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Notes

We will show that states/decisions/actions/control-commands are the same for deteriministic problems



http://cyber.felk.cvut.cz/vras
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Notes


https://commons.wikimedia.org/w/index.php?curid=228623

Understanding the problem is the key, DALL-E.
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Notes

DALL-E creations after correctly explaing the problem itself.



Outline

Search problem. What do you want to solve?

State space graphs. How do you formalize/represent the problem? Problem abstraction.

Strategies: which tree branches to choose?

>

| 4

» Search trees. Visualization of the algorithm run.
>

» Strategy/Algorithm properties. Memory, time, . ..
>

Programming infrastructure.
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Example: Traveling in Romania
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Notes
Ok, start with a simple one, almost everybody knows about the navigation - path planning problem. Waze,
Garmin, ... Here, the problem can be transferred into a graph quite directly - a map is a kind of a graph, states

are location in a city.
Can you think about more problems?
For example:

e Touring problems. Special case: Traveling salesperson problem — each city must be visited exactly once.
e Planning robot movements — mobile robot or manipulator.
e VLSI (chip) layout.



Traveling Example:

Goal:
be in Bucharest

State and Actions
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Notes

Classical problem from the Book [2], we use it, too.

states and actions will be frequently discussed in several lectures and algorithms. It is important to fully

understand them. At crossings, we need to decide about the next road - this is the action. We assume that we

reach the next crossing - result of the action.



Traveling Example:

Goal:
be in Bucharest
Problem formulation:
states:

State and Actions
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Notes

Classical problem from the Book [2], we use it, too.

states and actions will be frequently discussed in several lectures and algorithms. It is important to fully

understand them. At crossings, we need to decide about the next road - this is the action. We assume that we

reach the next crossing - result of the action.



Traveling Example: State and Actions

Goal:
be in Bucharest
Problem formulation: Arad@)
states: position in a city (cities)
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actions (decisions):

Dobreta [] .
Eforie
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Notes
Classical problem from the Book [2], we use it, too.

states and actions will be frequently discussed in several lectures and algorithms. It is important to fully
understand them. At crossings, we need to decide about the next road - this is the action. We assume that we

reach the next crossing - result of the action.



Traveling Example: State and Actions

Goal:
be in Bucharest
Problem formulation: Arad@)
states: position in a city (cities)

92

Slblu g9 Fagaras

actions (decisions): select a road
Solution:

Dobreta [] .
Eforie
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Notes
Classical problem from the Book [2], we use it, too.

states and actions will be frequently discussed in several lectures and algorithms. It is important to fully
understand them. At crossings, we need to decide about the next road - this is the action. We assume that we

reach the next crossing - result of the action.



Traveling Example: State and Actions

Goal:
be in Bucharest
Problem formulation: Arad@)
states: position in a city (cities)

Sibi 92
. iU g9  Fagaras

actions (decisions): select a road
Solution:

Sequence of cities (path)

(sequence of actions/decisions [2])
Optimality — Cost, Loss, Utility, ...:

Dobreta [] .
Eforie

6/33
Notes
Classical problem from the Book [2], we use it, too.

states and actions will be frequently discussed in several lectures and algorithms. It is important to fully
understand them. At crossings, we need to decide about the next road - this is the action. We assume that we

reach the next crossing - result of the action.



Traveling Example: State and Actions

Goal:
be in Bucharest
Problem formulation: Arad@)
states: position in a city (cities)

Sibi 92
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actions (decisions): select a road
Solution:

Sequence of cities (path) 7

(sequence of actions/decisions [2])
Optimality — Cost, Loss, Utility, ...: Dobreta [J

Energy, time, tolls, ... d Giurgiu

[JHirsova

u
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Notes
Classical problem from the Book [2], we use it, too.

states and actions will be frequently discussed in several lectures and algorithms. It is important to fully
understand them. At crossings, we need to decide about the next road - this is the action. We assume that we

reach the next crossing - result of the action.



Example: The 8-puzzle

7 2 4
5 6
8 3 1
Start State

states?

actions?

solution?

cost?

