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Supervised learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity
we want to predict) are known for all training examples.
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Supervised learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity
we want to predict) are known for all training examples.

Classification
» Nominal dependent variable

» Examples: predict spam/ham based on email contents, predict 0/1/.../9 based on the
image of a number, etc.

Regression
» Quantitative/continuous dependent variable

> Examples: predict temperature in Prague based on date and time, predict height of a
person based on weight and gender, etc.
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Learning: minimization of empirical risk

> Given the set of parametrized strategies 6: X — D, penalty/loss function ¢: S x D — R,
the quality of each strategy ¢ could be described by the risk

R(8) =Y P(x,s)l(s,6(x)),

seS xeX

but P is unknown.
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Learning: minimization of empirical risk

> Given the set of parametrized strategies 6: X — D, penalty/loss function ¢: S x D — R,
the quality of each strategy ¢ could be described by the risk

R(6) = > P(x,5)l(s,8(x)),
seS xeX
but P is unknown.
» We thus use the empirical risk Remp, i.e., average loss on training (multi)set
T = {(X("),s("))}f\lzl, xeX,seS:
1 . .
_ (1) ()
Remp(8) = 1 Z 0(s, 5(x(D).
(X('),S(I))ET
» Optimal strategy 6* = argming Remp(6).
» We assume data 7 are from distribution P(x,s).
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Quiz: Line fitting

We would like to fit a line of the form y = wy + wyx to the following data:

4
3
%
S ° o
L <
wh. .3
%
1
0
0 1 2 3 4

The parameters of a line with the best fit will likely be
A wy=-1 w =-2
B wy= —%, wp =1
C wo = 3, wip = —%
D wy=2 w = %
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Linear regression: lllustration

Given a dataset of input vectors %) and the respective values of output variable y() .
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Linear regression: lllustration

.we would like to find a linear model of this dataset ...
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Linear regression: lllustration

o
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. minimizing the errors between target values and the model predictions.
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Regression

Reformulating Linear algebra in a machine learning language.

Regression task is a supervised learning task, i.e.

> a training (multi)set 7 = {(xV, y@), ... (M y(M)} is available, where

> the labels y() are quantitative, often continuous (as opposed to classification tasks where
y() are nominal).

> Its purpose is to model the relationship between independent variables (inputs)
X = (x1,...,xp) and the dependent variable (output) y.
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Linear Regression

Linear regression uses a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

T

S/\:(S()?): Wo + wix1 + ...+ wpxp = wp + (W, X) = wp + W X,
where
» Y is the model prediction (estimate of the true value y),
> §(X) is the decision strategy (a linear model in this case),
> wp,...,wp are the coefficients of the linear function (weights), wy is the bias,

» (w,X) is a dot product of vectors w and X (scalar product),

> which can be also computed as a matrix product w' X if w and X are column vectors, i
matrices of size [D x 1].

®
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Notation remarks
Homogeneous coordinates :

> If we add "“1" as the first element of X so that X = (1,x1,...,xp), and
» if we include the bias term wy in the vector w so that w = (wp, wy, ..., wp), then
)7:5(;): wo 1+ wixy+...+wpxp = (W/,)?> = V_I}T)?
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Notation remarks
Homogeneous coordinates :

> If we add "“1" as the first element of X so that X = (1,x1,...,xp), and
» if we include the bias term wy in the vector w so that w = (wp, wy, ..., wp), then
y:(S()_(‘): wo 1+ wixy+...+wpxp = (W/,)?> = V_I}T)?

Matrix notation: If we organize the data 7 into matrices X and Y, such that
| |
= = (y® (V)
X <)?(1) >_<'(N)> and Y (y SRS )’

then we can write a batch computation of predictions for all data in X as

Y= (5(9(”), - 5(;(’“)) - (fﬂz(l), - sz(’V)) — WX
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Two operation phases of ML models

Any ML model has 2 operation phases:

1. learning (training, fitting) of § and
2. application of § (testing, making predictions). o™ .. Wi
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Two operation phases of ML models

Any ML model has 2 operation phases:

1. learning (training, fitting) of § and
2. application of § (testing, making predictions). o™ .. Wi
esting data ode! rediction

The strategy  can be viewed as a function of 2 variables: §(X, w).

