o /N\i

CZECH TECHNICAL

UNIVERSITY CENTER

IN PRAGUE

Paralelni a distribuované vypocty

(B4B36PDYV)

Jakub Marecek

jakub.marecek@fel.cvut.cz

Artificial Intelligence Center
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

In the previous lecture

Parallel programming
« Aim: speeding up computation

« The influence of various approaches on the speedup

Distributed programming
« Aim: consistency across a large number of machines

« The algorithms in state-of-the-art database engines

The Promise:
« A revision from APO and OSY.

« Some fables.

CourseWare
« https://cw.fel.cvut.cz/wiki/courses/b4b36pdv/start

The Fables

From the textbook

https://upload.wikimedia.org/wikipedia/commons/7/7b/An_illustration_of the dining_philosophers_problem.png

The Fables

From the textbook

| .2 A Fable

Instead of treating coordination problems (such as mutual exclusion) as pro-
gramming exercises, we prefer to think of concurrent coordination problems as
if they were physics problems. We now present a sequence of fables, illustrating
some of the basic problems. Like most authors of fables, we retell stories mostly
invented by others (see the Chapter Notes at the end of this chapter).

Alice and Bob are neighbors, and they share a yard. Alice owns a cat and Bob
owns a dog. Both pets like to run around in the yard, but (naturally) they do
not get along. After some unfortunate experiences, Alice and Bob agree that they
should coordinate to make sure that both pets are never in the yard at the same
time. Of course, we rule out trivial solutions that do not allow any animals into
an empty yard.

How should they do it? Alice and Bob need to agree on mutually compatible
procedures for deciding what to do. We call such an agreement a coordination
protocol (or just a protocol, for short).

The yard is large, so Alice cannot simply look out of the window to check
whether Bob’s dog is present. She could perhaps walk over to Bob’s house and
knock on the door, but that takes a long time, and what if it rains? Alice might
lean out the window and shout “Hey Bob! Can I let the cat out?” The problem
is that Bob might not hear her. He could be watching TV, visiting his girlfriend,
or out shopping for dog food. They could try to coordinate by cell phone, but
the same difficulties arise if Bob is in the shower, driving through a tunnel, or
recharging his phone’s batteries.

Alice has a clever idea. She sets up one or more empty beer cans on Bob’s
windowsill (Fig. 1.4), ties a string around each one, and runs the string back
to her house. Bob does the same. When she wants to send a signal to Bob, she
yanks the string to knock over one of the cans. When Bob notices a can has been
knocked over, he resets the can.

Up-ending beer cans by remote control may seem like a creative solution, but

it is still deeply flawed. The problem is that Alice can place only a limited number
of cans on Bob’s windowsill, and sooner or later, she is going to run out of cans to
knock over. Granted, Bob resets a can as soon as he notices it has been knocked
over, but what if he goes to Canctin for Spring Break? As long as Alice relies on
Bob to reset the beer cans, sooner or later, she might run out.

So Alice and Bob try a different approach. Each one sets up a flag pole, easily

visible to the other. When Alice wants to release her cat, she does the following:

She raises her flag.

2. When Bob’s flag is lowered, she unleashes her cat.

. When her cat comes back, she lowers her flag.

Bob’s behavior is a little more complicated.

. He raises his flag.
. While Alice’s flag is raised

a) Bob lowers his flag
b) Bob waits until Alice’s flag is lowered
c) Bob raises his flag

. As soon as his flag is raised and hers is down, he unleashes his dog.
. When his dog comes back, he lowers his flag.

The Concepts

« Parallelism means two or more tasks can be executed
simultaneously. This is an option, which the compiler and
operating system and processor can exercise, but does not
come with any guarantees.

« Often, this means no shared variables or other resources, and
need not require any synchronization primitives.

« Concurrency means that two or more tasks start, run, and
complete in overlapping time periods, while sharing some

resources.

 |If two tasks concurrently set shared variable xto 1 and 2, it is
not clear what value it would have, subsequently.

« More broadly, concurrent access to a mutable shared memory
can result in issues without the use of synchronization primitives
(data race, problém soubéhu) and with the use of
synchronization primitives (deadlock, uvaznuti).

Data Race

Problém soubehu

When we need to ensure mutual exclusion in access to two or more shared
mutable variables, e.g., read value of one of the variables and add it to another
variable, we may need to use some synchronization primitives (e.g.,

mutexes).Without the use of synchronization primitives, we are facing the risk of
a data race.

For example, consider the a silly bank without a solid relational database

management system, where there are three clients: Alice and Bob and
Corporation C.

« Transaction T1: Bob has $100 in his account, but will be paying a $50 bill to
Corporation C. At the same time, in

- Transaction T2, Alice will be paying $100 to Bob.

Depending on the ordering of the reading and writing operations, one may
obtain several outcomes.

Data Race

Problém soubehu

For example, consider the a silly bank without a solid relational database
management system, where there are three clients: Alice and Bob and Corporation C.

« Transaction T1: Bob has $100 in his account, but will be paying a $50 bill to
Corporation C. At the same time, in

- Transaction T2, Alice will be paying $100 to Bob.

Depending on the ordering of the reading and writing operations, one may obtain
several outcomes:

« Transaction T1 will read $100 valued of Bob's account. Transaction T2 will read
$100 value. Transaction T2 will write $200. Transaction T1 will write $50 value.

« Transaction T1 will read $100 valued of Bob's account. Transaction T1 will write
$50. Transaction T2 will read $50 value.Transaction T2 will write $150 value.

« Transaction T1 will read $100 valued of Bob's account. Transaction T2 will read
$100 value. Transaction T1 will write $50. Transaction T2 will write $200 value.

« Transaction T2 will read $100 value. Transaction T2 will write $200 value.
Transaction T1 will read $200 valued of Bob's account. Transaction T1 will write

$150.
Either Bob or the bank could be up to $100 short.

Deadlock

Problém uvaznuti

« When we need to ensure mutual exclusion in access to two
or more shared variables, e.g., two temporary results
associated with two mutexes, one may naively lock the first
mutex first, and subsequently lock the other mutex.

« This, however, can lead to a deadlock.
« |nstead, one needs to lock both mutexes at the same time.
« Easily, one could run:

Locking multiple mutexes at once.

void thread_operation(){
std: :lock(mutexl,mutex?2) ;

complicated_task();

mutexl.unlock();
mutex2.unlock() ;

00 ~N O O b WN -

Open in Compiler Explorer

Deadlock

In Theory

In theory, a deadlock (Czech: "problém uvaznuti'') can occur
when:

« each lock is owned by one thread

« each thread has locked at least one lock and needs to lock at
least one more lock

 itis impossible to remove the lock ownership
« there is a cyclic dependency among the lock-using threads.