Notes

1 2

4 5

7 8
Goal State
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Also known as n — 1 puzzle.
e States: Location of each of the 8 tiles and the blank.

e Number of states: 9!

e Initial state: any state. (Note that any given goal state can be reached from exactly half of the initial

states.)

e Actions: Movements of the blank space: Left, Right, Up, Down (or a subset of these)

e Solution / goal test: Check whether state matches the goal configuration.

e Path cost: nr. steps in the path (each step costs 1)

Toy problem (3.2.1) from [2].




A Search Problem

> State space (including Start/Initial state): position, board configuration,
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Notes

We will use the terminology throught the next 5-6 lectures; also for Markov (Sequential) Decision Processes,
Reinforcement Learning.

Make a mental test: You are a robot, going from home to school. What would be states, actions, transition
model, goal test?

Transition model can be also understood as a mapping between actions and results/outcome.



A Search Problem

> State space (including Start/Initial state): position, board configuration,

» Actions : drive to, Up, Down, Left ...
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Notes

We will use the terminology throught the next 5-6 lectures; also for Markov (Sequential) Decision Processes,
Reinforcement Learning.

Make a mental test: You are a robot, going from home to school. What would be states, actions, transition
model, goal test?

Transition model can be also understood as a mapping between actions and results/outcome.



A Search Problem

> State space (including Start/Initial state): position, board configuration,
» Actions : drive to, Up, Down, Left ...

» Transition model : Given state and action result state (and cost or reward)
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Notes

We will use the terminology throught the next 5-6 lectures; also for Markov (Sequential) Decision Processes,
Reinforcement Learning.

Make a mental test: You are a robot, going from home to school. What would be states, actions, transition
model, goal test?

Transition model can be also understood as a mapping between actions and results/outcome.



A Search Problem

State space (including Start/Initial state): position, board configuration,
Actions : drive to, Up, Down, Left ...

Transition model : Given state and action result state (and cost or reward)

vvyVvVyy

Goal test : Are we done?
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Notes
We will use the terminology throught the next 5-6 lectures; also for Markov (Sequential) Decision Processes,
Reinforcement Learning.
Make a mental test: You are a robot, going from home to school. What would be states, actions, transition
model, goal test?

Transition model can be also understood as a mapping between actions and results/outcome.



Discrete State Space

State space graph: a representation of a search problem

| 4
| 4

4
>
4

States s € S = {S,A,B,C,D, G} (finite set) ee

Arcs represent actions a, for each state s, a € A(s)

(A is also finite) O @
State transition function s’ = result(s, a)

Start (initial) state sp € S, sp = S.
Goal set S¢ C S.

Each state occurs only once in a state (search) space.
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Notes

Formalizing a real world problem — (creating) a state space graph — could be a problem in itself. | put creating
into brackets as it may be also infinite.
Close connection to graph algorithms like Dijkstra, Floyd-Warshall.

Graph algorithms assume complete info about the graphs - the main input.
For many real-world problems, the graph is not known in advance.

The state space graph is revealed during the search. The graph serves as an abstraction - mental model -
rather than as an actual data representation.

Many real world problems have too many vertices, think about n — 1 puzzle or chess, number of possible
configurations is enormous.

A solution can be actually quite shallow.



agent — problem dialog (a programmer’s viewpoint)

(search) agent problem - env

N\
@nsert(so) S0 S = env.reset() f N
s < Q.pop_first()
® ‘.
Do o (e
@@ ©@® .
@®E ()(sXe) _ s’ = env.apply_transition(s, a) -

\ ____
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A
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g = env.get_actions(sy)

A

Notes




BFS, Q is FIFO data structure (queue)
: function FORWARD_SEARCH @

1
2 Q.insert(_, sp) and mark sp as visited

3 while Q not empty do

4 p,s < Q.pop()

5: parent[s] < p

6 if s € S¢ then return Success

7 for all a € A(s) do @
8 s’ « result(s, a)

9 if s’ not visited then

10: Mark s’ as visited

11: Q.insert(s, s’)

12: else

13: ~ Resolve duplicate s’
return Failure

Q: (.S)

visited: S 11/33

Notes

What does the Q.pop() function/method do?

e Do we need to resolve duplicates somehow? If not, why?
e Could we stop and report success earlier?

e Howe to create the path?

