Solving problems by Dynamic
Programming

Dynamic programming (DP) 1s a technique for etficiently computing
recurrences by storing partial results and re-using them when needed.

We trade space for time, avoiding to repeat the computation of a subproblem.

Solving problems by Dynamic
Programming

Dynamic programming (DP) 1s a technique for etficiently computing

recurrences by storing partial results and re-using them when needed.

We trade space for time, avoiding to repeat the computation of a subproblem.

Guideline to implement DP:

1.

2.
3.
4

Characterize the recursive structure of an optimal solution
Detfine recursively the value of an optimal solution
Compute, bottom-up, the cost of a solution

Construct an optimal solution

A A

Dynamic Programming Examples

Minimum cost from Sydney to Perth
Economic Feasibility Study

0/1 Knapsack problem

Traveling Salesman Problem

Sequence Alignment problem

Minimum Cost from Sydney to Perth

Based on M. A. Rosenman: Tutorial - Dynamic Programming Formulation
http://people.arch.usyd.edu.au/~mike/DynamicProg/DPTutorial.95.html

* Problem definition
— Travelling from home in Sydney to a hotel in Perth.
— Three stopovers on the way
* anumber of choices of towns for each stop,
* anumber of hotels to choose from in each city.
— Each trip has a different distance resulting in a different cost (petrol).
Hotels have different costs.

— The goal 1s to select a route to and a hotel in Perth so that the overall
cost of the trip is minimized.

http://people.arch.usyd.edu.au/~mike/DynamicProg/DPTutorial.95.html

Minimum Cost from Sydney to Perth

* Diagrammatic representation of the problem

Minimum Cost from Sydney to Perth

Recursive definition of solution in terms of sub-problem solutions

Optimal function:

V(i,n) =min hOtel_COSl‘(k)—l-peﬂ’Ol_COSt(j,i)-l—V(j,ﬂ—l)]

jk
with base case V (i,O) =0
where
n 1s the stage (stopover) number,
/ 1S a city on stopover 7,
J 1s acity from which we can arrive at

£ 1s a hotel in city 7

Minimum Cost from Sydney to Perth

Stage 1
star cost fro
A 22+ 70 92 S
B 8 + 80 88 S
C 12 + 80 92 S
0

Minimum Cost from Sydney to Perth

Stage 2
A B C cost from
D 92+8+50=150 88+25+50=163 | 92+13+50=155 | 150 A
E 92+10+70=172 | 88+10+70=168 | 92+13+70=175 | 168 B

Minimum Cost from Sydney to Perth

Stage 3

D E cost from
150+25+50=225 | 168+12+50=230 | 225 D

E

D

E

150+30+70=250 | 168+10+70=248 | 248

150+18+70=238 | 168+8=70=246 | 238
150+27+60=237 | 168+7+60=235 | 235

—T|D|T

Minimum Cost from Sydney to Perth

Stage 4
F G H I cost from
] 225+28+50=303 248+8+50=306 238+20+50=308 235+15+50=300 300 I
K | 225+13+70=308 2484+10+70=328 2384+10+70=318 235+10+70=315 308 F
L 225+15+60=300 2484+10+60=318 2384+10+60=308 235+7+60=302 300 F

Minimum Cost from Sydney to Perth

Stage 4
F G H I cost from
J 225+28+50=303 2484+8+50=306 2384-20+50=308 2354+15+50=300 300 I
K 225+13+70=308 248+10+70=328 238+10+70=318 2354+10+70=315 308 F
L 225+15+60=300 248+10+60=318 238+10+60=308 235+7+60=302 300 F

Generating solution routes by tracking backwards through the tables

Solution_1 = {1, J}

Minimum Cost from Sydney to Perth

Stage 3
D E cost | from
F 150+25+50=225 | 168+12+50=230 | 225 D
G 150+30+70=250 | 168+10+70=248 (248 | E
H 150+18+70=238 | 168+8=70=246 | 238 D
I 1504+27+60=237 | 168+7+60=235 |[235 |E

* Generating solution routes by tracking backwards through the tables
Solution_1 = {E, I, J}

Minimum Cost from Sydney to Perth

Stage 2
A B C cost from
D 92+8+50=150 88+25+50=163 | 92+13+50=155 | 150 A
E 92+10+70=172 | 88+10+70=168 | 92+13+70=175 | 168 B

* Generating solution routes by tracking backwards through the tables
Solution_1 = {B, E, L, J}

* Question: What is the second optimal solution?