Model application (Inference): Given w, we can manipulate X to make predictions:

§ = 5(%, W) = 64(%).

Model learning: Given T, we can tune the model parameters w to fit the model to the data:

w* = argmin Remp(d7) = argmin J(w, T),
w w

1
where usually J(w,T) = — Z l(y,d(X,w)). How to train the model?

|T| (Xy)ET
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Example: Simple (univariate) linear regression

Simple regression

> ) = x() je. the examples are described by a single feature (they are 1-dimensional).

» Find parameters wy, wy of a linear model y = wy + wyx
given a training (multi)set 7 = {(x(), y(N)}N
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Example: Simple (univariate) linear regression

Simple regression

> ) = x() je. the examples are described by a single feature (they are 1-dimensional).

» Find parameters wy, wy of a linear model y = wy + wyx
given a training (multi)set 7 = {(x(), y(N)}N

How many lines can be fit to N linearly independent training examples?
» N =1 (1 equation, 2 parameters) = oo linear functions with zero error
» N =2 (2 equation, 2 parameters) = 1 linear function with zero error
» N > 3 (> 2 equation, parameters) = no linear function with zero error

= but we can fit a line which minimizes the “size” of error y —y:

wh = (W(>Jk7 Wik) = argmin Remp(Wo, W1) = argmin _/(Wo, wi, T)

wo, w1 wo, w1
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The least squares method

Choose such parameters w which minimize the mean squared error (MSE)

1L, w2
Juse(W) = Z (y(’) - y(’))

Is there a (closed-form) solution?

Y

(D, y2)
W@ ~ 5|

1(2)7@\(2)) w1

(=D, 51

ly® -y W]
(@, yD)

(x(3),y3))
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The least squares method

Choose such parameters w which minimize the mean squared error (MSE)

Y

1 2
i=1
I (0 S0y 2
=N Z (y - 5VT/(X ))

0

(@@, y@)
W@ ~ 5|

37(2)721\(2)) w1

(=D, 51

ly® -y W]
(@, yD)

(x(3),y3))

Is there a (closed-form) solution? Explicit solution:

YA (D =) —7) sy

w1 =

covariance of X and Y

SV (x(0) - %)2

2
%

variance X

wp =y — wiXx
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Universal fitting method: minimization of cost function J
The landscape of J in the space of parameters wy and w; (for the data below):

00
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Gradient descent algorithm

Given a function J(wp, wi) that should be minimized,
> start with a guess of wy and w; and
» change it, so that J(wp, wy) decreases, i.e.

> update our current guess of wy and wy by taking a step in the direction opposite to the
gradient:

w < w — aVJ(wy, wy), ie.

W +— w — « J(wp, wy),

8W,'

where all w;s are updated simultaneously and « is a learning rate (step size).
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Gradient descent for MSE minimization

For the cost function

N N
o= 3560t = 13 (50
the gradient can be computed as

(wo + wy xU ))>

N
8W0 J(WO’ Wl) = _% ’Z_; (_y(l) - 5W(X(I)))
oM, ,
Dy T (W0 ) = — Z (y(’) - 5W(X('))) (1)

1
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'))T, i.e. the examples are described by more than 1 feature (they are
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» Find the parameters

The model is a hyperplane
in the (D + 1)-dimensional space.
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Multivariate linear regression

» <) = (Xp, . ,X(Di))T, i.e. the examples are described by more than 1 feature (they are

D-dimensional).

» Find the parameters w = (wp,...,wp)' of a linear model y = Wl R

given the training (multi)set 7 = {()?(’),y(i)) :N=1-

Training: we would like The model is a hyperplane
for each (i): y() = w0, in the (D + 1)-dimensional space.

Or, in the matrix form: Y = WX

What is the shape of X? -
A (D+1)x(D+1) =
B(D+1)xN
C Nx(D+1) AN
D NxN N
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Multivariate linear regression: learning

1. Numeric optimization of J(w, T):

» Works as for simple regression, it only searches a space with more dimensions.

P> Sometimes one needs to tune some parameters of the optimization algorithm to work
properly (learning rate in gradient descent, etc.).

> May be slow (many iterations needed), but works even for very large D.
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Multivariate linear regression: learning

1. Numeric optimization of J(w, T):

» Works as for simple regression, it only searches a space with more dimensions.