Von Neumann Architecture

The abstraction

Bottleneck __,

Obrazek prevzat z knihy Parallel Programming (by Peter Pacheco)

CPU
ALU Control
registers registers
[| [
[| [
[] [
/
Interconnect
/
Address Contents
I [
[|
[|
Main memory

Von Neumann Architecture in Practice
TOP 500 Supercomputers

x86-64 (Intel)
x86-64 (AMD)
POWER
%x86-32 (Intel)
x86-32 (AMD)
MIPS

Sparc

PA-RISC

Cray

Alpha

Fujitsu

NEC

Itanium (Intel)
Intel iB60
Hitachi
Hitachi SRBO0O
KSR

TMC CM2
Xeon Phi (Intel)
Convex
Maspar
QOthers
IBM3090
nCube
ShenWel
Cavium
Fujitsu ARM
Thunderx2
aplooo

1]
=
]
4+
v
>
v
“—
o
e
L))
Q
£
=
=

JUBTHEETH BRI

Zdroj: https://en.wikipedia.org/wiki/TOP500

Von Neumann Architecture in Practice

2
2
5

E

Flynn Taxonomy

The abstraction

« SIMD (Single Instruction Multiple Data)
« Single control, multple ALUs

« Data parallelism
« GPGPU, vector instructions (SSE, AVX)

« MIMD (Multiple Instruction Multiple Data)
« Multi-core processors

« Multi-processor architectures

Obrazky prevzaty z kurzu CMU 15-418/618 na CMU.edu

ALUO| |ALU1

ALU2|(|ALU3

ALU4| |ALUS

ALUG6| |ALU7

uI

EE
EE
[HE)
EE

HH
HH
HH
HH

uI I

EE
EE
[HE)
EE

HH
HH
HH
HH

Cache Hierarchy

In Practice

Skylake Xeon(R) CPU E3-1505M v5

L1 I core 3.7Ghz

11 —#

0.27ns cycle

< Latency ~
L3 slice (2M) L3 slice (2M) é‘i, L1: 1.9 ns

£ L2: 3.5 ns
L3 slice (2M) L3 slice (2M) £ 60ns L3: 12 ns

A RAM: 60 ns

L1ld cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K

11 —#

L1

Obrazek z https://github.com/GorNishanov/await/blob/master/2018_CppCon/NanoCoroutines%20-
%20G0or%20Nishanov%20-%20CppCon%202018.pdf

Cache Hierarchy

In Practice

Latency Numbers Every Programmer Should Know

[] 1ns

u L1 cache reference: 1ns
LU L Branch mispredict: 3ns
umEE L2 cache reference: 4ns
EEEEEET"EE Mutex lock/unlock: 17ns

B 100ns = m

https://gist.github.com/jboner/2841832
https://colin-scott.github.io/personal_website/research/interactive_latency.html

2020

u Main memory reference:
100ns

EEEEEEEEEE 1,000ns = 1ps

2,000ns = 2us

10,000ns = 10us = ®

Compress 1KB wth Zippy:

Send 2,000 bytes over
commodity network: 11ns

m SSD random read:
16,000ns = 16us

Read 1,000,000 bytes

sequentially from memory:

1,000ns = 1ps

EEEEEEEEEE Round trip in same
T]

1 m datacenter: 500,000ns =
EEEEEEEEEE 500,

IIIIIIIII= 1,000,000“5 =Ims=n1

Read 1,000,000 bytes
sequentially from SSD:
19,000ns = 19us

Disk seek: 2,000,000ns =
2ms

Read 1,000,000 bytes
sequentially from disk:
474,000ns = 474us

Packet roundtrip CA to
Netherlands:
150,000,000ns = 150ms

Cache Hierarchy

In Practice

Get 12 weeks for $29:99 $6

NEW YORKER

ANNALS OF TECHNOLOGY

THE FRIENDSHIP THAT MADE GOOGLE
HUGE

Coding together at the same computer, Jeff Dean and Sanjay Ghemawat changed the course of the company—and
the Internet.

By James Somers

December 3, 2018

https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-google-huge

Front End

Cache Hierarchy

In Practice

Next Address Logic

¥
Lo/L1/L2 ITLB L1 Hashed Perceptron
L1:64. L2: 512 enines L2 TAGE

L1/L2 BTB, Return Stack, ITA
L1 BTB: 512. L2 BTB: 7168. RAS: 32. ITA: 1024 enines

] |
. Prediction
Micro-Tags Queus

Instruction Cache

32 KB. 8-way. 64 Blline

Instruction Byte Queue
20 x 16 B

2

Pick

$ 1 1 1

4-way Decoder

Op Cache

4 K mops. 8-way. 8 mops/line

< ? mops (£ 4 x86 insir)

< 8 mops (£ 8 x86 instr)

OC/IC mode =\

Micro-OP Queue

Stack Engine

Microcode Sequencer
Memfile

Microcode ROM

Dispatch

< B8 mopsicyck

Obrazky prevzaty z https://en.wikichip.org/wiki/amd/microarchitectures/zen_3

/

32 Bleyck
from L2

Instruction-Level Parallelism

Co jeste z APO?

« Instruction-Level Parallelism (ILP).
« Let us add 2 vectors of floats, each with 1000 elements

« One addition needs 7 operations:
« Fetch (nacteni)
« Compare (porovnani exponentu)
« Shift (posun)
« Add (soucet)
« Normalize (normalizace)
« Round (zaokrouhleni)
« Store (Ulozeni vysledku)

« How long does this take?

Obrazek prevzat z knihy Parallel Programming (by Peter Pacheco)

Instruction-Level Parallelism

Co jeste z APO?