Economic Feasibility Study

Based on M. A. Rosenman: Tutorial - Dynamic Programming Formulation
http://people.arch.usyd.edu.au/~mike/DynamicProg/DPTutorial.95.html

e Problem definition

— We are asked for an advice how to best utilize a large urban area in an expanding
town.

— Envisaged is a mixed project of housing, retail, office and hotel areas.
— Rental income is a function of the floor areas allocated to each activity.
— The total floor area is limited to 7 units.

— The goal is to find the mix of development which will maximize the
return.

http://people.arch.usyd.edu.au/~mike/DynamicProg/DPTutorial.95.html

Economic Feasibility Study

Expected annual profit for areas of 0-7 units allocated to each development type
in $1000

b1 o
a13 | g |3
[(]
AREA | | @2 |O |2
0 ol o|lo] o
1 2l 6| 1| 8
2 4| 9| 1 |12
3 6| 9| 2 |20
q g 110 | 1 |16
5 10|11 |15 |12
6 12112 |1z |10
7 14|13 |20 | 4

Economic Feasibility Study

STAGES 1 2 3 4

Diagrammatic representation: E IH"‘:“’"B Z‘;‘:l ';’;w 8
dkd\\\\ °i*\\°
FRPIN SN NN

Economic Feasibility Study

Recursive definition of solution in terms of sub-problem solutions

Optimal function:
V(n,A)= max R(n,a)+V(n—1,A—a)]

a=0...A
with base case V (n, O) =0

where

n 1s the stage number corresponding to the development type

1...Housing
2...Retail
3...0Office
4...Hotel

A i1s the total amount of area units allocated in stage 7,
a 1s the amount of area units allocated to development type 7,

R is the return generated by « units of development type 7.

Economic Feasibility Study

STAGE 1 - Housing STAGE 2 - Retail
*

ol v | il D} Bl o | 1|z|3]|4a|s |& |7 |r]| D2
o Qo Jo|o 0 oo | - o o
1 2 2 0 1 0+ | 2+0 - i) 0
2 4 4 0 2 0+3 | 246 | 4+0 | - 9 1]
3 & [0 3 0+9 | 249 | 446 | 60 | - 11 1
4 a 8 0 < 0+10 | 2+9 | 4+9 | 6+6 | 340 - 13 2
5 10 10 0 5 O0+11 | 2+10| 4+9 | 649 | 3+6 (1040 | - 15 3
o 12 12 0 = 0+12 | 2+11] 4+10) 649 | S+9 [10+6 | 12+0 | - 17| 4
7 14 14 0 7 0+13 | 2412 | 4+11) 6+10| 3+9 [10+9 | 12+6 | 1440 19 2

Riis the return generated by the total number of area units allocated in i-th stage.
Diis the number of area units allocated in (-1)-th stage.

Economic Feasibility Study

STAGE 3-Offce

S]]
BHE gl 1| 2z|3|l4als|&]| 70rs|opDs

&
B

Ll0) -
U411 | G40 -
Ol (B4l [94 | -
042 [B+1 | 941 | 1140 -
O%1 (642 | 941 | 11+1] 1340 -
0415641 | 942 | 1141 1341 15+0(-
D12 | 012 | 941 | 1142 1341 15+1(17+0| =
0420 6412 | 9+15] 11+1| 13+2| 15+1| 17+1| 1940

3 OB U1 B) B = O
ENGEReoe
MHES AW N =S

Economic Feasibility Study

STAGE 4- Hoel

040 -

0+2 | 6+0 -
0412 | 643|940 -
O+20 | 6412 |948 [11+0 -
O+16 | 6420 | 9412 [11+8 |13+40 -
O4+12 | 6416|9420 11412 |1348 |15+ -
0410 6412 |9416 1142013412 (1542 [17+40 -
044 | 6410 [9+12 11416 [13420 [15+12 [17+45 | 2440

R YL ST =
HEdBEges
PN

Question: Can you generate the optimal solution by tracking backwards
through the tables?

