
LAR 2021, Depth Estimation

Vladiḿır Petŕık

vladimir.petrik@cvut.cz

March 9, 2021

LAR 2021, Depth Estimation
Vladiḿır Petŕık 2 / 20

Problem Formulation

I Goal: Compute position of gates in Cartesian coordinates
I Inputs:

I RGB image with segmentation/labeling (see previous lecture)
I Depth map
I Robot odometry (integrated measurements of wheels rotation)

(a) RGB image (b) Segmentation (c) Position of gate

LAR 2021, Depth Estimation
Vladiḿır Petŕık 3 / 20

Coordinate frames

I robot is equipped with RGBD
camera

I camera sees the gate

I multiple coordinate frames
I transformations:

I robot has moved from the
initial position (To)

I camera is not exactly in the
middle (Tc)

I gates are at position x1, x2
w.r.t. camera frame

LAR 2021, Depth Estimation
Vladiḿır Petŕık 3 / 20

Coordinate frames

I robot is equipped with RGBD
camera

I camera sees the gate

I multiple coordinate frames
I transformations:

I robot has moved from the
initial position (To)

I camera is not exactly in the
middle (Tc)

I gates are at position x1, x2
w.r.t. camera frame

LAR 2021, Depth Estimation
Vladiḿır Petŕık 3 / 20

Coordinate frames

I robot is equipped with RGBD
camera

I camera sees the gate

I multiple coordinate frames

I transformations:

I robot has moved from the
initial position (To)

I camera is not exactly in the
middle (Tc)

I gates are at position x1, x2
w.r.t. camera frame

LAR 2021, Depth Estimation
Vladiḿır Petŕık 3 / 20

Coordinate frames

I robot is equipped with RGBD
camera

I camera sees the gate

I multiple coordinate frames
I transformations:

I robot has moved from the
initial position (To)

I camera is not exactly in the
middle (Tc)

I gates are at position x1, x2
w.r.t. camera frame

LAR 2021, Depth Estimation
Vladiḿır Petŕık 4 / 20

Transformations

I Transformation in 2D is 3 × 3 matrix (homogeneous coordinates)

I T =

R(θ)
x
y

0 0 1

, R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

I For our coordinates: xw = ToTcxc
I xw position of gate in world coordinate system
I xc position of gate in camera coordinate system
I To computed from odometry data
I Tc approximated by unit transformation

I θ = 0, x = 0, y = 0
I optionally can be calibrated

LAR 2021, Depth Estimation
Vladiḿır Petŕık 4 / 20

Transformations

I Transformation in 2D is 3 × 3 matrix (homogeneous coordinates)

I T =

R(θ)
x
y

0 0 1

, R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
I For our coordinates: xw = ToTcxc

I xw position of gate in world coordinate system
I xc position of gate in camera coordinate system
I To computed from odometry data
I Tc approximated by unit transformation

I θ = 0, x = 0, y = 0
I optionally can be calibrated

LAR 2021, Depth Estimation
Vladiḿır Petŕık 5 / 20

Odometry Computation

I You define where the world coordinate is placed by resetting odometry

I Robot computes relative wheels rotation and integrate it to obtain position w.r.t.
call of reset

I Integration is not robust, i.e. the errors are integrated too

reset_odometry() -> None # sets world coordinate to the

current robot position

get_odometry() -> [x,y,a] # gives relative distance travelled from

the last call of reset

LAR 2021, Depth Estimation
Vladiḿır Petŕık 6 / 20

Gate Position in Camera Frame

I We will compute gate positions in camera frame, hereinafter

I It simplifies some of the equations

I You can then transform them into world coordinates using: xw = ToTcxc

LAR 2021, Depth Estimation
Vladiḿır Petŕık 7 / 20

Camera Model
I camera is approximated by pinhole camera model

I all points on a ray project to the same pixel
I from given pixel, you cannot compute Cartesian point (without additional prior

knowledge)

(a) Projection of point1

xc

zc

x1

u1 u2

x2

(b) Top view

1https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_

reconstruction.html

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

LAR 2021, Depth Estimation
Vladiḿır Petŕık 8 / 20

Pinhole Camera Model

I uH = Kx
I uH is pixel in homogeneous coordinates
I if uH =

(
u v w

)>
, then pixel coordinates are

(
u/w v/w

)>

I alternatively, we can represent it as: λ
(
u, v , 1

)>
= λu = Kx

I K is camera matrix
I get rgb K(self) -> K

I K =

fx 0 cx
0 fy cy
0 0 1


I what does λ represent?

I λ is non-zero real number
I if you know λ value, you can compute Cartesian coordinate x = λK−1u
I otherwise, only ray is computable

LAR 2021, Depth Estimation
Vladiḿır Petŕık 8 / 20

Pinhole Camera Model

I uH = Kx
I uH is pixel in homogeneous coordinates
I if uH =

(
u v w

)>
, then pixel coordinates are

(
u/w v/w

)>
I alternatively, we can represent it as: λ

(
u, v , 1

)>
= λu = Kx

I K is camera matrix
I get rgb K(self) -> K

I K =

fx 0 cx
0 fy cy
0 0 1


I what does λ represent?