« Instruction-Level Parallelism (ILP).
« Let us add 2 vectors of floats, each with 1000 elements

« One addition needs 7 operations:

« Fetch (nacteni) Table 2.3 Pipelined Addition. Numbers in the Table Are
;s o Subscripts of Operands/Results
« Compare (porovnani exponentu)
Time Fetch Compare Shift Add Normalize Round Store
« Shift (posun) 0 0
« Add (soucet) bl 0
2 2 1 0
« Normalize (normalizace) 3 3 -/ LI
4 4 3 2 1 0
« Round (zaokrouhleni) 5 5 4 3 2 1 0
L 6 6 5 4 3 2 1 0
« Store (Ulozeni vysledku) : : : . . :
. 999 999 998 997 996 995 994 993
« How |Ong does this take? 1000 999 998 997 99 995 994
1001 999 998 997 996 995
1002 999 998 997 996
1003 999 998 997
1004 999 998
1005 999

Obrazek prevzat z knihy Parallel Programming (by Peter Pacheco)

Speculative Execution

Superscalar processor

« Multiple instructions in one cycle

« Let us consider a cycle

for (i=0; i< ; i++)
z[i]=x[1]+Y[i];

« One ALU can compute z[0], another z[1], ...

« Speculative execution

Z=X+Y,

if (z > 0)
W = X;

else
W=y,

https://cw.fel.cvut.cz/wiki/_ media/courses/b35apo/en/lectur
es/06/b35apo lecture06-speculative.pdf

Why does this matter?

« How would you implement matrix-vector multiplication?

int x[MAXIMUM], int y[MAXIMUM], int A[MAXIMUM*MAXIMUM]

Option A Option B

for (int j = 0; j < MAXIMUM ; j ++)
1 ++)
y [i] += A->at(i * MAXIMUM + j)*x[j];

for (int 1 = 0; 1 < MAXIMUM ; 1 ++)
for (int j = 0; j < MAXIMUM ; j ++) for (int 1 = 0; 1 < MAXIMUM ;

y[i] += A->at(i * MAXIMUM + j)*x[j];

Which is faster?

Why does this matter?

Performance

for (int 1 = 0; 1 < MAXIMUM ; 1 ++) for (int j = 0; j < MAXIMUM ; j ++)
for (int j = 0; j < MAXIMUM ; j ++) for (int 1 = 0; 1 < MAXIMUM ; 1 ++)
y[i] += A->at(i * MAXIMUM + j)*x[j]; y [1] += A-=at(1i * MAXIMUM + j)*x[j];

) &

« Arrays are stored sequentially (row-wise)

« Access to A[0][0] accesses one cache line

\ Cache Line Elements of A
~>

0 ALOJ[O0] A[OJ[1] A[OJ[2] A[O0J[3]
4 AC1100] AC1J[1] ACIIC2] A[1][3]

1
/ 2 A[21001 A[21[11 A[2][2] A[2][3]
. 3 AL31001 A[31011 AL3102] A[3103]

« Write to A[1][0]

invalidates cache line

False sharing!

Why does this matter?

Another example

Let us sum:;

0 |1 |2 |3 14 |5 [6 5x10°
17 2 9 4 22 0 1 8

How to do this fast?

2 3

.
© o

Obrazek prevzat z knihy Parallel Programming (by Peter Pacheco)

Why does this matter?

« What if you saw a code like this?

long sum(std::vector<int>& vector_to_sum, int thread, std::vector<long>& sums) {
for (int i=thread; i<SIZE; i += thread_count)
sums[thread] += sqrt(vector_to_sum[i]);

for (ipt j=1; j<log2(thread_count)+1; j++) {

if ((thread % (int)pow(2,j)) != 0) break;

ink k = (int)pow(2,j-1);

iff ((thread + k) >= thread_count) break;

if (threads[thread + k].joinable()) threads[thread + k].join();
ms[thread] += sums[thread + k];

0 1 |2 3 |4 [5 |6 [7 |8 |9 |
2 9 4 2 0 1 0 0 8

False Sharing

Why does this matter?

« How would you aggregate some function outputs?

long sum_local(std::vector<int>& vector_to_sum, int thread, std::vector<long>& sums) {
long local = 0;
for (int i=thread; i<SIZE; i += thread_count) {
local += sqrt(vector_to_suml[i]);

}

sumsf thread] = local;

ocal += sums[thread + k];

s[thread] = local;

Introduce a local Only the local variable is
variable written in the vector.

Why does this matter?

Yes, it does help!

2.5

- multi thread
-4 Single thread

Average time [s]
()

Threads

Amdahl's law

In the previous lecture

Log-linear plot for certain proportions Linear plot, for multiples of 10% of

of non-parallelizable code. non-parallizable code
20 ____—_______________'—_____—_____/_____.—;_-_—' ==
—
18 ///
7 Parallel portion
/
16 " 50%
/ 75%
14 v —— 90%
—_— 95%
12
£y 8
3 1 e —— - -
& P 5
5 5
Qo
6
4 gy, Fret xEccl by it ikt s et bl e it By
2
0
8§ % = £ 9 %
Processors
Number of processors

Grafy z:
+ https://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg

+ https://www.youtube.com/watch?v=QIHy8pXbnel

https://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg

Amdahl's law

In Theory

« There is almost always some overhead in parallel
programming (e.g., synchronization primitives)

« There is almost always some nonparallelizable code:

- Let us consider the speed-up § = —=¢rie of the parallel code

Tparallel

« E.g.if 10% of the code is nonparallelizable and there are p
processors (hardware threads):

e § = - '.Tserial < Tserial
0.9x Seg‘al+o.1szerial 0.1XTserial

« In general, for a fraction n of nonparallelizable code and p
processors (hardware threads):

Tseri Tseri
e § = serial < serial

T . —_
(1—71))(Se;lal'l'nXT.serial nszeTial

Concurrent programming

The Options

There are two essential models for concurrent programming: shared
memory and message passing. In sharing memory, we have broadly four

options:
« Confinement: Do not share memory between threads. This is often
impossible.

« Immutability: Do not share any mutable data between threads.

« Thread-safe code: Use data types with additional guarantees for
storing an%/ mutable data shared between threads, or even better, use
implementations of algorithms that are already parallelized and handle
the concurrency issues for you. . .

For example in'C++, one can use the standard template library with a
suitable execution policy.) . .]
In(;oartlcula(, the header execution defines objects std::execution::seq,
std::execution::par, std::execution::par_unseq, which can be passed as
the first argument of any standard algorithm, e.g., std::vector<int> v
std::sort(std::execution::par, v.begin(), v.end()?;

« Synchronization: Use synchronization primitives to prevent accessing
the variable at the same time.

Eventually, we will see that message passin? can be implemented using the
synchronization primitives and may be the Teast challenging to use
correctly.

