
Data types, arrays, pointer, memory storage classes,
function calls

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 03

B3B36PRG – Programming in C

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 1 / 61

Overview of the Lecture
■ Part 1 – Data Types

Numeric Types, Character, _Bool
Type Cast
Arrays
Pointers K. N. King: chapters 7, 8, and 11

■ Part 2 – Functions and Memory Classes
Functions and Passing Arguments
Program I/O
Hardware Resources
Scope of Variables
Memory Classes K. N. King: chapters 9, 10, and 18

■ Part 3 – Assignment HW 02
■ Part 4 – Coding examples (optional)

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 2 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Part I

Data Types

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 3 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Basic Data Types

■ Basic (built-in) types are numeric integer and floating types.
Logical data type has been introduced in C99.

■ C data type keywords are
■ Integer types: int, long, short, and char

Range “modifiers”: signed, unsigned.
■ Floating types: float, double; may also be used as long double.
■ Character type: char. Can be also used as the integer type
■ Data type with empty set of possible values: void.
■ Logical data type: _Bool.

■ Size of the memory representation depends on the system, compiler, etc.
■ The actual size of the data type can be determined by the sizeof operator.

■ New data type can be introduced by the typedef keyword.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 5 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Basic Numeric Types

■ Integer Types – int, long, short, char.
char – integer number in the range of single byte or character.

■ Size of the allocated memory by numeric variable depends on the computer architecture
and/or compiler. Type int usually has 4 bytes even on 64-bits systems.

■ The size of the memory representation can be find out by the operator. sizeof() with one
argument name of the type or variable.

int i;
printf("%lu\n", sizeof(int));
printf("ui size: %lu\n", sizeof(i));

lec03/types.c
■ Floating types – float, double.

Depends on the implementation, usually according to the IEEE Standard 754 (1985) (or as IEC 60559).

■ float – 32-bit IEEE 754.
■ double – 64-bit IEEE 754.

http://www.tutorialspoint.com/cprogramming/c_data_types.htm

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 6 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Integer Data Types

■ Size of the integer data types are not defined by the C norm but by the implementation.
They can differ by the implementation, especially for 16-bits vs 64-bit compu-
tational environments.

■ The C norm defines that for the range of the types, it holds that
■ short ≤ int ≤ long

■ unsigned short ≤ unsigned ≤ unsigned long.

■ The fundamental data type int has usually 4 bytes representation on 32-bit and 64-bit
architectures. Notice, on 64-bit architecture, a pointer is 8 bytes long vs int.

■ Data type size the minimal and maximal value.
Type Min value Max value

short -32,768 32,767
int -2,147,483,648 2,147,483,647
unsigned int 0 4,294,967,295

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 7 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Signed and Unsigned Integer Types
■ In addition to the number of bytes representing integer types, we can further distinguish.

■ signed (default) and unsigned data types.
A variable of unsigned type cannot represent negative number.

■ Example (1 byte):
unsigned char: values from 0 to 255.
signed char: values from -128 to 127.

1 unsigned char uc = 127;
2 char su = 127;
3

4 printf("uc: %i\tsu: %i\n", uc, su);
5 uc = uc + 2;
6 su = su + 2;
7 printf("uc: %i\tsu: %i\n", uc, su);

$ clang -c signed_unsigned_char
.c -o signed_unsigned_char

./signed_unsigned_char
uc: 127 su: 127
uc: 129 su: -127

lec03/signed_unsigned_char.c

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 8 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Coding of Negative Values

■ Signed magnitude representation – the sign is encoded
by the first bit (from the left), which supports an easy
determination of the absolute value. The representa-
tion has two zeros. Direct encoding

■ 121(10) 0111 1001(2)

■ -121(10) 1111 1001(2)

■ 0(10) 0000 0000(2)

■ -0(10) 1000 0000(2)

■ Ones’ complement – a negative value corresponds to
the bit negation of the positive value. The represen-
tation has two zeros. Inverse encoding

■ 121(10) 0111 1001(2)

■ -121(10) 1000 0110(2)

■ 0(10) 0000 0000(2)

■ -0(10) 1111 1111(2)

■ Two’s-complement – the negative value is stored as
a positive value after bit negation increased by one.