P> Sometimes one needs to tune some parameters of the optimization algorithm to work
properly (learning rate in gradient descent, etc.).

> May be slow (many iterations needed), but works even for very large D.

2. Normal equation :

w* = (XXT)7Ixy "

» Method to solve for the optimal w™ analytically!
» No need to choose optimization algorithm parameters. No iterations.
> Needs to compute (XX )™, which is O((D + 1)3). Becomes intractable for large D.
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Classification

Binary classification

Discriminant function

What is the right loss function?

|
>
» Classification as a regression problem (linear, logistic regression)
| 4
> Etalon classifier (meeting nearest neighbour and linear classifier)
>

Acuracy vs precision
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Quiz: Importance of training examples

Intuitively, which of the training data points should have the biggest influence on the decision
whether a new, unlabeled data point shall be red or blue?

A Those which are closest to data points with the opposite color.

B Those which are farthest from the data points of the opposite color.
C Those which are near the middle of the points with the same color.
D None. All of the data points have the same importance.
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Binary classification task

Let's have a training dataset 7 = {()?'(1),y(1)), el ()?’(N),y(N)):
» each example described by a vector X = (xy,...,xp),
» labeled with the correct class y € {+1,—1}.

The goal:

» Find the classifier (decision strategy/rule) §
that minimizes the empirical risk Remp(9).
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Discriminant function

Discriminant function f(X):

> It assigns a real number to each observation X. It
may be linear or non-linear.
» For 2 classes, 1 discriminant function is enough.

» It is used to create a decision rule (which then
assigns a class to an observation):

5()?):{ +1 iff  f(X) >0, and

o %
Y= ~1 iff (%) <0,

ie., y = 0(X) = sign (f(X)).

f(x)
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Discriminant function

Discriminant function f(X):

> It assigns a real number to each observation X. It
may be linear or non-linear.

» For 2 classes, 1 discriminant function is enough. \/
> (which then ‘

It is used to create a decision rule
assigns a class to an observation):

?:(5(2’):{ +1 iff f(X)>0, and

X
-1 iff f(X) <0,
ie., y = 0(X) = sign (f(X)).
Decision boundary: {X|f(X) = 0}
Linear classification: the decision boundaries must be linear.
» Learning then amounts to finding a suitable function f (or its parameters).
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Example: Female/Male classification based on height

Training (multi)set 7 = {(x(), sONN  x() € x, s0) € S = {F, M}

i 1 2 3 4 5 6 7 8 9 10 11 12
Height x(/) 115 125 130 140 150 155 165 170 175 180 185 190
Gender s()) F F F F F F F M M M M M

Gender y() (+1/-1) -1 -1 -1 -1 -1 -1 -1 41 +1 +1 +1 +1

01- Female/Male classification

0.08 [

0.06

0.04 -

0.02 -

or O OO0 O OO Oxxxxx

0.02 . . . . . . . ,
60 80 100 120 140 160 180 200 220
2 = height [cm] 24 /52



Example: Female/Male classification based on height

Training (multi)set 7 = {(x(), sONN  x() € x, s0) € S = {F, M}

i 1 2 3 4 5 6 7 8 9 10 11 12
Height x(/) 115 125 130 140 150 155 165 170 175 180 185 190
Gender s()) F F F F F F F M M M M M

Gender y() (+1/-1) -1 -1 -1 -1 -1 -1 -1 41 +1 +1 +1 +1

01- Female/Male classification

A new point to clasify: x? = 163

0.08 [
Which class does x@ belong to? §(x®) =?
0.06
0.04 -

0.02 -

or O OO0 O OO Oxxxxx

0.02 . . . . . . . ,
60 80 100 120 140 160 180 200 220
2 = height [cm] 24 /52



Example: Linear discr. function, LSQ fit

Female/Male classification, linear classifiers
T

150

O Female
x Male

f(z) =wiz 4+ wp

-1.5 -

X X X x »

60

80

100 120 140 160 180
x = height [cm]

200

220
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Example: Corresponding decision strategy

Female/Male classification, linear classifiers
T

2 T T T

O Female
1.5+ x Male n
f(z) =wiz + wp
H|—d() = sign(f(x)) T

05 —

-1.5 - -

2 | | | | | | |
60 80 100 120 140 160 180 200 220

2 = height [cm]
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Learning linear classifier: naive approach

1r

05F

T
o

-0.5 1

Let's have a dataset of input vectors %) and their classes s().
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Learning linear classifier: naive approach

1 (v L L
o Pate % o oy
o %o o® 800 Y g
0 %

Let’s encode the classes corresponding y() = —1 or y() = 1.
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Learning linear classifier: naive approach

Let’s fit a linear discriminant function by minimizing MSE as in regression.