Economic Feasibility Study

STAGE 4- Hoel

040 -

0+2 | 6+0 -

0412 | 643|940 -
O+20 | 6412 |948 [11+0 -
O+16 | 6420 | 9412 [11+8 |13+40 -
O4+12 | 6416|9420 11412 |1348 |15+ -
0410 6412 |9416 1142013412 (1542 [17+40 -

044 | 6410 [9+12 11416 [13420 [15+12 [17+45 | 2440

R YL ST =
HEEBEEee
PN

Solution: Housing=2, Retail=2, Office=0, Hotel=3

Maximal return = 33

Counting Paths

How many ways are there to walk from A to B on this graph, if you are not
allowed to “backtrack’?
That 1s, all steps should be toward either the East, the South or the Southeast.

A

1/0 Knapsack problem

Based on Dr. Shieu-Hong Lin lecture notes:
http://csci.biola.edu/csci480spring03/knapsack.pdf

e Problem definition

— Input: a set of §={s,..., 5,} of #items where each s, has its value », and

weight », and a knapsack capacity V.

— The goal is to choose a subset O of § such that the total weight of
the items chosen does not exceed Wand the sum of items v;in Ois
maximal with respect to any other subset that meets the constraint.

— Note that each item g; either 1s or 1s not chosen to O.

Question: What would be a successful strategy for finding the optimal
solution if we were allowed to add a fraction x; of each item to the knapsack?

http://csci.biola.edu/csci480spring03/knapsack.pdf

1/0 Knapsack problem

Decompose the problem into smaller problems.
Let us assume the sequence of items S={s, 5, 53, ..., 3, }.

Suppose the optimal solution for § and Wis a subset O={s,, 5, 5.}, in which s,
is the highest numbered item in the sequence of items:

S=4515 835 535 Spp o> Spts> Spo + 55,

Then, O-{s,} is an optimal solution for the sub-problem §, ,={s, ..., 5.4} and
capacity W-w,.

The value of the complete problem § would simply be the value calculated for
this sub-problem S, ; plus the value »,.

1/0 Knapsack problem

Recursive definition of solution in terms of sub-problem solutions.
We construct a matrix V[0..n, 0.. W], where IVis the maximal allowed weight.

For 0=/=#n, and 0=»=1MI, the entry 17, »] will store the maximum (combined)
value of any subset of items {1, 2, ..., 7} of (combined) weight at most .

Each value (7,) represents the optimal solution to this sub-problem: What
would the value be if our knapsack weight was just » and we were only
choosing among the first £ items?

If we can compute all the entries of this array, then the array entry 1(n, V)
will contain the maximal value of items selected from the whole set § of
combined weight at most IV, that is, the solution to our problem.

1/0 Knapsack problem

* Recursive definition of solution in terms of sub-problem solutions

Optimal function:
leave item 7 take item 7

V(i,w)zmaX[V(i—l,w),vi +V(i—1,w—wl.)]

for1<i<n, O<w<W

with base cases
1% (O, w) =0
V(i,w)=0 forw<O0

1/0 Knapsack problem

Bottom-up computation:

VO,w)=0 foral 0<w<W, V(i,0)=0 forl<i<n

Compute the table using
V(i,w) =maX[V(i—1,w),vl. +V(i—1,w—wl.)], for1<i<n, O<w<W

row by row.

ViLbw] (lw=0| 1| 2| 3| | | W
=0 0 0O, 0, 010
1 =
2
—
n = |V

1/0 Knapsack problem

Example: Let =10 and

) 1 2| 3| 4

v, | 10 140 | 30 | 50

w;| 5| 4| 6| 3
Vlibw][O 1 2 3 4 5 6 7 8 9 10
i=0]0 0 0 0 0 0 0 0 0 0 O
170 00 0 0 10 10 10 10 10 10
2|0 0 0 0 40 40 40 40 40 50 50
3/0 0 0O 0 40 40 40 40 40 50 70
410 0 0 50 50 50 50 90 90 90 90

The final output 1s V(4, 10)=90.

Question: How do we find the optimal subset of items?

1/0 Knapsack problem

* Recovering the items that produce the optimal value:
— Start at I[n, W] and track backwards through the table.

