution? Explicit solution:

$$
w_{1}=\frac{\sum_{i=1}^{N}\left(x^{(i)}-\bar{x}\right)\left(y^{(i)}-\bar{y}\right)}{\sum_{i=1}^{N}\left(x^{(i)}-\bar{x}\right)^{2}}=\frac{s_{x y}}{s_{x}^{2}}=\frac{\text { covariance of } X \text { and } Y}{\text { variance } X} \quad w_{0}=\bar{y}-w_{1} \bar{x}
$$

Universal fitting method: minimization of cost function J

The landscape of J in the space of parameters w_{0} and w_{1} (for the data below):

Gradually better linear models found by an optimization method (BFGS):

Gradient descent algorithm

Given a function $J\left(w_{0}, w_{1}\right)$ that should be minimized,

- start with a guess of w_{0} and w_{1} and
- change it, so that $J\left(w_{0}, w_{1}\right)$ decreases, i.e.
- update our current guess of w_{0} and w_{1} by taking a step in the direction opposite to the gradient:

$$
\begin{aligned}
& \vec{w} \leftarrow \vec{w}-\alpha \nabla J\left(w_{0}, w_{1}\right), \text { i.e. } \\
& w_{i} \leftarrow w_{i}-\alpha \frac{\partial}{\partial w_{i}} J\left(w_{0}, w_{1}\right)
\end{aligned}
$$

where all $w_{i} s$ are updated simultaneously and α is a learning rate (step size).

Gradient descent for MSE minimization

For the cost function

$$
J\left(w_{0}, w_{1}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\vec{w}}\left(x^{(i)}\right)\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\left(w_{0}+w_{1} x^{(i)}\right)\right)^{2},
$$

the gradient can be computed as

$$
\begin{aligned}
& \frac{\partial}{\partial w_{0}} J\left(w_{0}, w_{1}\right)=-\frac{2}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\vec{w}}\left(x^{(i)}\right)\right) \\
& \frac{\partial}{\partial w_{1}} J\left(w_{0}, w_{1}\right)=-\frac{2}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\vec{w}}\left(x^{(i)}\right)\right) x^{(i)}
\end{aligned}
$$

Multivariate linear regression

- $\vec{x}^{(i)}=\left(x_{1}^{(i)}, \ldots, x_{D}^{(i)}\right)^{\top}$, i.e. the examples are described by more than 1 feature (they are D-dimensional).
- Find the parameters $\vec{w}=\left(w_{0}, \ldots, w_{D}\right)^{\top}$ of a linear model $\hat{y}=\vec{w}^{\top} \vec{x}$ given the training (multi)set $\mathcal{T}=\left\{\left(\vec{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.

Training: we would like for each (i): $y^{(i)}=\vec{w}^{\top} \vec{x}^{(i)}$.
Or, in the matrix form: $\mathbf{Y}=\vec{w}^{\top} \mathbf{X}$

The model is a hyperplane in the $(D+1)$-dimensional space.

Multivariate linear regression

- $\vec{x}^{(i)}=\left(x_{1}^{(i)}, \ldots, x_{D}^{(i)}\right)^{\top}$, i.e. the examples are described by more than 1 feature (they are D-dimensional).
- Find the parameters $\vec{w}=\left(w_{0}, \ldots, w_{D}\right)^{\top}$ of a linear model $\hat{y}=\vec{w}^{\top} \vec{x}$ given the training (multi)set $\mathcal{T}=\left\{\left(\vec{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.

Training: we would like for each (i): $y^{(i)}=\vec{w}^{\top} \vec{x}^{(i)}$.
Or, in the matrix form: $\mathbf{Y}=\vec{w}^{\top} \mathbf{X}$
What is the shape of \mathbf{X} ?
A $(D+1) \times(D+1)$
B $(D+1) \times N$
C $N \times(D+1)$
D $N \times N$

The model is a hyperplane in the $(D+1)$-dimensional space.

Multivariate linear regression: learning

1. Numeric optimization of $J(\vec{w}, T)$:

- Works as for simple regression, it only searches a space with more dimensions.
- Sometimes one needs to tune some parameters of the optimization algorithm to work properly (learning rate in gradient descent, etc.).
- May be slow (many iterations needed), but works even for very large D.