■ A single representation of zero.

■ 121(10) 0111 1001(2)

■ -121(10) 1000 0111(2)

■ 127(10) 0111 1111(2)

■ -128(10) 1000 0000(2)

■ -1(10) 1111 1111(2)

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 9 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Integer Data Types with Defined Size

■ A particular size of the integer data types can be specified, e.g., by the data types
defined in the header file <stdint.h>.

IEEE Std 1003.1-2001

int8_t uint8_t
int16_t uint16_t
int32_t uint32_t

lec03/inttypes.c
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/stdint.h.html

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 10 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Floating Types
■ C provides three floating types

■ float – Single-precision floating-point. Suitable for local computations with one decimal point.
■ double – Double-precision floating-point. Usually fine for most of the programs.
■ long double – Extended–precision floating-point. Rarely used.

■ C does not define the precision, but it is mostly IEEE 754. ISO/IEC/IEEE 60559:2011
■ float – 32 bits (4 bytes) with sign (1 bit), exponent (8 bits),

and mantissa (23 bits).

■ double – 64 bits (8 bytes) with sign, exponent, and mantissa.
■ s – 1 bit sign (+ or −).
■ Exponent – 11 bits, i.e., 2048 numbers.
■ Mantissa – 52 bits ≈ 4.5 quadrillions numbers.

4 503 599 627 370 496

■ A rational number x is stored according to x = (−1)sMantissa · 2Exponent−Bias.
■ Bias allows to store exponent always as positive number.

It can be further tuned, e.g., Bias = 2eb−1−1, where eb is the number bits of the exponent.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 11 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Example of the IEEE 754 Data Representation

■ Finite precision of the number representation -256.75 vs -256.74.
■ Infinity (0x7f800000), -Infinity (0xff800000), a NaN (0x7fffffff).

https://www.h-schmidt.net/FloatConverter/IEEE754.html
Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 12 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Example of float Values Representation
Representation of the value 85.125 (float)

■ 85 corresponds 1010101(2).

■ 0.125 corresponds 001
■ 0.125/2−1 = 0.25 | 0
■ 0.125/2−2 = 0.50 | 0
■ 0.125/2−3 = 1.00 | 1

■ 85.125 corresponds 1010101.001(2) =
= 1.010101001(2) × 26.

■ Bias for float is 127.
■ Exponet is 127 + 6 = 133
■ 133 corresponds 10000101(2).
■ Normalized mantissa 010101001(2) that is filled by zeros

to 23 bits (from the right, it is decimal number).
■ 0 - 1000 0101 - 0101 0100 1000 0000 0000 000.
■ 01000010 10101010 01000000 00000000.
■ In hexadecimal system 0x42 0xaa 0x40 0x00, thus

0x42aa4000.

Representation of the value 0.1 (float)
■ 0.1 is periodic in binary system.

1. 0.1 ∗ 2 = 0.2 | 0
2. 0.2 ∗ 2 = 0.4 | 0
3. 0.4 ∗ 2 = 0.8 | 0
4. 0.8 ∗ 2 = 1.6 | 1
5. 0.6 ∗ 2 = 1.2 | 1
6. 0.2 ∗ 2 = 0.4 | 0

■ Repeated pattern 0011, 23 bits represents lower value.
■ 0.1(10) ∼ 0.0001 1001 1001 1001 1001 1001 100(2) =

= 1, 1001 1001 1001 1001 1001 100(2) × 2−4.
■ Exponet is 127 − 4 = 123 that corresponds 0111 1011(2).
■ Normalized mantissa 1.100 1100 1100 1100 1100 1100.
■ 0 - 0111 1011 - 100 1100 1100 1100 1100 1100.
■ 00111101 11001100 11001100 11001100.
■ In hexadecimal system 0x3d 0xcc 0xcc 0xcc, thus

0x3dcccccc.
■ In practice, 0.1 is encoded as a litte bit higher value

0x3dcccccd, because its absolute error is lower.
lec03/floats.c

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 13 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Character – char
■ A single character (letter) is of the char type.
■ It represents an integer number (byte).

