Resource Ownership in C++4

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 13
B3B36PRG — Programming in C

David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++

1/48

Overview of the Lecture

® Part 1 — RAIl Principle (in C++)
Acquisition-Release Pattern in C/C++
RAII — Resource Acquisition is Initialization
RAIl Threading
Smart Pointers

® Part 2 — Move and Copy Semantics (in C++)
Assignment of Objects Holding Resources
lvalues & rvalues

Move and Copy Semantics

David Valouch, 2022

Part |

Part 1 — RAIl Principle (in C++)

B3B36PRG — Lecture 13: Ownership in C++ 2 /48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 3 /48
Acquisition-Release Pattern in C/C++ Acquisition-Release Pattern in C/C++ Acquisition-Release Pattern in C/C++
Acquisition-Release Pattern in C Acquisition-Release Pattern in C Acquisition-Release Pattern in C
int main(void) int main(void) znt main(void)
{ { .
int *array = malloc(SIZE * sizeof(int)); /+# ACQUISITION #/ FILE *in_file = fopen(FILE_NAME, "r"); /+ ACQUISITION */ pthread_mutex_init(&mtx, NULL);
pthread_mutex_lock(&mtx); /* ACQUISITION */
/* do work */ /* do work */ . L .
/* do work in critical section */
free(array); /+* RELEASE */ fclose(in_file); /* RELEASE x/
return 0: return 0: pthread_mutex_unlock(&mtx); /* RELEASE */
} ’ 3 ’ return 0;
}
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 5 /48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 6 /48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 7 /48

Acquisition-Release Pattern in C/C-++

Acquisition-Release Pattern in C

int main(void)

{
pthread_create (&thread, NULL, foo, NULL); /* ACQUISITION */
/* do work */
pthread_join(&thread, NULL); /* RELEASE */
return 0;
¥

David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++

8 /48

Acquisition-Release Pattern in C/C++

Acquisition-Release Pattern in C4++

int main(void)

{
MyClass* ¢ = new MyClass(); /* ACQUISITION */
int* array = new int[SIZE];

/* do work */
delete[] array;

delete c; /* RELEASE */
return O;

David Valouch, 2022

B3B36PRG — Lecture 13: Ownership in C++

9/48

Acquisition-Release Pattern in C/C++

But what if something goes wrong?

int main(void)

{
int *array = malloc(SIZE * sizeof(int)); /* ACQUISITION */
if (leverithing_ok) {
return 100; /* !!! Resource is not released */
¥
free(array); /* RELEASE */
return 0O;
}

David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++

10 / 48

RAIl - Resource Acquisition is Initialization

Automatic Destructor Call

m Destructor is called at the end of life-time!

RAII — Resource Acquisition is Initialization
Automatic Destructor Call
m Destructor is called at the end of life-time!

int main(void)

RAII - Resource Acquisition is Initialization

Resources Acquisition is Initialization

int main(void) { = Imol ¢ isition i ructor(initializati
T MyClass c; /+ Comstructor MyClass() is called */ mplement resource acquisition in a constructor(initialization).
MyClass c; /* Constructor MyClass() is called #/ m Failure to release resource is handled by throwing an exception.
H
if (not everithing_ ok) { ® Resource release is handled by the destructor.
/* do work */ return 100;
-~ 1
// "MyClass() /* EVEN HERE! */ ® Resource is bound to lifetime object instance.
return 0; }
// “MyClass() /* Desctructor is called at the end of scope. */
} return 0;
// "MyClass() /* Desctructor is called at the end of scope. */
}
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 12 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 12 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 13 / 48
RAII — Resource Acquisition is Initialization RAII — Resource Acquisition is Initialization RAIl — Resource Acquisition is Initialization
Example Array Implementation Example Array Implementation Implementation of RAIl in Standard Library
struct MallocException : std::exception {
const char* what() const noexcept { return "Malloc error"; }
}; MyArray: :MyArray(ulong size) : size_p(size) {
data_p = (int*)calloc(size, sizeof(int)); D .
: L] - HM
class Myhrray { if (data_p == nullptr) { ynamic array — std: :vector
ulong size_p; throw MallocException(); ® File — std::ifstream / std::ofstream
int* data_p; ¥ ® Mutex — std: : lock_guard
public: 3 ® Thread — std: : jthread
MyArray(ulong size); ® Pointer to hea . uni i .. i
L~ p — std: :unique_pointer / std::shared_pointer
“MyArray Q) ; MyArray:: “MyArray () {
free(data_p);
int& operator[] (ulong index); by
uint size() const;
};
. o lec13/myarray.cpp . o o
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 14 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 15 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 16 / 48
RAIl — Resource Acquisition is Initialization RAII — Resource Acquisition is Initialization RAII Threading
std: :vector File streams RAIl Thread and Mutex
= Generic wrapper for dynamic array. /* jthread not implemented in g++ 9.4.0 */
= More general version of MyArray. int main(void) class my_jthread {
= Other useful features: { . ., ., std::thread thread;
such as push_back() with dynamic reallocation of the underlying array. std::ofstream outFile("out.txt");
- ’ outFile << "Hello World\n"; public:
int main() template<class Function, class... Args>
std: rvector<int> v = { 7, 5, 16, 8 }; std::ifstream inFile("in.txt"); my_jthread(Function&& f, Args&&... args) : thread(f, args...) {};
int a;
v.push_back(25); o X -
v.push_back(13) ; inFile >> a; my_jthread () {
if (thread.joinable()) {
:tdﬁsft;<yk :{'” /* Destructor of outFile/inFile automatically closes the files. */ thread.join();
or (intn : v
std::icout << n << ", " return O; ¥
} }
std::cout << "}; \n";
3 };
) .) - o lec13/thread. cpp
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 17 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 18 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 20 / 48