Concurrent programming

The Options Revisited

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent

Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of
machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performance-
destroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms, and
implementation that SGD can be implemented without any locking. We present an update scheme called HOGWILD! which
allows processors access to shared memory with the possibility of overwriting each other's work. We show that when the
associated optimization problem is sparse, meaning most gradient updates only modify small parts of the decision variable,
then HOGWILD! achieves a nearly optimal rate of convergence. We demonstrate experimentally that HOGWILD! outperforms

alternative schemes that use locking by an order of magnitude.

" —Hogwild 4 —Hogwild
a -~AlG a --AlIG
33 RR 323 RR
o o | /.
82 82
» »
1 S e]
(a) (b)
1

0 0

2 4 6 8
Number of Splits

2 4 6 8 2 4 6 8
Number of Splits Number of Splits

Figure 2: Total CPU time versus number of threads for (a) RCV1, (b) Abdomen, and (c) DBLife.

Lock-free approaches more broadly:
https://www.youtube.com/watch?v=YI80rOafcfg&ab channel=ChurchillCompSciTalks

Concurrent programming

The Options Revisited

Intel® Transactional Synchronization Extensions (Intel® TSX) is perhaps one of the most

non-trivial extensions of instruction set architecture introduced in the 4" generation
Intel® Core™ microarchitecture code name Haswell. Intel® TSX implements hardware
support for a best-effort “transactional memory”, which is a simpler mechanism

for scalable thread synchronization as opposed to inherently complex fine-grained
locking or lock-free algorithms. The extensions have two interfaces: Hardware Lock
Elision (HLE) and Restricted Transactional Memory (RTM).

In this blog | will show how you can write your first RTM code and execute it in an
emulated environment now, without waiting until the 4" generation Intel® Core™
processors become available for purchase.

Before diving in, please make sure you have a basic understanding of the new RTM
instructions. | refer you to this blog as an introduction. Check out also the Intel
Developer Forum'12 presentation by Ravi Rajwar & Martin Dixon discussing the details
Intel TSX implementation in Haswell hardware and a presentation by Andi Kleen

on adding lock elision (also using RTM) to Linux.

My plan was to write a toy bank account processing application using popular C++
thread-unaware data structures from STL with concurrent access to bank records

managed by Intel TSX. This way the implementation should be very simple, thread-saf

and scalable.

Breaking Kernel Address Space Layout Randomization with Intel TSX

Yeongjin Jang, Sangho Lee, and Taesoo Kim
Georgia Institute of Technology

Abstract

Kernel hardening has been an important topic, as many
applications and security mechanisms often consider the
kernel as part of their Trusted Computing Base (TCB).
Among various hardening techniques, Kernel Address
Space Layout Randomization (KASLR) is the most ef-
fective and widely adopted defense mechanism that can
practically mitigate various memory corruption vulner-
abilities, such as buffer overflow and use-after-free. In
principle, KASLR is secure as long as no memory leak
vulnerability exists and high entropy is ensured.

In this paper, we introduce a novel timing attack against
KASLR, called DrK, that can precisely de-randomize the
memory layout of the kernel without violating any such
assumptions. DrK exploits a hardware feature called Intel
Transactional Synchronization Extension (TSX) that is
readily available in most modern commodity CPUs. One
surprising behavior of TSX, which is essentially the root
cause of this security loophole, is that it aborts a transac-
tion without notifying the underlying kernel even when

Windows Vista 0S5
Kernel/User space

0SX 108
User-space ~ Kernel-space

Linux3.14
Kernel-space

005 | 2007 2011 2012 W
Linux 2.6.12

User-space

0SX 105
User-space
Figure 1: The adoption status of both user-space and kernel-
space ASLR in popular operating systems, ordered by year [62].

Android40 i0S6
User-space Kernel-space

zon EC2 (X1).

1 Introduction

Enhancing the security of operating systems (OSes) has
been an active, important research topic as the underlying
OS is commonly considered to be the Trusted Comput-
ing Base (TCB) for user applications and their security
mechanisms. Among various hardening techniques, Ker-
nel Address Space Layout Randomization (KASLR) is

https://www.intel.com/content/www/us/en/developer/articles/community/exploring-

tsx-with-software-development-emulator.html

https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-
Space-Layout-Randomization-KASLR-With-Intel-TSX-wp.pdf

Concurrent programming

The Options Revisited

Following the side-channel timing attack on TSX, Intel disabled TSX on all processors
released until January 2023 (!).

Only since Sapphire Rapids (e.g. Intel® Xeon® W-3400), there is support for
restricted transactional memory in selected Intel processors.

Golden Cove (Alder Lake)

Gracemont Gracemont Intel 7 Golden Cove
Raptor Cove (Raptor Lake)
Redwood
Crestmont Crestmont Intel 4 Meteor Lake
Cove
Skymont Skymont Intel 20A Lion Cove Arrow Lake
TBA TBA Intel 18A/20A TBA Lunar Lake

Lock-free approaches more broadly:
https://www.youtube.com/watch?v=YI80rOafcfg&ab channel=ChurchillCompSciTalks

Pthreads vs. C++ vs. OpenMP vs.

Co znate z OSY (pthreads)

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

const int thread_count = 10;
void* Hello(void* rank);

int main(int argc, char* argv[]) {

long thread;

pthread_t *thread_handles;

thread_handles = (pthread_t*)malloc(thread_count * sizeof(pthread_t));

for (thread = 0; thread < thread_count; thread++)
pthread_create(&thread_handles[thread], NULL,

Hello, (void *) thread);

printf("Hello from the main thread\n");

for (thread = 0; thread < thread_count; thread++)
pthread_join(thread_handles[thread], NULL);

free(thread_handles);
return 0;

}

void* Hello(void* rank) {
long my_rank = (long) rank;
printf("Hello from thread %ld of %d\n", my_rank, thread_count);
return NULL;

}

Pthreads vs. C++ vs. OpenMP vs. SYCL

Ochutnavka (OpenMP)

#include <iostream>
#include <vector>
#include "omp.h"

const int thread_count = 10;

void Hello() {
int my_rank = omp_get_thread_num();
int threads = omp_get_num_threads();
std::cout << "Hello from thread " << my_rank << " of " << threads << std::endl;

}

int main(int argc, char* argv[]) {

#pragma omp parallel num_threads(thread_count)
Hello();
return 0;

}

« nutno prekladat s prepinacem —fopenmp

« (napr. g++ -fopenmp openmp-hello.cpp -0 openmp-hello)

Pthreads vs. C++ vs. OpenMP vs.