Recall: V(i,w): max V(i—l,w),vl.+V(i—1,W—W,-):|

1<i<n, 0<wW
— It (G, w)=17(-1, ») then item s, was not added to the knapsack.
Continue the trace at I]~1, »].
— It VG, w)>17(-1, ») then item s, was added to the knapsack.

Continue the trace one row higher at (-1, w-w).

Vlibwl [O 1 2 3 4 5 6 7 8 9 10
i=0]0 0 0 fONO 0 O 0 O
110 0 O (g#) 0 10 10 10 10
210 0 0 40 40 40 50 5
3/0 0 0O 0 40 40 40 50 (70
4/0 0 0 50 50 50 50 90 \90

* The optimal subset is O={2, 4} in this case.

Traveling Salesman Problem

e Problem definition

— Given 7 cities and the distances 47 between any two of them, we wish to
find the shortest tour going through all cities and back to the starting city.
Usually the TSP is given as a G = (17, D) where "= {1, 2, ..., n} is the
set of cities, and C'is the adjacency distance matrix, with Vij € 17, 7 # J,
¢;;> 0, the probem is to find the tour with minimal distance weight, that
starting 1n 1 goes through all 7 cities and returns to 1.

* Known to be an NP-hard problem.
It can be solved in O(n!) steps.

Traveling Salesman Problem

Stages — stage 7 represents 7 cities visited .
Decisions — where to go next.

States — we need to know where we have already gone, so states are
represented by a pair (7, 5), where § is the set of 7 cities already visited and 7 is
the last city visited.

G, §) — length of the shortest path from city 7 to city 1 through all the cities in
S (in any order).
Ex.:

f4,{5,2,3}) — length of the shortest path from city 4 to city 1 through
cities 5, 2, and 3.

Recursive transition from smaller problems to bigger ones:

S, 8) =min(dist(i,)+ f (J,S =1/}))

TSP solution reduces to finding A1,17-{1})

Traveling Salesman Problem: Example

0O 2 9 10
Distance matrix: C = 1 0 6
15 7 8
6 3 12 |
t=1: f3,{2}) =, T 24}) = T 6 = T+H1 =8 suce(3,{2}) = 2
JA2Y) =0 + 2A}) =0 T oy =3+ =4 suce(4,2}) = 2
Sf12,{3}) = ¢35 T f3,4}) = 3 + ¢35y = 6+15 = 21; suce(2,{3}) =3
f4,43}) = ci5 + f3,4}) = c43 + ¢35y = 12415 = 27; suce(4,{3}) =3
JCA4Y) = 0y + fAA}) = 03y T 0y = 446 = 10; snee(2,14}) = 4

SBA4}) = o5y T fAAD) = 6y T oy =816 = 14 suce(3,{4}) = 4

Traveling Salesman Problem: Example

0O 2 9 10
Distance matrix: C = 1 0 6
15 7 8
6 3 12 |
t=1: f3,{2}) = + f24}) =5 T oy = TH1 =8 suce(3,{2}) = 2
SEAA2Y) = T f2A}) = ap o =31 =4 suce(4,{2}) = 2
Sf12,{3}) = ¢35 T f3,4}) = 3 + ¢35y = 6+15 = 21; suce(2,{3}) =3
S&A3E) = a3 + f3A5) = s + oy = 12415 = 27, suce(4,{3}) =3
S2A41) = o4 + A1) = a4 + oy = 4+6=10; suce(2,{4}) = 4
SBA4Y) = 3y T fAR)) = o5y oy = 8H6 =14 suce(3,{4}) = 4

t=2: f(4,{2,3}) = min{e, + 2,{3}), ¢35 + f3,{2}) } = min{3+21, 1248} = 20; suee(4,{2,3}) =3
f3,{2,4}) = min{ey, + f2,{4}), &34 T f14,{2})} = min{7+10, 8+4} =12; wuee(3,{2,4}) = 4
72,03,41) = min{oy + f3,14)), oy + 143D)= min{6+14, 4427} = 20; w2, 13,4}) = 3