Multivariate linear regression: learning

1. Numeric optimization of $J(\vec{w}, T)$:

- Works as for simple regression, it only searches a space with more dimensions.
- Sometimes one needs to tune some parameters of the optimization algorithm to work properly (learning rate in gradient descent, etc.).
- May be slow (many iterations needed), but works even for very large D.

2. Normal equation :

$$
\vec{w}^{*}=\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \mathbf{Y}^{\top}
$$

- Method to solve for the optimal \vec{w}^{*} analytically!
- No need to choose optimization algorithm parameters. No iterations.
- Needs to compute $\left(\mathbf{X X}^{\top}\right)^{-1}$, which is $O\left((D+1)^{3}\right)$. Becomes intractable for large D.

Contents

Supervised learning
Linear Regression
Linear Classification
Direct learning
Towards general classifiers
Accuracy and precision
References

Classification

- Binary classification
- Discriminant function
- Classification as a regression problem (linear, logistic regression)
- What is the right loss function?
- Etalon classifier (meeting nearest neighbour and linear classifier)
- Acuracy vs precision

Quiz: Importance of training examples

Intuitively, which of the training data points should have the biggest influence on the decision whether a new, unlabeled data point shall be red or blue?

A Those which are closest to data points with the opposite color.
B Those which are farthest from the data points of the opposite color.
C Those which are near the middle of the points with the same color.
D None. All of the data points have the same importance.

Binary classification task

Let's have a training dataset $\mathcal{T}=\left\{\left(\vec{x}^{(1)}, y^{(1)}\right), \ldots,\left(\vec{x}^{(N)}, y^{(N)}\right)\right.$:

- each example described by a vector $\vec{x}=\left(x_{1}, \ldots, x_{D}\right)$,
- labeled with the correct class $y \in\{+1,-1\}$.

The goal:

- Find the classifier (decision strategy/rule) δ that minimizes the empirical risk $R_{\text {emp }}(\delta)$.

Discriminant function

Discriminant function $f(\vec{x})$:

- It assigns a real number to each observation \vec{x}. It may be linear or non-linear.
- For 2 classes, 1 discriminant function is enough.
- It is used to create a decision rule (which then assigns a class to an observation):

$$
\widehat{y}=\delta(\vec{x})=\left\{\begin{array}{lll}
+1 & \text { iff } & f(\vec{x})>0, \\
-1 & \text { iff } & f(\vec{x})<0,
\end{array}\right.
$$

i.e., $\widehat{y}=\delta(\vec{x})=\operatorname{sign}(f(\vec{x}))$.

Discriminant function

Discriminant function $f(\vec{x})$:

- It assigns a real number to each observation \vec{x}. It may be linear or non-linear.
- For 2 classes, 1 discriminant function is enough.
- It is used to create a decision rule (which then assigns a class to an observation):

$$
\widehat{y}=\delta(\vec{x})=\left\{\begin{array}{lll}
+1 & \text { iff } & f(\vec{x})>0, \text { and } \\
-1 & \text { iff } & f(\vec{x})<0,
\end{array}\right.
$$

i.e., $\widehat{y}=\delta(\vec{x})=\operatorname{sign}(f(\vec{x}))$.

- Decision boundary: $\{\vec{x} \mid f(\vec{x})=0\}$
- Linear classification: the decision boundaries must be linear.
- Learning then amounts to finding a suitable function f (or its parameters).

Example: Female/Male classification based on height
Training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, s^{(i)}\right)\right\}_{i=1}^{N}, x^{(i)} \in \mathcal{X}, s^{(i)} \in \mathcal{S}=\{F, M\}$

i	1	2	3	4	5	6	7	8	9	10	11	12
Height $x^{(i)}$	115	125	130	140	150	155	165	170	175	180	185	190
Gender $s^{(i)}$	F	F	F	F	F	F	F	M	M	M	M	M
Gender $y^{(i)}(+1 /-1)$	-1	-1	-1	-1	-1	-1	-1	+1	+1	+1	+1	+1

Example: Female/Male classification based on height
Training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, s^{(i)}\right)\right\}_{i=1}^{N}, x^{(i)} \in \mathcal{X}, s^{(i)} \in \mathcal{S}=\{F, M\}$

i	1	2	3	4	5	6	7	8	9	10	11	12
Height $x^{(i)}$	115	125	130	140	150	155	165	170	175	180	185	190
Gender $s^{(i)}$	F	F	F	F	F	F	F	M	M	M	M	M
Gender $y^{(i)}(+1 /-1)$	-1	-1	-1	-1	-1	-1	-1	+1	+1	+1	+1	+1

A new point to clasify: $x^{Q}=163$
Which class does x^{Q} belong to? $\delta\left(x^{Q}\right)=$?