Ochutnavka (C++11)

#include <iostream>
#include <thread>
#include <vector>

const int thread_count = 10;
void Hello(long my_rank);

int main(int argc, char* argv[]) {
std::vector<std::thread> threads;
for (int thread=0; thread < thread_count; thread++) {
threads.push_back(std::thread(Hello, thread));
3

std::cout << "Hello from the main thread\n";

for (int thread=0; thread < thread_count; thread++) {
threads[thread].join();

}

return 0;

}

void Hello(long my_rank) {
std::cout << "Hello from thread " << my_rank << " of " << thread_count << std::endl;

}

Nicolai Josuttis: “it is almost impossible to use it easily and right”

Pthreads vs. C++ vs. OpenMP vs. SYCL

Ochutnavka (C++20)

#include <iostream>
#include <thread>
#include <vector>

const int thread_count = 10;
void Hello(long my_rank);

int main(int argc, char* argv[]) {
std::vector<std::thread> threads;
for (int thread=0; thread < thread_count; thread++) {
threads.push_back(std::jthread(Hello, thread));
3

std::cout << "Hello from the main thread\n";

return 0;

}

void Hello(long my_rank) {
std::cout << "Hello from thread " << my_rank << " of " << thread_count << std::endl;

}

C++ spec was approved in 2020 and GCC has a good support since v. 11.
(There is GCC 12 in the labs.)

Pthreads vs. C++ vs. OpenMP vs. SYCL

Ochutnavka (SYCL)

SYCL, OpenCL and SPIR-V, as open industry SYCL enables Khronos to
standards, enable flexible integration and SYCL. influence ISO C++ to (eventually)
deployment of multiple acceleration technologies Source Code support heterogeneous compute

¥
r:

ac
o

o

£ XILNX. MIPSYCL Y, ibetaera

triSYCL hipSYCL neoSYCL
Open source CUDA and SX-AURORA
test bed HIP/ROCm TSUBASA

(codeplay’y” ¢ ComputeCpp

fascls,

DPC++
Uses LLVM/Clang
Part of oneAPI

=}
3
(]
>
0
=]

nVIDIA
CUDA

y ‘ s
rwioia : \ " OpencL OpenMP . OpenMP OpenMP
|
|

CUDA+PTX [Any CPU] [penCL+PT)]

NVIDIA GPUs 1 NVIDIA GPUs
77T 77T
OpenCL OpenCL
Intel CPUs
GPIR. GPIR.
NEC VEs
Intel CPUs Intel CPUs XILINX FPGAs
Intel GPUs Intel GPUs POCL
Intel FPGAs Intel FPGAs e sk Multiple Backends in Development
(“pﬂengfgim) GPUs and more) SYCL beginning to be supported on multiple
Arm Mali w low-level APIs in addition to OpenCL
IMG PowerVR e.g., ROCm and CUDA
Renesas R-Car For more information: http://sycl.tech

Viz https://www.khronos.org/assets/uploads/developers/presentations/SYCL-2020-Launch-Feb21.pdf

Pthreads vs. C++ vs. OpenMP vs. SYCL

Ochutnavka (SYCL)

#include <CL/sycl.hpp>
#include <iostream>

using namespace cl::sycl;
const int nElems = 64u;

class assign_elements;

int main() {
int data[nElems] = {0};
try {
default_selector selector;
queue myQueue(selector, [](exception_list |) {
for (autoep:|){
try {
std::rethrow_exception(ep);
} catch (const exception& e) {
std::cout << "Asynchronous exception caught:\n" << e.what();

}
}
bk
buffer<int, 1> buf(data, range<1>(nElems));
myQueue.submit([&](handler& cgh) {
auto ptr = buf.get_access<access::mode::read_write>(cgh);
auto myRange = nd_range<1>(range<1>(nElems), range<1>(nElems / 4));
auto myKernel = ([=](nd_item<1> item) {
ptr[item.get_global_id()] = item.get_global_id()[0];
bk
cgh.parallel_for<assign_elements>(myRange, myKernel);
bk
} catch (const exception& e) {
std::cout << "Synchronous exception caught:\n" << e.what();
return 2;

3

return 0;

Structuring code

Processes, Threads, Tasks, Coroutines

« Processes, threads, tasks, and coroutines execute instructions.

« A process provides all of the prerequisites for executing instructions:
loads an executable program,
sets up a virtual address space,
sets up the environment (e.g. environment variables and a security
context),
sets up the process control block (PCB, often stored in registers of the
processor and on a per-process stack in kernel memory), opens handles
to system objects (e.g., files, sockets), and often much more.

« In some sense, one can imagine a virtual machine '’

« All modern operating systems (OS) are multitasking, l.e., running
multiple processes with the operating system forcibly interrupting the
run one one process to execute another Erocess after a certain amount
of time (" preemptive scheduling"). Switching between the processes
involves swapping the process control block (PCB). In Intel architectures,
this is known as the task state segment (TSS), and there is hardware
support for the switch. AMD64 does not support task switches in
hardware.

Structuring code

Processes, Threads, Tasks, Coroutines

- Within a particular process, there is at least one thread. All
threads of a particular process share the same virtual address
space and handles to system objects. Each thread,
independently, operates its own context (registers, stack,
exception handlers).

« Unless declared otherwise, threads of a particular process share
memory and are allocated ‘time slices" by the operating
system.

« This can be seen as a "virtual processor" within a "a virtual
rr|1agh|ne" of a process, often with no guarantees on the time
slicing.

« Most modern processors are multi-core and support
multithreading in some form. This means that each process can
execute multiple "hardware threads' and there is some
support for switching between those. In Intel architectures,
hyper-threading means each hardware core can execute

multiple threads, e.g., two, to take advantage of idle time (e.g.,
loading data, network communications).

Structuring code

Processes, Threads, Tasks, Coroutines

« Within a particular thread, one may utilize multiple
coroutines, which can be seen as subroutines that can run in

multiple steps, but sometimes can serve as a light-weight
alternative to hardware threads.

main regular main

_'l function —'l coroutine

function call create & call

suspend

resume

return v return

L |

https://blog.eiler.eu/posts/20210512/images/coroutines.png

Structuring code

Processes, Threads, Tasks, Coroutines

Within a particular thread, one may utilize multiple coroutines,
which can be seen as subroutines that can run in multiple steps,
but sometimes can serve as a light-weight alternative to
hardware threads. Coroutines can be called, can return when
completed, but also can suspend themselves, yielding control
and partial results, and be resumed by another co-routine.
Typical uses involve generators andfactories and various other
concepts within lazy evaluation”, as well as event-driven
architectures within cooperative multi-tasking.