RAIl Threading

RAIl Thread and Mutex

class my_lock_guard {
std: :mutex* mtx;

public:
my_lock_guard(std: :mutex& mtx)
mtx.lock();

: mtx(&mtx) {
};

“my_lock_guard() {
mtx->unlock();
};
};
David Valouch, 2022

B3B36PRG — Lecture 13: Ownership in C++ 21 /48

RAIl Threading

RAIl Thread and Mutex

void coutnWorker (int n, int* a, std::mutex* mtx) {
for(int i = 0; i < n; ++i) {
my_lock_guard guard(*mtx);
int tmp = *a;
std::this_thread::sleep_for(std::chrono: :microseconds(1));
*a = tmp + 1;

void countTwice2(int* counter, int val) {
std: :mutex counterMutex;

my_jthread thrdl(coutnWorker, val, counter, &counterMutex);
my_jthread thrd2(coutnWorker, val, counter, &counterMutex);

David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++

22 / 48

RAIl Thread and Mutex

int main(void)

{
int counter = 0;
countTwice2(&counter, 10);
std::cout << "final counter value:
return O;

}

David Valouch, 2022

B3B36PRG — Lecture 13: Ownership in C++

RAIl Threading

" << counter << ’\n’;

23 /48

Smart Pointers

Smart Pointers

Shared Pointer

Smart Pointers

Shared Pointer

template<class T>

Smart Pointers

4| Object class my_shared_ptr {
= Wrappers around heap pointer. P — ™ T ptr;
® std::unique_ptr pointee_ —H— int* ref_counter;
= Frees the memory on deletion. pRefCount_ ||
= Only one unique_ptr pointing to a specific address may exist. public:
= May not be copied only moved. “ my_shared_ptr(T* ptr);
® std::shared_ptr | Pointee_) my_shared_ptr (my_shared_ptr<T>& other);
u Keeps reference counter. pRefCount_
u Last shared pointer frees the memory. ﬁ “my_shared_ptr();
= Multiple shared_ptrs pointing to the same address may exist. pointee_ —fi E e
() -
pRefCount_ - T& operatorx();
};
image source: https:/, i /how-is-th lec13/shared-ptr.cpp
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 25 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 26 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 27 / 48
Smart Pointers Assignment of Objects Holding Resources
Shared Pointer Assignment of Objects Holding Resources
template<class T> my_shared_ptr<T>::my_shared_ptr (T* p‘tr)
: ptr(ptr), ref_counter(new int(1)) {} ® Recall MyArray
template<class T> my_shared_ptr<T>::my_shared_ptr(my_shared_ptr<T>& = What should the following code do?
other) Part 1
: ptr(other.ptr), ref_counter(other.ref_counter) { MyArray array1(10);
*ref_counter += 1; H H - .
N - ; Part 2 — Move and Copy Semantics (in C++) MyArray array2 = arrayl;
template<class T> my_shared_ptr<T>:: my_shared_ptr() { = Remember MyArray structure
if (#ref_counter > 1) {
*ref_counter -= 1; class MyArray {
} else { ulong size_p;
delete ref_counter; int* data_p;
delete ptr; };
¥
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 28 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 29 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 31 /48

Assignment of Objects Holding Resources

Assignment of Objects Holding Resources

class MyArray {
ulong size_p;
int* data_p;

};

= More specifically:
What should happen to data_p?
= Multiple options:

= Copy the pointer.
= Allocate new array and copy data.
= Copy the pointer, but invalidate original data.

Assignment of Objects Holding Resources

Assignment of Objects Holding Resources

= Copy the pointer.
iy []][]

array2

R:

= PROBLEM: Which object handles deletion of the array.
® This is simmilar to the behavior of shared ptr.

Assignment of Objects Holding Resources

Assignment of Objects Holding Resources

® Allocate new array and copy data.

et [[][]
e [[][]

= PROBLEM: Possible redundancy if arrayl is about do be deleted
(e.g. returning from function).