Character encoding (graphics symbols), e.g., ASCII – American Standard Code for Information Interchange.

■ The value of char can be written as constant, e.g., ’a’.
1 char c = ’a’;
2

3 printf("The value is %i or as char ’%c’\n", c, c);
lec03/char.c

clang char.c -o char && ./char
The value is 97 or as char ’a’

■ There are defined several control characters for output devices.
The so-called escape sequences.

■ \t – tabular, \n – newline,
■ \a – beep, \b – backspace, \r – carriage return,
■ \f – form feed, \v – vertical space

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 14 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Boolean type – _Bool
■ In C99, the logical data type _Bool has been introduced.

_Bool logic_variable;

■ The value true is any value of the type int different from 0.
■ In the header file stdbool.h, values of true and false are defined together with the

type bool.
Using preprocessor.

#define false 0
#define true 1

#define bool _Bool

■ In the former (ANSI) C, an explicit data type for logical values is not defined.
■ A similar definition as in <stdbool.h> can be used.

#define FALSE 0
#define TRUE 1

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 15 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Type Conversions – Cast

■ Type conversion transforms value of some type to the value of different type.
■ Type conversion can be.

■ Implicit – automatically, e.g., by the compiler for assignment;
■ Explicit – must be prescribed using the cast operator.

■ Type conversion of the int type to the double type is implicit.
Value of the int type can be used in the expression, where a value of the double type is
expected. The int value is automatically converted to the double value.

Example
double x;
int i = 1;

x = i; // the int value 1 is automatically converted
// to the value 1.0 of the double type

■ Implicit type conversion is safe.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 17 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Explicit Type Conversion

■ Tranformation of values of the double type to the int type has to be explicitely pre-
scribed by the cast operator.

■ The franctional part is truncated.
double x = 1.2; // declaration of the double variable
int i; // declaration of the int variable
int i = (int)x; // value 1.2 of the double type is

// truncated to 1 of the int type

■ Explicit type conversion can be potentially dangerous.
double d = 1e30;
int i = (int)d;

// i is -2147483648
// which is ∼ -2e9 vs 1e30

long l = 5000000000L;
int i = (int)l;

// i is 705032704
// (truncated to 4 bytes)

lec03/demo-type_conversion.c

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 18 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Type Cast of Numeric Types
■ Basic data types are mutually incompatible, but their values can be transformed by type cast.

narrowing by type cast

char

sign 0/1 ~ +/−

expansion by assignment

exp mantisa

mantisaexp

short

int

long

double

float

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 19 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Array
■ A data structure to store several data values of the same type, e.g., int array[10];.

Values are stored in a continuous block of memory.
■ Each element has identical size, and thus its relative address from the beginning of the

array is uniquely defined.
■ Elements can be addressed by order of the element in the array.

“address”=size_of_element * index_of_element_in_the_array

0 1 2 3 4 5variable

■ The variable of the array type represents the address of the memory, where the
particular values are stored.

Address = 1st_element_address + size_of_the_type * index_of_the_element
■ The memory is allocated by the definition of the array variable.

■ The array always has a particular size, defined by the number of the elements or automatically allocated
by the compiler.

■ Once the array is defined, its size cannot be changed!
Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 21 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Array Definition

■ Definition consists of the type (of the array elements), name of the variable, and size
(the number of elements) in the [] brackets.

type array_variable [];
■ [] is also the array subscripting operator.

array_variable [index]

Example of array of int elements
I.e., 10 × sizeof(int)int array[10];

printf("Size of array %lu\n", sizeof(array));
printf("Item %i of the array is %i\n", 4, array[4]);

Size of array 40
Item 4 of the array is -5728

Values of individual elements are not initialized!

C does not check the validity of the array index during the program runtime!

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 22 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Arrays – Example

■ Definition of 1D and two-dimensional arrays.
/* 1D array with elements of the char type */
char simple_array[10];

/* 2D array with elements of the int type */
int two_dimensional_array[2][2];

■ Accessing elements of the array m[1][2] = 2*1;.
■ Example of the array definition and accessing its elements.