Example: Linear discr. function, LSQ fit

Female/Male classification, linear classifiers

Example: Corresponding decision strategy

Female/Male classification, linear classifiers

Learning linear classifier: naive approach

Let's have a dataset of input vectors $\vec{x}^{(i)}$ and their classes $s^{(i)}$.

Learning linear classifier: naive approach

Let's encode the classes corresponding $y^{(i)}=-1$ or $y^{(i)}=1$.

Learning linear classifier: naive approach

Let's fit a linear discriminant function by minimizing MSE as in regression.
The contour line $y=0 \ldots$

Learning linear classifier: naive approach

...then forms a linear decision boundary in the original 2D space.
But is such a classifier good in general?

Can we do better than fitting a linear function?

Fitting a better function: Logistic regression

Let's have a dataset of input vectors $\vec{x}^{(i)}$ and their classes $s^{(i)}$.

Fitting a better function: Logistic regression

Let's encode the classes corresponding $y^{(i)}=0$ or $y^{(i)}=1$.

Fitting a better function: Logistic regression

Let's fit a sigmoidal discriminant function by minimizing MSE as in regression.
The contour line $y=0.5 \ldots$

Fitting a better function: Logistic regression

...then forms a linear decision boundary in the original 2D space.

Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the values of a linear function

$$
f_{\vec{w}}(\vec{x})=g\left(\vec{w}^{\top} \vec{x}\right)=\frac{1}{1+e^{-\vec{w}^{\top} \vec{x}}},
$$

where $g(z)=\frac{1}{1+e^{-z}}$ is the sigmoid function (a.k.a logistic function).

Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the values of a linear function

$$
f_{\vec{w}}(\vec{x})=g\left(\vec{w}^{\top} \vec{x}\right)=\frac{1}{1+e^{-\vec{w}^{\top} \vec{x}}},
$$

where $g(z)=\frac{1}{1+e^{-z}}$ is the sigmoid function (a.k.a logistic function).

Interpretation of the model:

- $f_{\vec{w}}(\vec{x})$ can be interpretted as an estimate of the probability that \vec{x} belongs to class 1 .
- The decision boundary is defined using a level-set/countour $\left\{\vec{x}: f_{\vec{w}}(\vec{x})=0.5\right\}$.
- Logistic regression is a classification model!
- The discriminant function $f_{\vec{w}}(\vec{x})$ itself is not linear anymore; but the decision boundary is still linear!
- Thanks to the sigmoidal transformation, logistic regression is much less influenced by examples that are far from the decision boundary!

LSQ fit of a sigmoid
Sigmoid fit to the data

Comparing Linear and Sigmoid LSQ fit

Comparing Linear LSQ with Sigmoid LSQ

What loss function ℓ is suitable?

To train the logistic regression model, one can minimize the $J_{M S E}$ criterion:

- a non-convex, multimodal landscape which is hard to optimize.

What loss function ℓ is suitable?

To train the logistic regression model, one can minimize the $J_{M S E}$ criterion:

- a non-convex, multimodal landscape which is hard to optimize.

Logistic regression uses a loss function called cross-entropy :

$$
\begin{aligned}
J(\vec{w}, \mathcal{T}) & =\frac{1}{N} \sum_{i=1}^{N} \ell\left(y^{(i)}, f_{\vec{w}}\left(\vec{x}^{(i)}\right)\right), \text { where } \\
\ell(y, \widehat{y}) & =\left\{\begin{aligned}
-\log (\widehat{y}) & \text { if } y=1 \\
-\log (1-\widehat{y}) & \text { if } y=0
\end{aligned}\right.
\end{aligned}
$$

which can be rewritten in a single expression as

$$
\ell(y, \widehat{y})=-y \cdot \log (\widehat{y})-(1-y) \cdot \log (1-\widehat{y}) .
$$

- Easier to optimize for numerical solvers.