This is the key slide to understand the difference between graph problem and tree search.
Create the search tree by pencil, think about Q and visited (whatever it may be).

How would you name the data structure Q? What kind of data structure?

When building the search tree:

e white - result of transition
e gray - visited and inside Q
e dark gray - visited and explored (outside Q)

(made) invisible - forgotten



BFS, Q is FIFO data structure (queue)

1: function FORWARD_SEARCH

2 Q.insert(_, sp) and mark sp as visited
3 while Q not empty do

4 p,s < Q.pop()

5: parent[s] < p
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7 for all a € A(s) do @
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9 if s’ not visited then

10: Mark s’ as visited

11: Q.insert(s, s’)
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Notes
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(made) invisible - forgotten
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BFS, Q is FIFO data structure (queue)

1: function FORWARD_SEARCH e
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BFS, Q is FIFO data structure (queue)

1: function FORWARD_SEARCH
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3 while Q not empty do
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BFS, Q is FIFO data structure (queue)
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1: function FORWARD_SEARCH e
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BFS, Q is FIFO data structure (queue)

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

: function FORWARD_SEARCH

Q.insert(_, sp) and mark sp as visited
while Q not empty do
p,s < Q.pop()
parent[s] < p
if s € S¢ then return Success
for all a € A(s) do
s’ « result(s, a)
if s’ not visited then
Mark s as visited
Q.insert(s, s’)
else
Resolve duplicate s’

return Failure

- 0@
G

Q: (S0
visited: SAB C

11/33

Notes

What does the Q.pop() function/method do?

Do we need to resolve duplicates somehow? If not, why?

Could we stop and report success earlier?

Howe to create the path?

This is the key slide to understand the difference between graph problem and tree search.
Create the search tree by pencil, think about Q and visited (whatever it may be).

How would you name the data structure Q? What kind of data structure?

When building the search tree:

white - result of transition
gray - visited and inside Q
dark gray - visited and explored (outside Q)

(made) invisible - forgotten



BFS, Q is FIFO data structure (queue)

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

: function FORWARD_SEARCH

Q.insert(_, sp) and mark sp as visited
while Q not empty do
p,s < Q.pop()
parent[s] < p
if s € S¢ then return Success
for all a € A(s) do
s’ « result(s, a)
if s’ not visited then
Mark s as visited
Q.insert(s, s’)
else
Resolve duplicate s’

return Failure
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Q:  (S.C) (B,D)
visited: S A B C D
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Notes

What does the Q.pop() function/method do?

Do we need to resolve duplicates somehow? If not, why?

Could we stop and report success earlier?

Howe to create the path?

This is the key slide to understand the difference between graph problem and tree search.
Create the search tree by pencil, think about Q and visited (whatever it may be).

How would you name the data structure Q? What kind of data structure?

When building the search tree:

white - result of transition
gray - visited and inside Q
dark gray - visited and explored (outside Q)

(made) invisible - forgotten



BFS, Q is FIFO data structure (queue)

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

: function FORWARD_SEARCH @

Q.insert(_, sp) and mark sp as visited
while Q not empty do
p.s ¢ Q.pop() ,o
parent[s] < p
if s € Sg then return Success
for all a € A(s) do
s’ « result(s, a)
if s’ not visited then
Mark s’ as visited o
Q.insert(s, s’)

else

~ Resolve duplicate s’
return Failure

Q: (BD)
visited: SABCD 11/33

Notes

What does the Q.pop() function/method do?
Do we need to resolve duplicates somehow? If not, why?
Could we stop and report success earlier?

Howe to create the path?

This is the key slide to understand the difference between graph problem and tree search.
Create the search tree by pencil, think about Q and visited (whatever it may be).

How would you name the data structure Q? What kind of data structure?

When building the search tree:

white - result of transition
gray - visited and inside Q
dark gray - visited and explored (outside Q)

(made) invisible - forgotten



BFS, Q is FIFO data structure (queue)
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if s’ not visited then
Mark s’ as visited o R
Q.insert(s, s’)

else

~ Resolve duplicate s’
return Failure
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Notes

What does the Q.pop() function/method do?
Do we need to resolve duplicates somehow? If not, why?
Could we stop and report success earlier?