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int array[5];
6
7 printf("Size of array: %lu\n", sizeof(array));
8 for (int i = 0; i < 5; ++i) {
9 printf("Item[%i] = %i\n", i, array[i]);

10 }
11 return 0;
12 }

Size of array: 20
Item[0] = 1
Item[1] = 0
Item[2] = 740314624
Item[3] = 0
Item[4] = 0

lec03/array.c

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 23 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Array in a Function and as a Function Argument
■ Array defined in a function is a local variable.

The of the local variable is only within the block (function).void fce(int n)
{

int array[n];
// we can use array here
{

int array2[n*2];
} // end of the block destroy local variables
// here, array2 no longer exists

} // after end of the function, a variable is automatically destroyed
■ Array (as any other local variable) is automatically created at the definition, and it is automatically

destroyed at the end of the block (function). The memory is automatically allocated and released.
■ Local variables are stored at the stack, which is usually relatively small.
■ Therefore, large arrays might be rather allocated dynamically (in the so called heap memory)

using pointers.
■ Array can be argument of a function.

void fce(int array[]);

However, the value is passed as pointer!
Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 24 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Pointer
■ Pointer is a variable storing an address where the value of the particular type is stored.

For 64-bit systems, it is like a long variable, but its value is iterpreted as a memory address.

■ Pointer refers to the memory location where a value is stored.
■ Pointer is of type of the data it can refer.

Type is important for the pointer arithmetic and accessing the value referred to by the pointer.

■ Pointer to a value (variable) of primitive types: char, int,
■ “Pointer to an array”; pointer to function; pointer to a pointer.

■ Pointer can also be of general (without) type, void pointer. A general memory address.

■ Size of the variable (data) cannot be determined from the void pointer.
■ In general, pointer can point to any address.

Programmer is responsible to point to memory, where data are stored.

■ Empty address is defined by the symbolic constant NULL. Provably invalid address.
C99 – int value 0 can be used as well.

Pointers allow to write efficient codes, but they can also be sources of many bugs. There-
fore, acquired knowledge of the indirect addressing and memory organization is crucial.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 26 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Address and Indirect Operators
■ Address operator – &.

■ It returns the address of the memory location, where the value of the variable is stored.
&variable

■ Indirect operator – *
■ Returns the l-value corresponding to the value at the address stored in the pointer variable.

*variable Variable is of the pointer type.
■ Allows reading and writing values from/to the memory addressed by the pointer’s value.

*p = 10; // write value 10 to the address stored in the p variable

int a = *p; // read value from the address stored in p

■ The address can be printed using "%p" in the printf() function.
int a = 10;
int *p = &a;

printf("Value of a %i, address of a %p\n", a, &a);
printf("Value of p %p, address of p %p\n", p, &p);

Value of a 10, address of a 0x7fffffffe95c
Value of p 0x7fffffffe95c, address of p 0x7fffffffe950

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 27 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Pointer – Examples 1/2

int i = 10; // variable of the int type
// &i – adresa of the variable i

int *pi; // declaration of the pointer to int
// pi pointer to the value of the int type
// *pi value of the int type

pi = &i; // set address of i to pi

int b; // int variable

b = *pi; // set content of the addressed reference
// by the pi pointer to the to the variable b

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 28 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Pointer – Examples 2/2

printf("i: %d -- pi: %p\n", i, pi); // 10 0x7fffffffe8fc
printf("&i: %p -- *pi: %d\n", &i, *pi); // 0x7fffffffe8fc 10
printf("*(&)i: %d -- &(*pi): %p\n", *(&i), &(*pi));

printf("i: %d -- *pj: %d\n", i, *pj); // 10 10
i = 20;
printf("i: %d -- *pj: %d\n", i, *pj); // 20 20

printf("sizeof(i): %lu\n", sizeof(i)); // 4
printf("sizeof(pi): %lu\n", sizeof(pi));// 8

long l = (long)pi;
printf("0x%lx %p\n", l, pi); /* print l as hex -- %lx */
// 0x7fffffffe8fc 0x7fffffffe8fc
l = 10;
pi = (int*)l; /* possible but it is nonsense */
printf("l: 0x%lx %p\n", l, pi); // 0xa 0xa

lec03/pointers.c

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 29 / 61

Numeric Types, Character, _Bool Type Cast Arrays Pointers

Pointers and Coding Style
■ The pointer type is denoted by the * character.
■ * can be attached to the type name or the variable name.
■ * attached to the variable name is preferred to avoid oversight errors.

char* a, b, c;
Only a is the pointer.

char *a, *b, *c;
All variables are pointers.