MSE vs cross entropy loss

Sigmoidal $f(x)$ can be also interpreted as $P(s=$ Male $\mid x)$: direct learning of a discriminative model
Cross-entropy loss strongly penalizes hard errors, complete mismatches.

Alternative idea: Etalons

Represent each class by a single example called etalon ! (Or by a very small number of etalons.)

Female/Male classification

$$
\begin{aligned}
& e_{F}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=F\right\}\right)=140 \\
& e_{M}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=M\right\}\right)=180
\end{aligned}
$$

Alternative idea: Etalons

Represent each class by a single example called etalon ! (Or by a very small number of etalons.)

$e_{F}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=F\right\}\right)=140$
$e_{M}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=M\right\}\right)=180$
$x^{Q}=163$
Based on etalons: $d^{Q}=\delta\left(x^{Q}\right)=$?
$\mathrm{A} d^{Q}=F$
B $d^{Q}=M$
C Both classes equally likely
D Cannot provide any decision

Alternative idea: Etalons

Represent each class by a single example called etalon ! (Or by a very small number of etalons.)

$e_{F}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=F\right\}\right)=140$
$e_{M}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=M\right\}\right)=180$
$x^{Q}=163$
Based on etalons: $d^{Q}=\delta\left(x^{Q}\right)=$?
Classify as $d^{Q}=\operatorname{argmin}_{s \in \mathcal{S}} \operatorname{dist}\left(x^{Q}, e_{s}\right)$
What type of function is $\operatorname{dist}\left(x^{Q}, e_{s}\right)$?

Etalon classifier is a Linear classifier!

Assuming $\operatorname{dist}(x, e)=(x-e)^{2}$, then

$$
\begin{aligned}
\underset{s \in S}{\operatorname{argmin}} \operatorname{dist}\left(x, e_{s}\right) & =\underset{s \in S}{\operatorname{argmin}}\left(x-e_{s}\right)^{2}=\underset{s \in S}{\operatorname{argmin}}(\underbrace{x^{2}}_{\text {const. }}-2 e_{s} x+e_{s}^{2})= \\
& =\underset{s \in S}{\operatorname{argmin}}\left(-2 e_{s} x+e_{s}^{2}\right)=\underset{s \in S}{\operatorname{argmax}}(\underbrace{e_{s} x-\frac{1}{2} e_{s}^{2}}_{\text {linear function of } x})
\end{aligned}
$$

Etalon classifier is a Linear classifier!

Assuming $\operatorname{dist}(x, e)=(x-e)^{2}$, then

$$
\begin{aligned}
\underset{s \in S}{\operatorname{argmin} \operatorname{dist}\left(x, e_{s}\right)} & =\underset{s \in S}{\operatorname{argmin}}\left(x-e_{s}\right)^{2}=\underset{s \in S}{\operatorname{argmin}}(\underbrace{x^{2}}_{\text {const. }}-2 e_{s} x+e_{s}^{2})= \\
& =\underset{s \in S}{\operatorname{argmin}}\left(-2 e_{s} x+e_{s}^{2}\right)=\underset{s \in S}{\operatorname{argmax}}(\underbrace{e_{s} x-\frac{1}{2} e_{s}^{2}}_{\text {linear function of } x})
\end{aligned}
$$

Multiclass classification: each class s has a linear discriminant function $f_{s}(x)=a_{s} x+b_{s}$ and

$$
\delta(x)=\underset{s \in S}{\operatorname{argmax}} f_{s}(x)
$$

Etalon classifier is a Linear classifier!