Traveling Salesman Problem: Example

0O 2 9 10
Distance matrix: C = 1 0 6
15 7 8
6 3 12 |
t=1: f3,{2}) = + f24}) =5 T oy = TH1 =8 suce(3,{2}) = 2
SEAA2Y) = T f2A}) = ap o =31 =4 suce(4,{2}) = 2
Sf12,{3}) = ¢35 T f3,4}) = 3 + ¢35y = 6+15 = 21; suce(2,{3}) =3
S&A3E) = a3 + f3A5) = s + oy = 12415 = 27, suce(4,{3}) =3
S2A41) = o4 + A1) = a4 + oy = 4+6=10; suce(2,{4}) = 4
SBA4Y) = 3y T fAR)) = o5y oy = 8H6 =14 suce(3,{4}) = 4

t=2: f(4,{2,3}) = min{e, + 2,{3}), ¢35 + f3,{2}) } = min{3+21, 1248} = 20; suee(4,{2,3}) =3
f3,{2,4}) = min{ey, + f2,{4}), &34 T f14,{2})} = min{7+10, 8+4} =12; wuee(3,{2,4}) = 4
72,03,41) = min{oy + f3,14)), oy + 143D)= min{6+14, 4427} = 20; w2, 13,4}) = 3

=3 f1,{2,3,4}) = min{ey, + A2,3,41), cis + 13,1241, s + A4, (2,31} = min {2420, 9+12, 10+20} = 21
suee(1,{2,3,44) = 3

Traveling Salesman Problem: Example

0O 2 9 10
Distance matrix: C = 1 0 6
15 7 8
6 3 12 |
t=1: f3,{2}) = + f24}) =5 T oy = TH1 =8 suce(3,{2}) = 2
SEAA2Y) = T f2A}) = ap o =31 =4 suce(4,{2}) = 2
Sf12,{3}) = ¢35 T f3,4}) = 3 + ¢35y = 6+15 = 21; suce(2,{3}) =3
S&A3E) = a3 + f3A5) = s + oy = 12415 = 27, suce(4,{3}) =3
S2A41) = o4 + A1) = a4 + oy = 4+6=10; suce(2,{4}) = 4
SBA4Y) = 3y T fAR)) = o5y oy = 8H6 =14 suce(3,{4}) = 4

t=2: f(4,{2,3}) = min{e, + 2,{3}), ¢35 + f3,{2}) } = min{3+21, 124+8} = 20; suee(4,{2,3}) =3
f3,{2,4}) = min{ey, + f2,{4}), 5, T f(4,{2})} = min{7+10, 8+4} = 12; wuee(3,{2,4}) = 4
ﬂ23{334}) - min{€23 +ﬂ3’{4})3 24 +_/<4>{3})}: mlﬂ{6+l4’ 4+27} = 20) J”€€(29{394}) =3

=3 A1,{2,34)) = min{ey, + A2, 3,4)), s + 3,12,41), e1 + f14,{2,31)} = min {2+20, 9+12, 10+20} = 21
suee(1,{2,3,4}) = 3

Optimaltour: 1 >3 —>4—>2—>1

Sequence Alignment Problem

Based on Advanced Dynamic Programming Tutorial by Eric C. Rouchka
http://www.avatar.se/molbioinfo2001/dynprog/adv_dynamic.html

e Problem definition

— Given two sequences X and Y of length 7 and 7, respectively, composed
of characters from alphabet A.

— 'The goal is to find the best alignment between the two sequences
considering the following scoring scheme:

* §;;=2if the residue at position 7 of sequence X is the same as the
residue at position 7 of sequence Y (match score),

* §;;=-1if the residue at position 7 of sequence X is not the same as
the residue at position 7 of sequence Y (mismatch score),

* Penalty w=-2 if either the residue at position 7 of sequence X or the
residue at position 7 of sequence Y 1s a space ‘-’ (gap penalty).
Example:
X=GAATTCAGTTA X’ GAATTCAGTTA

=

Y=GGATCGA YY: GGA _TC_G_ _A

http://www.avatar.se/molbioinfo2001/dynprog/adv_dynamic.html

Sequence Alignment

Example

X=GAATTCAGTTA
Y=GGATCGA
m=11 and n="7

One of the optimal alignments for these sequences is

G A AT C AGTTA

.
| | | | |
G GA _TC _ G A

+

- S
2 1 2 2

2 2 2 2 2 2

(NI

with score S = 2-1+2+2-2+2-2+2-2-2+2=3

Sequence Alignment

The idea:

Find an optimal alignhment between each pair of prefixes for each of the two
strings.