■ Pointer to a pointer to a value of char type is char **a;.
■ Writting pointer type (without variable): char* or char**.
■ Pointer to a value of empty type.

void *ptr
■ Guaranteed not valid address has the symbolic name NULL.

Defined as a preprocessor macro (0 can be used in C99).
■ Variables in C are not automatically initialized, and therefore, pointers can reference

any address in the memory after definition.
■ Thus, it may be suitable to explicitly initialize pointers to 0 or NULL.

E.g., int *i = NULL;

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 30 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Part II

Functions and Memory Classes

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 31 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Passing Arguments to Function
■ In C, function argument is passed by its value.
■ Arguments are local variables (allocated on the stack), and they are initialized by the

values passed to the function.
void fce(int a, char *b)
{ /*

a - local variable of the int type (stored on the stack)
b - local variable of the pointer to char type (the value
is address) the variable b is stored on the stack */

}

■ Change of the local variable does not change the value of the variable (passed to the
function) outside the function.

It is a new local variable allocated on the stack and initialized by the passed value.

■ However, by passing a pointer, we have access to the address of the original variable;
so, we can change the value at the passed address.

We can achieve a similar behaviour as passing by reference.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 33 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Passing Arguments – Example

■ The variable a is passed by it value.
■ The variable b “implements calling by reference.”

1 void fce(int a, char* b)
2 {
3 a += 1;
4 (*b)++;
5 }
6 int a = 10;
7 char b = ’A’;
8 printf("Before call a: %d b: %c\n", a, b);
9 fce(a, &b);

10 printf("After call a: %d b: %c\n", a, b);

■ Program output
Before call a: 10 b: A
After call a: 10 b: B

lec03/function_call.c

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 34 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Passing Arguments to the Program

■ We can pass arguments to the main() function during program execution.
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 printf("Number of arguments %i\n", argc);
6 for (int i = 0; i < argc; ++i) {
7 printf("argv[%i] = %s\n", i, argv[i]);
8 }
9 return argc > 1 ? 0 : 1;

10 }

clang demo-arg.c -o arg

./arg one two three

Number of arguments 4
argv[0] = ./arg
argv[1] = one
argv[2] = two
argv[3] = three

lec03/demo-arg.c

■ The program return value is passed by return in main().
./arg >/dev/null; echo $?
1

./arg first >/dev/null; echo $?
0

■ In shell, the program return value is stored in $?, which can be print
by echo.

■ >/dev/null redirect the standard output to /dev/null.

Reminder

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 36 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Program Interaction using stdin, stdout, and stderr
■ The main function int main(int argc, char *argv[]).

■ The program arguments are passed to the program as text strings.
■ We can receive return value of the program.

By convention, 0 without error, other values indicate some problem.
■ At runtime, we can read from stdin and print to stdout.

E.g., using scanf() or printf()
■ We can redirect stdin and stdout from/to a file.

In such a case, the program does not wait for the user input (pressing “Enter”).
■ In addition to stdin and stdout, each (terminal) program has standard error output

(stderr), which can be also redirected.

./program <stdin.txt >stdout.txt 2>stderr.txt

■ Instead of scanf() and printf() we can use fscanf() and fprintf().