Assuming $\operatorname{dist}(x, e)=(x-e)^{2}$, then

$$
\begin{aligned}
\underset{s \in S}{\operatorname{argmin} \operatorname{dist}\left(x, e_{s}\right)} & =\underset{s \in S}{\operatorname{argmin}}\left(x-e_{s}\right)^{2}=\underset{s \in S}{\operatorname{argmin}}(\underbrace{x^{2}}_{\text {const. }}-2 e_{s} x+e_{s}^{2})= \\
& =\underset{s \in S}{\operatorname{argmin}}\left(-2 e_{s} x+e_{s}^{2}\right)=\underset{s \in S}{\operatorname{argmax}}(\underbrace{e_{s} x-\frac{1}{2} e_{s}^{2}}_{\text {linear function of } x})
\end{aligned}
$$

Multiclass classification: each class s has a linear discriminant function $f_{s}(x)=a_{s} x+b_{s}$ and

$$
\delta(x)=\underset{s \in S}{\operatorname{argmax}} f_{s}(x)
$$

Binary classification: a single linear discriminant function $g(x)$ is sufficient and

$$
\delta(x)= \begin{cases}s_{1} & \text { if } g(x) \geq 0 \\ s_{2} & \text { if } g(x)<0 .\end{cases}
$$

Example: F / M - Linear discriminant functions based on etalons

Discriminant functions for 2 classes:

$$
\begin{aligned}
f_{F}(x) & =a_{F} x+b_{F}= \\
& =e_{F} x-\frac{1}{2} e_{F}^{2}=140 x-9800 \\
f_{M}(x) & =a_{M} x+b_{M}= \\
& =e_{M} x-\frac{1}{2} e_{M}^{2}=180 x-16200
\end{aligned}
$$

Example: F / M - Linear discriminant functions based on etalons

Discriminant functions for 2 classes:

$$
\begin{aligned}
f_{F}(x) & =a_{F} x+b_{F}= \\
& =e_{F} x-\frac{1}{2} e_{F}^{2}=140 x-9800 \\
f_{M}(x) & =a_{M} x+b_{M}= \\
& =e_{M} x-\frac{1}{2} e_{M}^{2}=180 x-16200
\end{aligned}
$$

A single discr. func. separating 2 classes:

$$
\begin{aligned}
g(x) & =f_{F}(x)-f_{M}(x)= \\
& =-40 x+6400
\end{aligned}
$$

Example: F/M - Can we do better etalons?

Linear classifiers based on average etalons make some errors.

A perceptron algorithm may be used to find a zero-error classifier (if one exists).

Contents

```
Supervised learning
Linear Regression
Linear Classification
Direct learning
```

```
Towards general classifiers
```

Towards general classifiers
Accuracy and precision
References

```

\section*{Etalons in multidimensional spaces}



From \(\mathcal{T}=\left\{\left(\left(^{(i)}, s^{(i)}\right)\right\}\right.\), extract one etalon \(\vec{e}_{s}\) for each class \(s \in \mathcal{S}\).

\section*{Etalons in multidimensional spaces (cont.)}

Extract etalon for each class \(s\) :
\[
\vec{e}_{s}=\operatorname{ave}\left(\left\{\vec{x}^{(i)}: s^{(i)}=s\right\}\right)
\]

\section*{Etalons in multidimensional spaces (cont.)}

Extract etalon for each class \(s\) :
\[
\vec{e}_{s}=\operatorname{ave}\left(\left\{\vec{x}^{(i)}: s^{(i)}=s\right\}\right)
\]

Decision strategy
\[
\delta(\vec{x})=\underset{s \in S}{\operatorname{argmin}}\left\|\vec{x}-\vec{e}_{s}\right\|^{2}
\]
minimum distance from etalons


\section*{Etalons in multidimensional spaces (cont.)}

Extract etalon for each class \(s\) :
minimum distance from etalons
\[
\vec{e}_{s}=\operatorname{ave}\left(\left\{\vec{x}^{(i)}: s^{(i)}=s\right\}\right)
\]

Decision strategy
\[
\delta(\vec{x})=\underset{s \in S}{\operatorname{argmin}}\left\|\vec{x}-\vec{e}_{s}\right\|^{2}
\]

The corresponding decision boundaries halve the distances between pairs of etalons.


\section*{Digit recognition - average-based etalons}
etalon for 0
etalon for 1
etalon for 2
etalon for 3
etalon for 4
etalon for 5
etalon for 6
etalon for 7
etalon for 8



Figures from [7].

\section*{Contents}
```