That is: two coroutines within one thread never run in parallel,
but one can have the runs of two or more coroutines
interleaved. We can suspend a co-routine in one thread and
resume it within another thread.

As it turns out, the “context switch" with user-level threads has
a similar cost to a function call or suspending a coroutine
(co_yield). Indeed, coroutines are typically implemented with
user-level threads, which leads to cheaper context-switch
compared with hardware threads. Within the user-level threads,
one can distinguish stackful and stackless versions, where
coroutine state is saved on the heap (as in C++).

Structuring code

Processes, Threads, Tasks, Coroutines

« Coroutines can be called, can return when completed, but also
can suspend themselves, yielding control and partial results, and
be resumed by another co-routine.

« Typical uses involve generators and factories and various other
concepts within “lazy evaluation", as well as event-driven
architectures within cooperative multl—tasking.

« That is: two coroutines within one thread never run in parallel,
but one can have the runs of two or more coroutines
interleaved. We can suspend a co-routine in one thread and
resume it within another thread.

« As it turns out, the context switch" with user-level threads has
a similar cost to a function call or suspending a coroutine
(co yield). Indeed, coroutines are typically implemented with
user—level threads, which leads to cheaper context-switch
compared with hardware threads. Within the user-level threads,
one can distinguish stackful and stackless versions, where
coroutine state is saved on the heap (as in C++).

Structuring code

Processes, Threads, Tasks, Coroutines

4 #include <coroutine>
5 #include <iostream>
6
7 // The caller-level type
8 struct Generator {
9 // The coroutine level type
10 struct promise_type {
11 using Handle = std::coroutine_handle<promise_type>;
12
13 Generator get_return_object() {
14 return Generator{Handle::from_promise(*this)};
15 }
16 std: :suspend_always initial_suspend() { return {}; }
17 std: :suspend_always final_suspend() noexcept { return
= {3}
18 std: :suspend_always yield_value(int value) {
19 current_value = value;
20 return {};
21 }
22 void unhandled_exception() { }
23 int current_value;
24 ¥
25
26 explicit Generator(promise_type::Handle coro) :
— coro_(coro) {}
27 // Make move-only
28 Generator(const Generator&) = delete;
29 Generator& operator=(const Generator&) = delete;
30 Generator (Generator&& t) noexcept : coro_(t.coro_) {
— t.coro_ = {}; }
31 Generator& operator=(Generator&& t) noexcept {
32 if (this == &t) return *this;
33 if (coro_) coro_.destroy();
34 coro_ = t.coro_;
35 t.coro_ = {};
36 return *this;
37 }
38
39 int get_next() {
40 coro_.resume() ;
41 return coro_.promise().current_value;
42 }
43
44 private:
45 promise_type::Handle coro_;

A6 L.

Generator myCoroutine() {
int x = 0;
while (true) {
co yield x++;

int main() {
auto ¢ = myCoroutine();
intx =0;
while ((x = c.get_next()) < 10) {
std::cout << x << "\n";

Structuring code

Processes, Threads, Tasks, Coroutines

An example of the use of coroutines, which currently does not compile in GCC 12.2.

#include <coroutine>
#include <generator>
#include <iostream>

#include <syncstream>

std: :generator<int> work() {
for (dnt 1 = 0; 1 < 10; i++) {
co_yield 1i;
}
10 }

12 int main() {

13 for (int i : work()) {

14 std: :osyncstream(std::cout) << ch << '\n';
15 }

Open in Compiler Explorer

Structuring code

Processes, Threads, Tasks, Coroutines

« A task is a rather abstract unit of work, e.g., a function, which
can be executed by any thread, but often allocated to one of
a many threads within a pool.

Memory order

« First, one should like to understand several options for
implementing synchronization primitives, known as memory
orders. All guarantee atomicity and modification-order
consistency.

Skylake Xeon(R) CPU E3-1505M v5

3.7Ghz

0.27ns cycle

Latency ~

L1: 1.0 ns
L2: 3.5 ns
L3: 12 ns
RAM: 60 ns

L3 slice (2M) L3 slice (2M)

60ns

System Agent

L3 slice (2M) L3 slice (2M)

L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K

Obrazek z https://github.com/GorNishanov/await/blob/master/2018_CppCon/NanoCoroutines%20-
%20G0or%20Nishanov%20-%20CppCon%202018.pdf

Memory order

« First, one should like to understand several options for
implementing synchronization primitives, known as memory
orders. All guarantee atomicity and modification-order

consistency.

https://www.apple.com/cz/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-
advanced-chips-for-a-personal-computer/

Memory order

« First, one should like to understand several options for
implementing synchronization primitives, known as memory
orders. All guarantee atomicity and modification-order
consistency.

CoreLink™ CCI-500

CoreLink GIC-500

I/O Coherent . Mali-v550 J[Mali-DP550
ENEN -
_I NIC-400

Cortex-A72 B Cortex-A53

CorelLink

]
CoreLink MMU-500 NIC-400
I D

Snoop Filter CoreLink CCI-500 MMU-500

I R
CoreLink TZC-400

Memory System

CIETIGIIIN) 3¢ Party: LPDDR34 JD

(DRAM)

)

(Peripherals

https://developer.arm.com/Processors/CorelLink%20CCI-500

Memory order

« Let us focus on ARM in particular:

The ARMv8 architecture employs a weakly-ordered model of

memory. In general terms, this means that

* the order of memory accesses is not required to be the same as
the program order for load and store operations.

* The processor is able to re-order memory read operations with
respect to each other.

* Writes may also be re-ordered (for example, write combining).

As a result, hardware optimizations, such as the use of cache and

write buffer, function in a way that improves the performance of the

processor, which means that the required bandwidth between the

processor and external memory can be reduced and the long latencies

associated with such external memory accesses are hidden.

https://developer.arm.com/documentation/den0024/
a/Memory-Ordering?lang=en

Memory order

In C++11

« In memory order relaxed, no further guarantees are provided and
specifically no order is imposed on concurrent memory accesses. This is
also how weakly-ordered architectures (e.g. ARM) operate, by default: if
two threads access shared memory the load in one thread does not
have to read a value written by another thread very recently.