■ The first argument of the functions is a file, but they behave identically.
■ “File names” stdin, stdout and stderr are defined in <stdio.h>.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 37 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Program Output Redirection – Example
1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 int ret = 0;
6
7 fprintf(stdout, "Program has been called as %s\n", argv[0]);
8 if (argc > 1) {
9 fprintf(stdout, "1st argument is %s\n", argv[1]);

10 } else {
11 fprintf(stdout, "1st argument is not given\n");
12 fprintf(stderr, "At least one argument must be given!\n");
13 ret = -1;
14 }
15 return ret;
16 } lec03/demo-stdout.c

■ Example of the output – clang demo-stdout.c -o demo-stdout.
./demo-stdout; echo $?
Program has been called as ./demo-stdout
1st argument is not given
At least one argument must be given!
255

./demo-stdout 2>stderr
Program has been called as ./demo-stdout
1st argument is not given

./demo-stdout ARGUMENT 1>stdout; echo $?
0

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 38 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Computers with Program Stored in the Operating Memory
■ Program instructions are read from the computer memory.

■ It provides great flexibility in creating the list of instructions.
The program can be arbitrarily changed.

■ Von Neumann architecture is the computer architecture with
program and data in the same memory type.

John von Neumann (1903–1957)

■ Address of the currently executed instruction is stored in the
Program Counter (PC).

■ Calling a function is setting the PC to the address where the
function implementation (as a sequence of instructions) starts.

■ Branching is a “jump” to a block of instructions, e.g., if-else.
■ Calling function or jumps need to manage passing function

arguments, return values, or location variables.
Auto variables using stack.

CMP

MOV

DOJNE

ENDJMP

......

......

......

......

BX,1

instructions

PC list of

Data
values of

variables

x10

xed

xa1

x0f

xb3

x4a

xfe

xac

Program

Memory

AX,1

■ The architecture also allows that a pointer can address not only to data but also to the
part of the memory where the program is stored. Pointer to a function

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 40 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Program Memory Organization
■ The memory of the program can be

categorized into five parts.
■ Stack – local variables, function

arguments, return value.
Automatically managed

■ Heap – dynamic memory (malloc(),
free()).

Managed by the programmer.
■ Static – global or “local” static

variables.
Initialized at the program start.

■ Literals – values written in the source
code, e.g., strings.

Initialized at the program start.
■ Program – machine instructions.

Initialized at the program start.

Stack

Heap (dynamic memory)Heap

Static Data

Instructions

Stack

Program (instructions)

Args & Env
Command line arguments

and environment variables

Static (global) data

LiteralsLiterals

not executable

writable not executable

executableread only

read only not executable

not executable

writable

writable

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 41 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Scope of Local Variables
■ Local variables are declared (and valid) inside a block or function.

1 int a = 1; // global variable
2

3 void function(void)
4 { // here, a represents the global variable
5 int a = 10; // local variable a shadowing the global a
6 if (a == 10) {
7 int a = 1; // new local variable a; access to the
8 // former local a is shadowed
9 int b = 20; // local variable valid inside the block

10 a = b + 10; // the value of the variable a is 11
11 } // end of the block
12 // here, the value of a is 10, it is the local
13 // variable from the line 5
14

15 b = 10; // b is not valid (declared) variable
16 }

■ Global variables are accessible “everywhere” in the program, but they can be shadowed by a local
variable of the same name. Shadowed variables can be accessed using the specifier extern in a block.

http://www.tutorialspoint.com/cprogramming/c_scope_rules.htm
Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 43 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Variables and Memory Allocation

■ Memory allocation is determination of the memory space for storing variable value.
■ For local variables (the function arguments), the memory is allocated during the function

call.
■ The memory is allocated until the function return.
■ It is automatically allocated from reserved space called Stack.

The memory is released for the further usage.

■ The exceptions are local variables with the specifier static.
■ Regarding the scope, they are local variables.
■ But the value is preserved after the function/block end.
■ They are stored in the static part of the memory.

■ Dynamic allocation of the memory – library, e.g., <stdlib.h>.
■ The memory allocation is by the malloc() function.

Alternative memory management libraries exist, e.g., with garbage collector – boehm-gc.
■ The memory is allocated from the reserved part of the memory called Heap.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 44 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Stack

■ Memory blocks allocated to local variables and function ar-
guments are organized in into stack.