David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 32 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 33 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 34 / 48
Assignment of Objects Holding Resources Assignment of Objects Holding Resources lvalues & rvalues
Assignment of Objects Holding Resources Move and Copy Semantics Value Categories
= Copy:
= Copy the pointer, but invalidate original data. L.
Py P g m Each expression in C++ has a type and value category.
arrayl S , .
= lvalue — 'left value' (L = r)
arrayl NULL l:\:\:‘ e D u An expression whose evaluation determines the identity of an object or function * —
glvalue
array2 HEEEEE -l ot e
array?2 M = rvalue - ‘right value’ (1 = R)
n : . . 0
ove: ® An expression whose evaluation computes the value of an operand of a built-in operator
(such prvalue has no result object), or initializes an object. — prvalue
= PROBLEM: Original array becomes invalid. array]- NULL l:\:\:‘ " D u Object whose resources can be reused.* — xvalue
= Similar to the behavior of unique_ptr.
array?2
en.cppreference. com/w/cpp/language/value_category
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 35 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 36 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 38 / 48
lvalues & rvalues lvalues & rvalues lvalues & rvalues
lvalue rvalue rvalue / lvalue reference
n _ ' = .. , = lvalue reference T&
lvalue — ‘left value’ (L = r) = rvalue — ‘right value’ (1 = R) Alias t isting object
= Can be assigned to. . ias to an existing object.
 Variable name = Cannot be assigned to. = Can be initialized by an 1value.
= Function/operator call whose value is non-reference. -
.) .] rvalue reference T&&
= Function/operator call whose value is a (Ivalue) reference, such as the asignment u Post-increment/decrement i++, i——. i ‘e biect ! i of .
‘o:’pergtor a = b(.j)) u All built in arithmetic operators a + b, a % b, ... xtend lifetime of temporary object.! e.g. result of an operator
n ++ — .
| ;e_mctr_ement/ ecrement ++1, 1 = Addres-of expression &a; std::string s = "hello";
] *
n |rec.|on p ® std: :move(T) std::string&& r = s + s3
= Subscript a[i]. s And 1
f nd more R
= and more = Can be initialized by an rvalue.
'en.cppreference.com/w/cpp/language/value_category 'en.cppreference.com/w/cpp/language/value_category len.cppreference.com/w/cpp/language/value_category
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 39 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 40 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 41 / 48

Move and Copy Semantics

Copy Semantics

= Copy constructor: T(const T&)
= Constructs object as a copy of another object.
= Copy assignment: T& operator=(const T&)
= Copies an object in another object
= Frees resources previously owned by the modified object.

= Any resources required by an object fo a given instance must be acquired.

Move Semantics

Move constructor: T(const T&&)

= Constructs an object using resources of another object.
Move assignment: T& operator=(T&&)

= Moves an object into another.

= Ownership of resources is transferred.

= Frees resources previously owned by the modified object.
No new resources are allocated.

It is assumed the source object will be destroyed after the move.

Move and Copy Semantics

Copy Semantics of MyArray

MyArray: :MyArray(const MyArray& other)
: size_p(other.size_p), data_p(new int[size_p])

{
std::cout << "MyArray(&)" << ’\n’;
for(int i = 0; i < size_p; ++i) {
data_p[i] = other.data_p[il;
¥
}

MyArray& MyArray::operator=(const MyArray& other) {
std::cout << "MyArray operator=(&)" << ’\n’;
delete[] data_p;
size_p = other.size_p;
data_p = new int[size_pl;
for(int i = 0; i < size_p; ++i) {

data_p[i] = other.data_p[il;

Move and Copy Semantics

¥
return *this;
}
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 43 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 44 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 45 / 48
Move and Copy Semantics Topics Discussed
Move Semantics of MyArray Topics Discussed
MyArray: :MyArray (MyArray&& other) ® Resouce Acquision-Release pattern.
: size_p(other.size_p), data_p(other.data_p) . .

P ® RAIl using automatic destructor call
std::cout << "MyArray(&&)" << ’\n’; ® Example RAIl array wrapper
other.size_p = 0; .

- > = RAIl handlig of other resour
other datap - mullpves Summary of the Lecture andlig of other resources
¥ = Files
MyArray& MyArray::operator=(MyArray&& other) { = Mutexes
std::cout << "MyArray operator=(&&)" << ’\n’; = Threads
delete[] data_p; = Smart pointers
size_p = other.size_p; . . .
n

data_p = other datap; Assignment of object with resources.

other.size_p = 0; ® lvalue and rvalue

other.data_p = nullptr;
"

return *this; lvalue reference and rvalue reference

} = Move and copy semantics
David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 46 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 47 / 48 David Valouch, 2022 B3B36PRG — Lecture 13: Ownership in C++ 48 / 48