Decompose the problem into smaller recursive problems.

Let:
— C1 be the right-most character of sequence X,
— (2 be the right-most character of sequence Y,
— X’ be X with C1 “chopped-off”,
— Y’ be Y with C2 “chopped-off”.

Then there are three recursive sub-problems:
— Sl=align(X’, Y)
— S2=align(X, Y’)
— S3=align(X’, Y)
The solution to the original problem is whichever of these is the biggest:
— S1-2
— S2-2
— S3+2 it C1 equals C2, or S3-1 if C1 and C2 mismatch.

Sequence Alignment

* Needleman-Wunsch algorithm:
1. Matrix initialization and fill step.

Construct a score matrix M in which you build up partial solutions.

2. Traceback step.

Determine the actual alignment using the score matrix.

Sequence Alignment

Matrix initialization step.
Create a matrix with 7+1 columns and #+1 rows.
The first row and first column can be initially filled with 0.

G A A TTOCAGTT A
O {0 (O |0 |0 (00 (0|0 (0]0]|0

Pl s o B ol %
(=B = = e e I e

The idea is that the table will be build from top to bottom, and from left to
right, and each cell will contain a number that is the best alignment score
of the two sequence prefixes up to that row and column.

Sequence Alignment

Matrix fill step.
In order to find M, ; for any 7, j values M, , M; ;; and M, ;, are used.

-1, A
For each position, M, ;is defined to be the maximum scote at position , /:

M, . +S,; (match/mismatch in the diagonal)
M, ; = max +w (gap in sequence Y)
M, +w (gap in sequence X)
Interpretation

— Moving horizontally corresponds to aligning a letter in string 1 with a gap in string 2
— Moving vertically corresponds to aligning a letter in string 2 with a gap in string 1

— Moving diagonally corresponds to aligning the two characters, one from each string.

Sequence Alignment

e In our example, the score at position 1.1 in the matrix can be calculated.
p > p b)

Since the first residue in both sequences is a G, S, =2, and by the assumption
stated earlier, w=-2.

Thus, M, ;=max[M,,+2, M, y-2, M, ;-2]=max]|2, -2, -2].
A value of 2 1s then placed in position 1,1.

There is also an arrow placed back into the cell that resulted in the maximum
score, M[0,0].
&8 A TT CAGTT A

o Jo|ofof of of of of o] o] ofo
L 5

I T

R o T B
o |lo|la|la|lc|c|o

Sequence Alignment

* We continue filing in the cells of the scoring matrix using the same reasoning.

Note, there is also an arrow placed back into the cell that resulted in the
maximum Score.

In case that there are two different ways to get the maximum score, the
pointers are placed back to all of the cells that produce the maximum, M|3,2].

G A ATT CAGTT A
CIQF\GIDIDCIDGDDCI

0
0 |;%_:- 0]-1
|:| T

11

o T T T % R
oo || oo

|
Blo|la|o]| &

Sequence Alignment

¢ The complete score matrix.

The maximum global alignment score for the two sequences is 3.

G A A TTOCAGTT A

jBasOaaaaNa0
S
T &- Eigﬂi#—l -llkﬁh\ 0
Eecaineseaal
sl of o[4T 2T o] o] 1 3 4T 2] 3

Sequence Alignment

Traceback step, constructing the actual alignment strings — X’ and Y’.

We use the pointers back to all possible predecessors. At each cell, we look to
see where we move next according to the pointers.

Begin at position M[m, n] and just follow the pointers:

— going up corresponds to adding the character to the left from Y to Y’ while adding
a space to X,

— going left corresponds to adding the character above from X to X’ while adding a
space to Y,

— going diagonally up and to the left means adding a character from X and Y to X’
and Y’, respectively.

If there are two possible neighbors, one of them is arbitrarily chosen.

Sequence Alignment

G A A TTOCAGTT A

G AATTCAGTT A
I:I 0 - 0 o U ¥t 0 rt l:l et 0 - l:l 0 T, I:I It l:l

0
%
... Kt - - ¥,
0 i i
0
-1
-1
0], 27 .
0

Final alignment