■ The memory blocks are “pushed” and “popped.”
■ The last added block is always popped first.

LIFO – last in, first out.

■ The function call is also stored in the stack.
The return value and also the value of the “program counter” denoted the location of the
program at which the function has been called.

■ The variables for the function arguments are allocated on the stack.
By repeated recursive function calls, the memory reserved for the stack can be depleted,

and the program is terminated with an error.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 45 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Recursive Function Call – Example

■ Try yourself to execute the program with a limited stack size, set by ulimit.

1 #include <stdio.h>
2

3 void printValue(int v)
4 {
5 printf("value: %i\n", v);
6 printValue(v + 1);
7 }
8

9 int main(void)
10 {
11 printValue(1);
12 }

clang demo-stack_overflow.c
ulimit -s 1000; ./a.out | tail -n 3
value: 31730
value: 31731
Segmentation fault

ulimit -s 10000; ./a.out | tail -n 3
value: 319816
value: 319817
Segmentation fault

lec03/demo-stack_overflow.c

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 46 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Comment – Coding Style and return 1/2
■ return terminates the function call and pass the value (if any) to the calling function.
int doSomeThingUseful() {

int ret = -1;
...
return ret;

}
■ How many times return should be placed in a function?

Inversion – see “Why You Shouldn’t Nest Your Code” – https://youtu.be/CFRhGnuXG-4.
int doSomething() {

if (
!cond1

&& cond2
&& cond3
) {

... do some long code ...
}
return 0;

}

http://llvm.org/docs/CodingStandards.html

int doSomething() {
if (cond1) {

return 0;
}
if (!cond2) {

return 0;
}
if (!cond3) {

return 0;
}
... some long code
return 0;

}
Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 47 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Comment – Coding Style and return 2/2
■ Calling return at the beginning can be helpful.

E.g., we can terminate the function based on the value of the passed arguments.

■ However, coding style can prescribe to use only a single return in a function.
Provides a great advantage to identify the return, e.g., for further processing of the function
return value.

■ It is not recommended to use else immediately after return (or other interruption of
the program flow), e.g., see the example.

case 10:
if (...) {

...
return 1;

} else {
if (cond) {

...
return -1;

} else {
break;

}
}

case 10:
if (...) {

...
return 1;

} else {
if (cond) {

...
return -1;

}
}
break;

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 48 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Variables

■ Variables denote a particular part of the memory and can be divided according to the
type of allocation.

■ Automatic allocation is performed for the definition of local variables. The memory space
is allocated on the stack, and the memory of the variable is automatically released at the
end of the variable scope.

■ Dynamic allocation is not directly supported by the C programming language, but it is
provided by library functions.

E.g., malloc() and free() from the standard C library <stdlib.h> or <malloc.h>.

■ Static allocation is performed for the definition of static and global variables. The
memory space is allocated during the program start. The memory is never released (only
at the program exit).

http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 50 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Variable Definition/Declaration

■ The variable definition/declaration has the general form
declaration-specifiers declarators;

■ Declaration specifiers are:
■ Storage classes: at most one of the auto, static, extern, register.

Using extern it becomes the variable declaration.
■ Type quantifiers: const, volatile, restrict.

None or more type quantifiers are allowed.
■ Type specifiers: void, char, short, int, long, float, signed, unsigned. In addition,
struct and union type specifiers can be used. Finally, own types defined by typedef
can be used as well.

Reminder from the first lectures.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 51 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Variables – Storage Classes Specifiers (SCS)
■ auto (local) – Temporary (automatic) variable is used for local variables declared inside

a function or block. Implicit specifier, the variables is on the stack.
■ register – Suggest (to the compiler) to store the variable in the CPU register (hint).

Note that a register variable does not have memory address; thus, it is not l-value!

It might not be necessary for modern compilers with advanced optimizations.

■ static
1. Inside a block {...} – the variable is defined as static, and its value is preserved even after

leaving the block It exists for the whole program run. It is stored in the static (global)
part of the data memory (static data).

2. Outside a block – the variable is stored in the static data, but its visibility is restricted
to a module.

■ extern – extends the visibility of the global module variables from the module to the
other parts of the program.