The contour liney =0 ...
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Learning linear classifier: naive approach
1

0.5

-1 -0.5 0 0.5 1

...then forms a linear decision boundary in the original 2D space.
But is such a classifier good in general?
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Can we do better than fitting a linear function?
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Fitting a better function: Logistic regression

1r

05F

T
o

-0.5 1

Let's have a dataset of input vectors %) and their classes s().
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Fitting a better function: Logistic regression

15
1 . Sae e
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05 A ..y,
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0
- N
1 0 0.5 1
X9 1 0.5

Let’s encode the classes corresponding y() = 0 or y() = 1.
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Fitting a better function: Logistic regression

Let's fit a sigmoidal discriminant function by minimizing MSE as in regression.

The contour line y =0.5 ...
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Fitting a better function: Logistic regression
1

0.5

-1 -0.5 0 0.5 1

...then forms a linear decision boundary in the original 2D space.
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Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the

values of a linear function )

=\ i
fW(X)—g(W X)_ 1—*—67"7—%?7

where g(z) = is the sigmoid function (a.k.a logistic function).

1+ e 2

30/52



Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the

values of a linear function )

=\ Ty
ol) = 89 R) =

1
where g(z) = T5ez is the sigmoid function (a.k.a logistic function).
e
Interpretation of the model:
» f5(X) can be interpretted as an estimate of the probability that X belongs to class 1.
» The decision boundary is defined using a level-set/countour {X : f;(X) = 0.5}.
» Logistic regression is a classification model!
>

The discriminant function f3(X) itself is not linear anymore; but the decision boundary is
still linear!

v

Thanks to the sigmoidal transformation, logistic regression is much less influenced by
examples that are far from the decision boundary!
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LSQ fit of a sigmoid

Sigmoid fit to the data
I

15 i 1 I
o Female
x Male
_ 1
f(l') T 14e(wiztuwg) OSSP SV
1 St
0.5 _
0 c c-C o c-C < -
-0.5 | | | | | | |
60 80 100 120 140 160 180 200 220

x = height [cm)]
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Comparing Linear and Sigmoid LSQ fit

) Comparing Linear LSQ with Sigmoid LSQ
I I I

o Female
x Male
15 f(z) = wiz +wp 1
—d(z) = sign(f(z))
i fu@) =2 (o) - 1
—d(z) = sign(fs(z))
05| -
o+ _
.05 J ]
1 = —e & o—o & —
15— -
2 \ \ \ \ \ \ \
60 80 100 120 140 160 180 200 220

2 = height [cm]
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What loss function ¢ is suitable?

To train the logistic regression model, one can minimize the Jysg criterion:

» a non-convex, multimodal landscape which is hard to optimize.

~10g ()
— —log(1-7)
35
3
25
=
22
Z
S5
1
05
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What loss function ¢ is suitable?

To train the logistic regression model, one can minimize the Jysg criterion:

» a non-convex, multimodal landscape which is hard to optimize.

Logistic regression uses a loss function called cross-entropy : — —log(1 - §)
N
1 _ .
S, T) =5 _E;e(y“, fiz (%7))), where "
=
~ —log(y) ify=1 52
“15
which can be rewritten in a single expression as ’
~ ~ ~ 0.5
Uy,y) = —y -log(y)—(1 —y) - log(1 — ).

» Easier to optimize for numerical solvers.
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MSE vs cross entropy loss

Various loss functions

Sigmoid fit to the data
T T T

= 15 ‘
-y
45 (- o Female
- x Male
4 —log(#) 1 o
——log(1 —9) e f(2) = —m x % X X s
35 og(1—9 1o (wiztug)
—1{(x) by cross-entropy loss
05+ |
0 < ST < ST oo (]
_05 1 1 1 1 1 1 1
: : 60 80 100 120 140 160 180 200 220
0 0.2 0.4 0.6 0.8 1

x = height [cm)]
Yy

Sigmoidal f(x) can be also interpreted as P(s = Male | x): direct learning of a

discriminative model

Cross-entropy loss strongly penalizes hard errors, complete mismatches.
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Alternative idea: Etalons

Represent each class by a single example called etalon ! (Or by a very small number of
etalons.)