Supervised learning
Linear Regression
Linear Classification
Direct learning

```

Towards general classifiers
```

Accuracy and precision

```

References

\section*{Bayesian classification vs Discriminant functions}

Decision based on discriminant function:
\[
\delta(\vec{x})=\underset{s \in \mathcal{S}}{\operatorname{argmax}} f(\vec{x}, s)
\]

Decision based on posterior prob. (Bayes):
\[
\delta(\vec{x})=\underset{s \in \mathcal{S}}{\operatorname{argmax}} P(s \mid \vec{x})=\underset{s \in \mathcal{S}}{\operatorname{argmax}} \frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}
\]

If we choose
\[
f(\vec{x}, s)=P(\vec{x} \mid s) P(s),
\]
the two methods coincide.

Pentagon data


Etalon classifier: generalization to higher dimensions
\[
\begin{aligned}
\delta(\vec{x}) & =\underset{s \in S}{\operatorname{argmin}}\left\|\vec{x}-\vec{e}_{s}\right\|^{2}=\underset{s \in S}{\operatorname{argmin}}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}\right)= \\
& =\underset{s \in S}{\operatorname{argmin}}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}\right)\right)\right)= \\
& =\underset{s \in S}{\operatorname{argmax}}\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}\right)\right)= \\
& =\underset{s \in S}{\operatorname{argmax}}\left(\vec{w}_{s}^{\top} \vec{x}+w_{s 0}\right)=\underset{s \in S}{\operatorname{argmax}} g_{s}(\vec{x}) .
\end{aligned}
\]

Linear function (plus offset)
\[
g_{s}(\vec{x})=\vec{w}_{s}^{\top} \vec{x}+w_{s 0}, \quad \text { where } \quad \vec{w}_{s}=\vec{e}_{s} \quad \text { and } \quad w_{s 0}=-\frac{1}{2} \vec{e}_{s}^{\top} \vec{e}_{s}
\]

\section*{Learning and decision}

Learning stage - learning models/function/parameters from data.
Decision stage - decide about a query \(\vec{x}\).
What to learn?
- Generative model : Learn \(P(\vec{x}, s)\). Decide according to \(\operatorname{argmax}_{s} P(s \mid \vec{x})\).
- Discriminative model : Learn directly \(P(s \mid \vec{x})\) and use it for decisions.
- Discriminant functions : Learn \(f_{s}(\vec{x})\) and decide according to \(\operatorname{argmax}_{s} f_{s}(\vec{x})\).

\section*{Contents}

\title{
Supervised learning
}

Linear Regression
Linear Classification

Direct learning
Towards general classifiers
Accuracy and precision
References

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

\section*{Accuracy, trueness, precision}

- Trueness : closeness of the average to the correct value (systematic error, bias)
- Precision : closeness of individual measurements (variance, repeatability, reproducibility)
- Accuracy : contains both trueness and precision
https://en.wikipedia.org/wiki/Accuracy_and_precision

\section*{Contents}
```

Supervised learning
Linear Regression
Linear Classification
Direct learning
Towards general classifiers
Accuracy and precision

```

References

\section*{References I}

Further reading: Chapter 18 of [6], or chapter 4 of [1], or chapter 5 of [2]. Many figures created with the help of [3]. You may also play with demo functions from [7].
Human deciding and predicting under noise, [4] (in Czech [5])
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/
Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.
[2] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification.
John Wiley \& Sons, 2nd edition, 2001.
[3] Vojtěch Franc and Václav Hlaváč.
Statistical pattern recognition toolbox.
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.

\section*{References II}
[4] D. Kahneman, O. Sibony, and C.R. Sunstein.
Noise: A Flaw in Human Judgment.
Little Brown Spark, 2021.
[5] D. Kahneman, O. Sibony, and C.R. Sunstein.
Šum, O chybách v lidském úsudku.
Jan Melvil Publishing, 2021.
[6] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[7] Tomáś Svoboda, Jan Kybic, and Hlaváč Václav.
Image Processing, Analysis and Machine Vision - A MATLAB Companion.
Thomson, Toronto, Canada, \(1^{\text {st }}\) edition, September 2007.
http://visionbook.felk.cvut.cz/.```