Howe to create the path?

This is the key slide to understand the difference between graph problem and tree search.
Create the search tree by pencil, think about Q and visited (whatever it may be).

How would you name the data structure Q? What kind of data structure?

When building the search tree:

white - result of transition
gray - visited and inside Q
dark gray - visited and explored (outside Q)

(made) invisible - forgotten



BFS, Q is FIFO data structure (queue)

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

: function FORWARD_SEARCH @

Q.insert(_, sp) and mark sp as visited
while Q not empty do
p.s ¢ Q.pop() ,o
parent[s] < p
if s € S¢ then return Success
for all a € A(s) do
s’ « result(s, a)
if s’ not visited then
Mark s’ as visited o R
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~ Resolve duplicate s’
return Failure

Q:  (B.D) (C.G)
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Notes

What does the Q.pop() function/method do?
Do we need to resolve duplicates somehow? If not, why?
Could we stop and report success earlier?

Howe to create the path?

This is the key slide to understand the difference between graph problem and tree search.
Create the search tree by pencil, think about Q and visited (whatever it may be).

How would you name the data structure Q? What kind of data structure?

When building the search tree:

white - result of transition
gray - visited and inside Q
dark gray - visited and explored (outside Q)
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Few possible examples:
e Unknown, Unvisitied, . ..
e Dead, Closed, Explored, ...

e Alive, Open, Frontier, ...
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Search (algorithm) properties

» Guaranteed to find a solution (if exists)?

13/33

Notes
Draw a (symbolic—think about a triangle) sketch of a (search) tree. It may grow upwards or downwards. How
would you characterize/parametrize size of a tree.

) 1 node
e Depth d of a node in the tree.
b nodes
e Max-Depth of the tree m. Can be .
b? nodes
0.
e (Averege) Branching factor b.
e s denotes the depth of the
shallowest Goal. b nodes

e How many nodes in the whole tree?

b™ nodes
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Strategies
How to traverse/build a search tree?
> Depth d of a node in the tree.

» Max-Depth of the tree m. Can
be co.

v

(Average) Branching factor b.

P> s denotes the depth of the
shallowest Goal . @ @ @

» How many nodes in the whole

00161000,
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Notes
It is perhaps worth to remember that the search tree is built as the algorithm goes. Or better said, the tree is
a human friendly representation of the machine run. Even small graphs (problems) may result in a large tree -

depending on the search algorithm.
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BFS properties

Complete? 1 node
b nodes
b2 nodes
s b nodes
m b™ nodes
15/33
Notes

e Time, can process the whole tree until s: b°, well actually b+ b*> + b + - - - 4 b° but the last layer vastly
dominates. Try some calculations for various b.

e Space, all the frontier: b°
e Completness: Yes!
e Optimality, it does not miss the shallowest solution, hence if all the transition costs are 1: Yes!

Think about the Complexities in terms of |S| and |.A| (Graph theory: vertices, edges)
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DFS, Q is LIFO data structure (stack)

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

function FORWARD _SEARCH
Q.insert(_, sp) and mark sp as visited
while Q not empty do
p;s < Q.pop()
parent[s] < p
if s € S then return Success
for all a € A(s) do
s’ + result(s, a)
if s’ not visited then
Mark s’ as visited
Q.insert(s, s’)
else

~ Resolve duplicate s’
return Failure

Q: (.,S)
visited: S

16/33

Notes

Do we need to resolve duplicates somehow? If not, why?
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DFS properties

Complete? 1 node
b nodes
b2 nodes
s b nodes
m b™ nodes
17/33
Notes

e Time, can process the whole tree: b™

e Space, only the path so far: bm (a path from root to leaf (m), plus siblings on the path are also on the
frontier (b x m) )

e Completness: m may be oo hence, not in general
e Optimality: No! It just takes the first solution found.
Think about the Complexities in terms of |S| and |.A| (Graph theory: vertices, edges)
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lterative deepening DFS (ID-DFS)