Female/Male classification

d er = ave({x() : s() = F}) = 140
sl O Female . (). () — MYy = 180
X Male em = ave({x\") : sV = M}) =

06| Kl Female-etalon
O Male-etalon
04l
02
of O 00 [0 00 Ox & x
02}
04l
06
081
1 ‘ ‘ ‘ ‘ ‘ ‘ |
60 80 100 120 140 160 180 200
height [cm]
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Alternative idea: Etalons

Represent each class by a single example called etalon ! (Or by a very small number of
etalons.)

0.8

0.6

04 r

0.2

-0.2

-0.4

-0.6

-0.8

Female/Male classification

odxo

Female
Male
Female

-etalon
Male-etalon

O 00 O 00 Ox %

60

I
80

| | | | | |
100 120 140 160 180 200
height [cm]

er = ave({x() : s() = F}) = 140
em = ave({x() : s() = M}) =180

xQ =163

Based on etalons: d® = §(x®) =7
Ade=F
B d?=M
C Both classes equally likely

D Cannot provide any decision
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Alternative idea: Etalons

Represent each class by a single example called etalon ! (Or by a very small number of
etalons.)

0.8

0.6

04 r

0.2

-0.2

-0.4

-0.6

-0.8

Female/Male classification

odxo

Female
Male
Female

-etalon
Male-etalon

O 00 O 00 Ox %

60

I
80

| | | | | |
100 120 140 160 180 200
height [cm]

er = ave({x() : s() = F}) = 140
em = ave({x() : s() = M}) =180

x@ =163
Based on etalons: d® = §(x®) =7

Classify as d? = argmin g dist(x?, e;)

What type of function is dist(x?, e5)?
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Etalon classifier is a Linear classifier!
Assuming dist(x, ) = (x — e)?, then

argmin dist(x, e;) = argmin(x — e5)? = argmin(_ x> —2esx + €2) =

seS seSs SES L oret
_ - 2\ _ 1,
= argmin(—2esx + ;) = argmax( esx — -e5 )
s€s ses . 2

linear function of x
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Etalon classifier is a Linear classifier!
Assuming dist(x, ) = (x — e)?, then

argmin dist(x, e;) = argmin(x — e5)? = argmin(_ x> —2esx + €2) =

seS seSs SES L oret
— aremi 2y _ 1.,
= argmin(—2esx + ;) = argmax( esx — -e5 )
s€s ses . 2

linear function of x

Multiclass classification: each class s has a linear discriminant function f;(x) = asx + bs and

d(x) = argmax f5(x)
seS
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Etalon classifier is a Linear classifier!
Assuming dist(x, ) = (x — e)?, then

argmin dist(x, e;) = argmin(x — e5)? = argmin(_ x> —2esx + €2) =
seS seSs seS$ comst

. 1
= argmin(—2esx + €2) = argmax(  esx — ~e2 )
ses ses 2

linear function of x

Multiclass classification: each class s has a linear discriminant function f;(x) = asx + bs and

d(x) = argmax f5(x)
seS

Binary classification: a single linear discriminant function g(x) is sufficient and

[ s ifg(x) >0,
o) = { s; if g(x) <0.
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Example: F/M — Linear discriminant functions based on etalons

x10% Female/Male classification

Discriminant functions for 2 classes:

O Female
®  Male
Y71 O Female-etalon / fr(x) = apx + br =
n Male-etalon 1
1 | |[===Female-discr-func — epx — *6,2_— — 140x — 9800
Male-discr-func 2

[%2]
C
i)
3]
5
g
:é 05| fM(X) = ayx + by =
L2 180x — 16200
S =eyx — =€y = X —
5 ot O 00 OO0 00 OxxExx 2 M
-0.5 %
60 80 100 120 140 160 180 200
height [cm]
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Example: F/M — Linear discriminant functions based on etalons

value of discriminant functions

151

x10%

Female/Male classification

O Female
®  Male
B rFemale-etalon

/

B Male-etalon
| | === Female-discr-func
Male-discr-func

Etalon-sep-func

05
or O OO0 x
-055p
1 . . . . . . |
60 80 100 120 140 160 180 200
height [cm]