« With memory order release and memory order acquire specifiers, we
force weakly-ordered achitectures to behave closer to strongly-ordered
architectures (e.g., Intel). If one thread writes into shared memor
atomically with memory order release and another thread read); the
memory atomically with memory _order acquire, the load in the second
thread is guaranteed to read the value written by another thread.

« With memory order seq cst, we additionally require a single total
ordering of all modifications (with this specifier). A load with this
specifier gets its value either from the last store with this specifier or
from some store without this specifier that did not precede the most
recent memory order seq cst store. This is the default option.

Compare and swap

In General

Synchronization primitives are typically implemented using some hardware
instructions, typically compare-and-swap. In locking, these make it
possible to test whether the lock is free, and if so, acquire the lock within a
single operation that the hardware guarantees to execute atomically.

The atomic compare and swap (CAS) instruction compares the value of an
atomic variable against a given value. If there is a match, CAS stores a given
new value in the atomic variable. That is:

« we declare an atomic variable (and a pointer to it)

« (*) we save the value of an atomic variable to a local, private variable (by
dereferencing the pointer)

« based on the saved value in a local, private variable, we compute the
new value, which we would like to store in the atomic variable

« the CAS instruction is used. If the current value matches the value saved
in the local, private variable, we will overwrite the value with the newly
computed value. If the current value no longer matches the value saved
in the local, private variable, we wait (some random and growing from a
small starting value) and repeat from (*).

Compare and swap

In C++

In C++, the atomic header defines two variants of "‘compare
and swap" and a specialization thereof for pointers:

« bool compare exchange weak(Tp& e, Tp |,
memory order s, memory order f) noexcept

* bool compare exchange strong(Tp& e, Tp |,
memory order s, memory order f) noexcept

Both are called with the desired value e, the new value i, and
the memory orders to consider if there is a match and if there is
no match.

Typically, if there is a match and we want to replace the value,
we may use std::memory order release. If there is no match,
we are just reading the value and std::memory order acquire
would suffice. In the latter variant, we pass two pointers.

Compare and Swap

Weak and strong variants

The difference between the weak and strong variant is in
that the weak variant may return false even if there is a
match, in certain cases, but can be much faster in certain
architectures. This notably entails ARM architectures (RISC-V
and MIPS), where the weak variant will be implemented
using the so called load-link/store-conditional pair of
instructions (load exclusive register / Idxr and store exclusive
register / stxr in ARM version 8). These are much faster than

the comparable instructions issuing a barrier (Idaxr/stlxr in
ARM version 8).

All four ARM instructions utilize only two registers, compared
to three registers for CAS proper in Intel arcﬂitectures
(Compare and exchange / cmpxchg since 80486 and
cmpxchg8b and cmpxchg16b since Intel Core 2). On recent
Intel ang AMD processors, cmpxchg is only marginally slower
than a non-cached load.

Memory order

In C++11

If you want to understand memory orders in more detail:

« See https://arxiv.org/abs/1803.04432

[Submitted on 12 Mar 2018]
Memory Models for C/C++ Programmers

Manuel Poter, Jesper Larsson Traff

The memory model is the crux of the concurrency semantics of shared-memory systems. It defines the possible values that a read operation is allowed to return for
any given set of write operations performed by a concurrent program, thereby defining the basic semantics of shared variables. It is therefore impossible to
meaningfully reason about a program or any part of the programming language implementation without an unambiguous memory model.

This note provides a brief introduction into the topic of memory models, explaining why it is essential for concurrent programs and covering well known memory
models from sequential consistency to those of the x86 and ARM/POWER CPUs. Section 4 is fully dedicated to the C++11 memory model, explaining how it can be
used to write concurrent code that is not only correct and portable, but also efficient by utilizing the relaxed memory models of modern architectures.

« See also:

https://www.youtube.com/watch?v=A vAG6LIHWQ®&ab chan
nel=ACCUConference

Synchronization primitives

 Synchronization primitives make it possible to synchronize or restrict
access of multiple threads to some resources (e.g., global variables, file
handles, sockets). You can use them as an interface, without knowing
their implementation.

« Raw synchronization primitives: Lock, Mutex, Semaphore, Atomic,
Memory Fence, Condition Variable are synchronization primitives, which
make it'possible to synchronize or restrict access of multiple threads to
some resources.

« Lock is a very general term for a synchronization primitive. Mutexes are
usually used by one thread only, while semaphores are shared between
multiple threads.

« The binary semaphore is the most simple type of a lock, which provides
exclusive access for both reading and writing.

« The counting semaphore limits the use of a single resource by at most a
given number of threads.

« A spinlock, the thread simpl?; waits ("spins”) until the lock becomes
available. This is efficient it threads are blocked for a short time, because
it avoids the overhead of operating system process re-scheduling. It is
inefficient if the lock is held for a long time, or if the progress of the
tﬂreag that is holding the lock depends on preemption of the locked
thread.

Synchronization primitives

In C++

In C++, the only synchronization primitive that is guaranteed
to be hardware implemented is a particular atomic boolean
type, which is known as std::atomic flag.

Unlike all specializations of std::atomic, it is guaranteed to
be lock-free.

Prior to C++20, it has been very restricted, because there
was no way to check the value of std::atomic _flag without
setting it. C++20 adds method test().

Synchronization primitives

And how to implement them

A silly implementation of a spin lock.

1 // based on https://en.cppreference.com/w/cpp/atomic/atomic_flag
2

3 class SpinLock {

< std::atomic_flag locked = ATOMIC_FLAG_INIT ;

5 public:

6 void lock() {

7 while (locked.test_and_set(std::memory_order_acquire)) {
8 #if defined(__cpp_lib_atomic_flag test)

9 while (locked.test(std::memory_order_relaxed))

10 #endif

11 ;

12 }

13 }

14 void unlock() {

15 locked.clear(std: :memory_order_release);

16 }

17 };

Open in Compiler Explorer =

Further features

In C++23

Further synchronization features

Fences help order non-atomic and atomic memory accesses,
without any associated operations. On Intel architectures
(including x86-64), atomic_thread fence do not issue any
instructions, except

std::atomic_thread fence(std::memory order::seq cst).

Barrier provides a thread-coordination mechanism that blocks a
group of threads until all threads in that group have reached the

arrier. Such a barrier can be used repeatedly to wait until a
number of threads have finished their operations.

Latch and is a downward counter, whose initial value is initialized

and then threads may block on the latch until the counter is

zero. One thread may decrement a latch multiple times, but no

’lcghread can increment the latch. Thus, it serves as a single-use
arrier.