» Start with maxdepth = 1

18/33
Notes
Really, how much do we repeat/waste? The “upper levels”, close to the root, are repeated many times. However,

in a tree, most nodes are the bottom levels and nr.

nodes traversed is what counts. More specifically, for a
solution at depth s, the nodes on the bottm level are generated only once, those on the next-to-bottom level 2x
... children of the root are generated sx. Compare the number of nodes generated ID-DFS vs. BFS:

N(ID-DFS) = (s)b+ (s — 1)b* + (s = 2)b> + - -- 4 (1)b°
N(BFS) = b+ b+ b>+ -+ b°
Try some calculations for various s and b. For b =10 and d = 5:

N(ID-DFS) = 50 + 400 + 3000 + 20000 + 100000 = 123450

N(BFS) = 10+ 100 + 1000 + 10000 + 100000 = 111110
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(Example from [2].) =
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Uniform Cost Search (Dijkstra), Q is priority queue-1

1: function FORWARD_SEARCH 3 e 1
2 Q.insert(_, sp, 0) and mark sy as visited -
3 while Q not empty do ] 1 /1 1
4: p,s,_ < Q.pop_first() 31 1 5@
5: parent[s] < p /
6: if s € Sg then return Success 1
7: for all a € A(s) do
8: s', ¢ « result(s, a) > ¢ cost
0: if s’ not visited then
10: Mark s’ as visited
11 Q.insert(s, s’, cost_from_start)
12: else
13: Resolve duplicate s’
return Failure
Q: (-.S,0)
visited: S

19/33
Notes

e Do we need to resolve duplicates somehow? If not, why?
e How is the cost_from_start computed?

e Why is it (sometimes) called Uniform cost search?
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Notes

e Do we need to resolve duplicates somehow? If not, why?
e How is the cost_from_start computed?

e Why is it (sometimes) called Uniform cost search?
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e Why is it (sometimes) called Uniform cost search?



Uniform Cost Search (Dijkstra), Q is priority que

1: function FORWARD_SEARCH

2 Q.insert(_, sp, 0) and mark sy as visited
3 while Q not empty do

4 p,s,_ < Q.pop_first() 1
5: parent[s] < p
6
7
8
9

3
if s € S¢ then return Success
for all a € A(s) do
s', ¢ « result(s, a) > ¢ cost

: if s’ not visited then
10: Mark s’ as visited
11 Q.insert(s, s’, cost_from_start)
12: else
13: Resolve duplicate s’

return Failure

Q:

1
1

1

31
]1

EN

1 5@
59
®9

(C,G,6)

visited: SABCGD

Notes

19/33

e Do we need to resolve duplicates somehow? If not, why?
e How is the cost_from_start computed?

e Why is it (sometimes) called Uniform cost search?



Uniform Cost Search (Dijkstra), Q is priority que

1: function FORWARD_SEARCH

2 Q.insert(_, sp, 0) and mark sy as visited
3 while Q not empty do

4 p,s,_ < Q.pop_first() 1
5: parent[s] < p
6
7
8
9

3
if s € S¢ then return Success
for all a € A(s) do
s', ¢ « result(s, a) > ¢ cost

: if s’ not visited then
10: Mark s’ as visited
11 Q.insert(s, s’, cost_from_start)
12: else
13: Resolve duplicate s’

return Failure

Q:

Notes

1
1

(C,G,6)
visited: SABCGD

1

31
]1

EN

1 5@
e
(o609 82
©3)
54)

19/33

e Do we need to resolve duplicates somehow? If not, why?
e How is the cost_from_start computed?

e Why is it (sometimes) called Uniform cost search?
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e How is the cost_from_start computed?

e Why is it (sometimes) called Uniform cost search?
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e Why is it (sometimes) called Uniform cost search?



Uniform Cost Search (Dijkstra), Q is priority que

1: function FORWARD_SEARCH

2 Q.insert(_, sp, 0) and mark sy as visited
3 while Q not empty do

4 p,s,_ < Q.pop_first()

5: parent[s] < p

6 if s € S¢ then return Success

7 for all a € A(s) do

8
9

s', ¢ « result(s, a) > ¢ cost

: if s’ not visited then
10: Mark s as visited
11 Q.insert(s, s’, cost_from_start)
12: else
13: Resolve duplicate s’

return Failure
Q.

visited: SABCGD

Notes

1
31 1
/
1

1

31

EN

!