Discriminant functions for 2 classes:
fr(x) = apx + bp =
=erx — %e,% = 140x — 9800
m(x) = aux + by =

1
= eyx — Eeﬁﬂ = 180x — 16200

A single discr. func. separating 2 classes:

g(x) = fr(x) — fm(x) =
= —40x + 6400
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Example: F/M — Can we do better etalons?

value of discriminant functions

-0.5

25

x10%

Female/Male classification

N

=
o
T

i

O Female
®  Male
B rFemale

-etalon
O Male-etalon
-discr-func

== Female

Male-discr-func
Etalon-sep-func
== Perceptron-sep-func

o
o

o

60

80

100 120 140 160 180 200
height [cm]

Linear classifiers based on average etalons
make some errors.

A perceptron algorithm may be used to find
a zero-error classifier (if one exists).
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Etalons in multidimensional spaces

Pentagon data minimum distance from etalons
1.5 15
1 1t
%

X x *

xE x X * *: *
05f x x X o KK * 05/ X : %*

* % o) -ﬂ‘}

x O

-05f ﬁ#& :._ e

-1 -1t
15 : : : : ‘ ; -15 : ‘ ‘ ‘
-15 -1 -0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5
X Xl
From 7 = {("), s())}, extract one etalon &; for each class s € S.

15
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Etalons in multidimensional spaces (cont.)

Extract etalon for each class s: minimum distance from etalons
157

& = ave({x\) : s() = 5})

0.5r
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Etalons in multidimensional spaces (cont.)

Extract etalon for each class s:
& = ave({x\) : s() = 5})
Decision strategy

§(X) = argmin||X — &
ses

15p

0.5r

minimum distance from etalons
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Etalons in multidimensional spaces (cont.)

Extract etalon for each class s:
& = ave({x\) : s() = 5})
Decision strategy

§(X) = argmin||X — &
ses

The corresponding decision boundaries halve the
distances between pairs of etalons.

15p

0.5r

minimum distance from etalons
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Digit recognition — average-based etalons

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D923 456789

Figures from [7].
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Bayesian classification vs Discriminant functions

Decision based on discriminant function: . Pentagon data

0(X) = argmax f(X,s)
scS I %

Decision based on posterior prob. (Bayes): osl

P(X|s
d(X) = argmax P(s|X) = argmax ————— = ¢ 02
( ) s ( | ) Ses P(X) A AAA§

If we choose

f(X,s) = P(X [ s)P(s),

L '35 = 05 0 05 1 15
the two methods coincide. X,
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Etalon classifier: generalization to higher dimensions

I(X) = argmln |X — &]|? = argmin(X "X — 28/ X + &l &) =
€S seS

1
= argmln(xTx -2 (_’Tf(' — f(é‘;ré's))) =
seS 2

1
= argmax <é’5T)_<’ — (é’zé’s)> =

seS 2
— argmax(W, X + wsp) = argmax gs(X).
ses seS

Linear function (plus offset)

Tz = = 1 1,
gs(X) = wy X+ wsg, where ws=28&s and ws = —Ees €s.
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Learning and decision

Learning stage - learning models/function/parameters from data.

Decision stage - decide about a query X.

What to learn?
> Generative model : Learn P(X,s). Decide according to argmax, P(s|X).
» Discriminative model : Learn directly P(s|X) and use it for decisions.

» Discriminant functions : Learn f;(X) and decide according to argmax, f;(X).
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Accuracy vs precision

(b)

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg 48 /52


https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy, trueness, precision

Reference value

Probability Accuracy
density

«——— Value
Precision

» Trueness : closeness of the average to the correct value (systematic error, bias)
» Precision : closeness of individual measurements (variance, repeatability, reproducibility)

> Accuracy : contains both trueness and precision

https://en.wikipedia.org/wiki/Accuracy_and_precision
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Further reading: Chapter 18 of [6], or chapter 4 of [1], or chapter 5 of [2]. Many figures
created with the help of [3]. You may also play with demo functions from [7].
Human deciding and predicting under noise, [4] (in Czech [5])
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