We will also see synchronized output streams. The synchronized
buffer is flushed only when the destructor of the synchronized
buffer is called, but provides forc?uarantees of atomicity for the
access. (That is, std::endl and std::flush no longer flush!)

Debugging

https://godbolt.org/

= COMPILER . .
= Add...~ More~ Templates Chat on our welcoming Discord x Share
EXPLORER e o
C++source#1 ¢ X o X x86-64 gcc 11.1 (Editor #1) ¢ X
A~ B +- v £ » @C++ v x86-64 gcc 11.1 v ©@ -std=c++2b -fopenmp
1 #include <thread> A~ @ Output..~ VFilter..~ B Libraries + Addnew...> ” Add tool...~
2 #include <queue> " 93
3 #include <iostream> -L93:
4 #include <atomic> 22 mov rax, QWORD PTR [rbp-40]
5 n 23 mov QWORD PTR [rbp-24], rax
24 DWORD PTR bp-28 2
6 class SpinLock { 5 mov 4 (rbp 1])' o4
5 WORD PTR -
7 std::atomic_flag locked = ATOMIC_FLAG_INIT mov rdx, @ (rbp !
. 26 mov eax, 1
8 public: h
27 1, BYTE PTR d.
9 void lock() { e ¥chg ALy [rdx]
10 while (locked.test_and_set(stci: :memory._ nop
. . . : | 29 test al, al
11 ‘ #if defined(_ cpp_lib_atomic_flag_test 20 B
j .L97
12 while (locked.test(std::memory orde 31 jne
13 #endif 3 fop
e ’ 33 oo b
15 } pop rbp
21 e

https://godbolt.org/z/cEdE7r5fq

Debugging

https://godbolt.org/

) £ OMm

PILER (. . | g
= ~pEp Add..~ More~ Templates Chat on our welcoming Discord Share ¥ Policies
\=, EXPLORER P \ d) ‘
C++source #1 # X O X x86-64 gcc 11.1 (Editor #1) # X
A~ B +- v £ » G C++ ¢ x86-64 gce 1.1 v @ -std=c++2b -fopenmp
1 #include <mutex> A~ @Output..> VFilter..v B Libraries + Addnew...> 4 Add tool...~
2 #include <thread> 1 1
ml:
3 #include <iostream>
2 .zero 40
4 #include <syncstream>
5 3 m2:
4 .zero 40
6 std::mutex ml; X
5 f(int):
7 std::mutex m2;
8 6 push rbp
7 mov rb rs
9 void f(int id) { Do S
8 sub rsp, 32
10 std::lock(ml, m2); - .
9 mov DWORD PTR [rbp-20], edi
11 std::lock_guard<std::mutex> lockl(ml, std:: .
- 10 mov esi, OFFSET FLAT:m2
12 std::lock_guard<std::mutex> lock2(m2, std:: .
13 - 11 mov edi, OFFSET FLAT:ml
12 } 12 call void std::lock<std::mutex, std::mutex>(std::mutex&, std::mutex&)
. L 13 lea rax, [rbp-8]
15 int main(int argc, char* argv[]) { .
14 mov esi, OFFSET FLAT:ml
16 std::jthread t1(£f, 1); X
15 mov rdi, rax
17 std::jthread t2(£f, 2);
16 call std: :lock guart*std: tmutex>::lock guard(std::mutex&, std::adopt loc
18 } - - -
19 17 lea rax, [rbp-16]
18 mov esi, OFFSET FLAT:m2
19 mov rdi, rax
20 call std::lock guard<std::mutex>::lock guard(std::mutex&, std::adopt loc
21 lea rax, [rbp-16]
22 mov rdi, rax
23 call std::lock guard<std::mutex>::~lock guard() [complete object destruc
24 lea rax, [rbp-8]
25 mov. rdi, rax

C HEOutput (0/0) x86-64gcc 111 i - 3071ms (5009538) ~29010 lines filtered |= Compiler License

Debugging

https://godbolt.org/

B+~ v £ 2 C++

#include <iostream> Pty

struct A
{

void foo() {std::cout << "1\n";}

template <typename T = int>
void foo() {std::cout << "2\n";}

}i

int main()

{

A X;

x.template foo();
}

A~ OwWwraplines B Libraries % Compilation >.

x86-64 gcc 11.2 v @& -std=c++20

Program returned: 0
Program stdout
1

x86-64 gcc 11.2 § - 1264ms LM

Executor x86-64 clang 13.0.0 (C++, Editor #1) X
A~ [OWraplines @ Libraries % Compilation >.

x86-64 clang 13.0.0 v @ -std=c++20

Program returned: @
Program stdout
2

x86-64 clang 13.0.0 § -7639ms LMl
x64 msvc v19.0 (WINE) (C++, Editor #1, Compiler #3) X

x64 msvc v19.0 (WINE) ¥ € /std:c++20

A~ @ Output...> Y Filter...~ @ Libraries <+ Ad

Debugging

https://clang.llvm.org/docs/ThreadSanitizer.html

« https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

$ clang++ simple_race.cc -fsanitize=thread -fPIE -pie —g
$./a.out

WARNING: ThreadSanitizer: data race (pid=26327)
Write of size 4 at 0x7f89554701d0 by thread T1:
#0 Threadl(voidx) simple_race.cc:8 (exe+0x000000006e66)

Previous write of size 4 at 0x7f89554701d@ by thread T2:
#0 Thread2(voidx) simple_race.cc:13 (exe+0x000000006ed6)

Thread T1 (tid=26328, running) created at:

#0 pthread_create tsan_interceptors.cc:683 (exe+0x00000001108b)
#1 main simple_race.cc:19 (exe+0x000000006f39)

Thread T2 (tid=26329, running) created at:

#0 pthread_create tsan_interceptors.cc:683 (exe+0x00000001108b)
#1 main simple_race.cc:20 (exe+0x000000006163)

ThreadSanitizer: reported 1 warnings

https://clang.llvm.org/docs/ThreadSanitizer.html
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

What comes next?

ofa%? . §, |

I
B T i)

f

t;‘iE“ ‘A

PY r ﬁ_ﬂv—-ﬂ . o

Z:T;ULI e |\E’

_ et S-Syl . © i - 4

— : o .;'00‘ . o
T))\ | J' a:lt e”
S (THSHIS
o0 = .?4— il? e A
TR, o il %

“;:.- /\m BB b .