■ Global variables with the extern specifier are stored in the static data.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 52 / 61

Functions and Passing Arguments Program I/O Hardware Resources Scope of Variables Memory Classes

Comment – Variables and Assignment
■ Variables are defined by the type name and name of the variable.

■ Lower case names of variables are preferred.
■ Use underscore _ or camelCase for multi-word names.

https://en.wikipedia.org/wiki/CamelCase
■ Define each variable on a new line

int n;
int number_of_items;

■ The assignment statement is the assignment operating = and ;.
■ The left side of the assignment must be the l-value – location-value, left-value – it has

to represent a memory location where the value can be stored.
■ Assignment is an expression, and it can be used whenever an expression of the particular

type is allowed. Storing the value to left side is a side effect.

/* int c, i, j; */
i = j = 10;
if ((c = 5) == 5) {

fprintf(stdout, "c is 5 \n");
} else {

fprintf(stdout, "c is not 5\n");
} lec03/assign.c

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 53 / 61

Part III

Part 3 – Assignment HW 02

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 54 / 61

HW 02 – Assignment

Topic: Prime Factorization
Mandatory: 2 points; Optional: none; Bonus : 4 points

■ Motivation: Loops, variables and their internal representation in a computational
task.

■ Goal: Familiarize with the algorithmic solution of the computational task.
■ Assignment: https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw02

■ Read sequence of positive integer values, less than 108, but still representable as 64-bit
integer, and compute their prime factorization using Sieve of Eratosthenes.

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
■ Bonus assignment – an extension of the prime factorization for integer values with up

to 100 digits. Notice, the input values are such that, the the greatest number in the
factorization is always less than 106.

■ Deadline: 30.03.2024, 23:59 AoE (bonus 24.5.2024, 23:59 CEST).

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 55 / 61

Coding Examples

Part IV

Part 4 – Coding Examples
(optional)

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 56 / 61

Coding Examples

Coding Example – Pointers in Swap Function 1/2

■ Implement a function that swap values of two
variables swap.

■ The swap of the variables’ values can be imple-
mented using temporary variable.

int a = 10;
int b = 20;

int t = a;
a = b;
b = t;

■ However, passing the integer values of the vari-
ables into a function void swap(int a, int
b); does not yield the expected result.

■ It is because new local variables are defined.

...
int main(void)
{

int a = 10;
int b = 20;

printf("a: %d b: %d\n", a, b);
swap(a, b);
printf("a: %d b: %d\n", a, b);

...

void swap(int a, int b)
{

int t = a;
a = b;
b = t;

}

$ clang swap.c -o swap && ./swap
a: 10 b: 20
a: 10 b: 20

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 58 / 61

Coding Examples

Coding Example – Pointers in Swap Function 2/2

■ We need to pass addresses of the local variables
a and b defined in the calling (main) function.

■ Then, we can access the values at the passed
addresses using indirect addressing operator *,
e.g., int t = *a;.

■ The variables a and b in the main function are
integer values.

Most likely sizeof(a) would be 4 bytes.

■ The variables a and b in the swap function are
pointers to integer values.

Most likely sizeof(a) would be 8 bytes.
Most likely sizeof(*a) would be 4 bytes (int).

■ Try and experiment with the code yourself!
Add prints, e.g., using printf("%p" ...);.

void swap(int *a, int *b);

int main(void)
{

int a = 10;
int b = 20;

printf("a: %d b: %d\n", a, b);
swap(&a, &b);
printf("a: %d b: %d\n", a, b);

...
void swap(int *a, int *b)
{

int t = *a;
*a = *b;
*b = t;

}

$ clang swap.c -o swap && ./swap
a: 10 b: 20
a: 20 b: 10

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 59 / 61

Topics Discussed

Summary of the Lecture

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 60 / 61

Topics Discussed

Topics Discussed

■ Data types
■ Arrays
■ Pointers
■ Memory Classes

■ Next: Arrays, strings, and pointers.

Jan Faigl, 2024 B3B36PRG – Lecture 03: Data types, Memory Storage Classes 61 / 61