0@

/33

e Do we need to resolve duplicates somehow? If not, why?
e How is the cost_from_start computed?

e Why is it (sometimes) called Uniform cost search?



UCS properties

1
3B F1
1 /1 1
31 1 5
/
él
Complete?

Notes

20/33

Parts of the (complete) search tree repeat, but with different costs
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Notes

Parts of the (complete) search tree repeat, but with different costs



Node selection, take argmin f(n). Search Node: n = (p, s, cost_value)
Selecting next node to explore (pop operation):

node <« argmin f(n)
neq

What is f(n) for DFS, BFS, and UCS?

21/33
Notes

e DFS: f(n) = —n.depth
e BFS: f(n) = n.depth
e UCS: f(n) = n.path_cost

Do humans look back when planing path? Is looking back important at all? If yes, when?
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» DFS: » f(n) = n.cost_from_start
» BFS: » f(n) = n.depth
» UCS: » f(n) = —n.depth

The good: (one) frontier as a priority queue

(l.e., priority queue will work universally. Still, stack (LIFO) and queue (FIFO) are
(conceptually) the perfect data structures for DFS and BFS, respectively.)

The bad: All the f(n) correspond to the accumulated cost from start to n, cost_from_start .

21/33
Notes

e DFS: f(n) = —n.depth
e BFS: f(n) = n.depth
e UCS: f(n) = n.path_cost

Do humans look back when planing path? Is looking back important at all? If yes, when?



How far are we from the goal cost-to-go ? — Heuristics

» A function that estimates how close a state is to the goal.

» Designed for a particular problem.

» h(s) — it is function of the state (attribute of the search node)
» It is often shortened as h(n) — heuristic value of node n.

22/33
Notes

What happens if h(s) = true cost?



Example of heuristics

Fagaras

99

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
& Giurgiu
Hirsova
Tasi
Lugoj

Dobreta ]
Eforie

366

160
242
161
176

77
151
226
244

Mehadia
Neamt

Oradea

Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

241
234
380
100
193
253
329

80
199
374
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Notes
Straight-line distance to Bucharest.

Illustration of greedy failing: Imagine going from lasi to Fagaras. Neamt will be chosen for expansion. This will

add lasi back. lasi is closer to Fagaras than Vaslui is and will be expanded again. Infinite loop... (3.5.1. in [?])



Greedy, take the n* = argmin, g h(n)

Notes

24/33

Also called “Greedy best-first search” [2].
What will happen in this example:

1. Expand “S”. Add “A” to frontier.

2. Expand “A". Add “B","D",“E".

3. Expand “E" (h=1). Get “G".
Wrong:

e not optimal

e not complete (tree search version) (Can be shown on the Romania example — go back.)

e (graph search version is complete only in finite state spaces)

Nice: it is simple.
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What is wrong (and nice) with the Greedy?
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Notes
Also called “Greedy best-first search” [2].
What will happen in this example:

1. Expand “S”. Add “A” to frontier.

2. Expand “A". Add “B","D",“E".

3. Expand “E" (h=1). Get “G".
Wrong:

e not optimal

e not complete (tree search version) (Can be shown on the Romania example — go back.)

e (graph search version is complete only in finite state spaces)

Nice: it is simple.




A* combines UCS and Greedy
h=1

UCS orders by backward (path) cost g(n)
Greedy uses heuristics (goal proximity) h(n)

Notes

25/33

Trace the search algorithm on the paper. Does it find the shortest path?



A* combines UCS and Greedy
h=1

UCS orders by backward (path) cost g(n)
Greedy uses heuristics (goal proximity) h(n)

A* orders nodes by: f(n) = g(n) + h(n)

Notes

25/33

Trace the search algorithm on the paper. Does it find the shortest path?



Is A* optimal?

2Graph example: Dan Klein and Pieter Abbeel

26 /33
Notes
Try to answer the question before going to the next slide.
1. S
- f(S)=g(S)+hS)=0+7=7
— expanding/poping this one and crossing out (removing from frontier)
2. S A
- f(A)=g(A)+hA)=1+6=7
3.§5—-G

- f(G)=g(G)+ h(G)=5+0=5
— This is now cheapest on the frontier. | pop/expand and I'm done.

Ooops! That's not cheapest! What went wrong?
What follows — keep for next slide. Problem with h(A) = 6. Overestimating the expense. (Same problem for

h(S).)

Estimates need to be < actual costs.
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2Graph example: Dan Klein and Pieter Abbeel

26 /33
Notes
Try to answer the question before going to the next slide.
1. S
- f(S)=g(S)+hS)=0+7=7
— expanding/poping this one and crossing out (removing from frontier)
2. S A
- f(A)=g(A)+hA)=1+6=7
3.§5—-G

- f(G)=g(G)+ h(G)=5+0=5
— This is now cheapest on the frontier. | pop/expand and I'm done.

Ooops! That's not cheapest! What went wrong?
What follows — keep for next slide. Problem with h(A) = 6. Overestimating the expense. (Same problem for

h(S).)

Estimates need to be < actual costs.



What is the right h(A)?

A: 0< h(A) <4

B: h(A) <3

C: 0< h(A)<3

D: 0 < h(A) o
27/33

Notes
h(A) < 3 it means less than the actual cost of going from A to goal. Heuristic must not be overly pesimistic.
B is correct.
Negative h(n) does not break the admissibility property but h(Goal) = 0 must be kept, always.
For a discussion, see, e.g.

https:/ /stackoverflow.com/questions /30067813 /are- heuristic-functions-that-produce-negative-values-inadmissible


https://stackoverflow.com/questions/30067813/are-heuristic-functions-that-produce-negative-values-inadmissible

Admissible heuristics

A heuristic function h is admissible if:

h(n) < cost(n.state, Goalnearest)
h(Goal) = 0

28/33

Notes
Even if negative heuristic value is allowed on the way to goal, does it make sense? How would you intepret
h(n) = 07 Is it a meaningful minimum? Why?



Consistent heuristic

1: function FORWARD_SEARCH

2 Q.insert(_, sp, 0) and mark sp visited
3 while Q not empty do

4 p,s, -+ Q.pop()

5: parent[s] < p

6 if s € S then return Success
7 for all a € A(s) do

8 s', ¢ « result(s, a)

9: if s’ not visited then

10: Mark s’ as visited

11: Q.insert(s, s’, cost_from_start + h(s'))
12: else
13: Resolve duplicate s’

return Failure

29/33
Notes
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return Failure
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What would be the proper h(A)?
Consider other h(s) fixed.

A: h(A) =1
B: h(A) =2
C: 1< h(A)<2
D: 0< h(A) <1
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As it will be explained in the next slides: h(A) < c(A, C)+ h(C) =2
h(S) < ¢(S, A) + h(A) it means h(A) > h(S) — c(A,S) =1



Consistent heuristics

h=0
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Notes
Our heuristic was admissible.
With tree search it would have worked. It would have expanded C and found the alternative, cheaper path.
For graph search, the problem is the A — C — G subgraph where the consistent heuristic condition is violated.
The general condition means we have two constraints for (A) for this particuar graph:
h(S) — h(A) < ¢(S, A)
h(A) — h(C) < ¢(A, C)
Yes, all consistent heuristics are also admissible. Btw., it is not easy to invent a heuristics that is admissible but

not consistent.
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Admissible h:
h(A) < true cost A— G
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Summary

> Effectivness — adding heuristic estimates of cost-to-go

» Not all heuristics are equally good (admissibility, consistence, informativeness)
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References, further reading

Some figures from [2]. Chapter 2 in [1] provides a compact/dense intro into search algorithms.

[1] Steven M. LaValle.
Planning Algorithms.
Cambridge, 1st edition, 2006.
Online version available at: http://planning.cs.uiuc.edu.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 4th edition, 2021.
http://aima.cs.berkeley.edu/.
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