I λ is non-zero real number
I if you know λ value, you can compute Cartesian coordinate x = λK−1u
I otherwise, only ray is computable

LAR 2021, Depth Estimation
Vladiḿır Petŕık 8 / 20

Pinhole Camera Model

I uH = Kx
I uH is pixel in homogeneous coordinates
I if uH =

(
u v w

)>
, then pixel coordinates are

(
u/w v/w

)>
I alternatively, we can represent it as: λ

(
u, v , 1

)>
= λu = Kx

I K is camera matrix
I get rgb K(self) -> K

I K =

fx 0 cx
0 fy cy
0 0 1



I what does λ represent?
I λ is non-zero real number
I if you know λ value, you can compute Cartesian coordinate x = λK−1u
I otherwise, only ray is computable

LAR 2021, Depth Estimation
Vladiḿır Petŕık 8 / 20

Pinhole Camera Model

I uH = Kx
I uH is pixel in homogeneous coordinates
I if uH =

(
u v w

)>
, then pixel coordinates are

(
u/w v/w

)>
I alternatively, we can represent it as: λ

(
u, v , 1

)>
= λu = Kx

I K is camera matrix
I get rgb K(self) -> K

I K =

fx 0 cx
0 fy cy
0 0 1


I what does λ represent?

I λ is non-zero real number
I if you know λ value, you can compute Cartesian coordinate x = λK−1u
I otherwise, only ray is computable

LAR 2021, Depth Estimation
Vladiḿır Petŕık 8 / 20

Pinhole Camera Model

I uH = Kx
I uH is pixel in homogeneous coordinates
I if uH =

(
u v w

)>
, then pixel coordinates are

(
u/w v/w

)>
I alternatively, we can represent it as: λ

(
u, v , 1

)>
= λu = Kx

I K is camera matrix
I get rgb K(self) -> K

I K =

fx 0 cx
0 fy cy
0 0 1


I what does λ represent?

I λ is non-zero real number
I if you know λ value, you can compute Cartesian coordinate x = λK−1u
I otherwise, only ray is computable

LAR 2021, Depth Estimation
Vladiḿır Petŕık 9 / 20

How to Get Depth Information?

I We need either prior knowledge of the scene or depth map
I Example of prior knowledge

I width of the gate in pixels and corresponding z-coordinate for several positions
I width of the gate in meters
I height of the gate
I etc.

LAR 2021, Depth Estimation
Vladiḿır Petŕık 10 / 20

Using Regression

I what is relation between width in the
image (px) and distance in meters?

I f : w = z : r
I z = rf 1

w = k 1
w

I How to estimate unknown constant?
I calibration
I measure (at least) two different

positions
I use least square estimation

I This is an approximated computation
(ignoring viewing angle)

x

z

z1

z2

z

f

r

w

LAR 2021, Depth Estimation
Vladiḿır Petŕık 10 / 20

Using Regression

I what is relation between width in the
image (px) and distance in meters?
I f : w = z : r
I z = rf 1

w = k 1
w

I How to estimate unknown constant?
I calibration
I measure (at least) two different

positions
I use least square estimation

I This is an approximated computation
(ignoring viewing angle)

x

z

z1

z2

z

f

r

w

LAR 2021, Depth Estimation
Vladiḿır Petŕık 10 / 20

Using Regression

I what is relation between width in the
image (px) and distance in meters?
I f : w = z : r
I z = rf 1

w = k 1
w

I How to estimate unknown constant?
I calibration
I measure (at least) two different

positions
I use least square estimation

I This is an approximated computation
(ignoring viewing angle)

x

z

z1

z2

z

f

r

w

LAR 2021, Depth Estimation
Vladiḿır Petŕık 10 / 20

Using Regression

I what is relation between width in the
image (px) and distance in meters?
I f : w = z : r
I z = rf 1

w = k 1
w

I How to estimate unknown constant?
I calibration
I measure (at least) two different

positions
I use least square estimation

I This is an approximated computation
(ignoring viewing angle)

x

z

z1

z2

z

f

r

w

LAR 2021, Depth Estimation
Vladiḿır Petŕık 11 / 20

Using Prior Knowledge of Fixed Width

I We know radius of gate is fixed

I From detected pixels u1,u2, we can compute rays x1, x2:
1
λi

xi = K−1ui

I Angle between vectors: cosα =
1

λ1λ2
1

λ1λ2

x1·x2
‖x1‖‖x2‖

I Depth: z = r
sin(α/2)

z

u1 u2

r r

LAR 2021, Depth Estimation
Vladiḿır Petŕık 11 / 20

Using Prior Knowledge of Fixed Width

I We know radius of gate is fixed

I From detected pixels u1,u2, we can compute rays x1, x2:
1
λi

xi = K−1ui

I Angle between vectors: cosα =
1

λ1λ2
1

λ1λ2

x1·x2
‖x1‖‖x2‖

I Depth: z = r
sin(α/2)

z

u1 u2

r r

LAR 2021, Depth Estimation
Vladiḿır Petŕık 11 / 20

Using Prior Knowledge of Fixed Width

I We know radius of gate is fixed

I From detected pixels u1,u2, we can compute rays x1, x2:
1
λi

xi = K−1ui

I Angle between vectors: cosα =
1

λ1λ2
1

λ1λ2

x1·x2
‖x1‖‖x2‖

I Depth: z = r
sin(α/2)

z

u1 u2

r r

LAR 2021, Depth Estimation
Vladiḿır Petŕık 11 / 20

Using Prior Knowledge of Fixed Width

I We know radius of gate is fixed

I From detected pixels u1,u2, we can compute rays x1, x2:
1
λi

xi = K−1ui

I Angle between vectors: cosα =
1

λ1λ2
1

λ1λ2

x1·x2
‖x1‖‖x2‖

I Depth: z = r
sin(α/2) z

u1 u2

r r

LAR 2021, Depth Estimation
Vladiḿır Petŕık 12 / 20

Using Depth Sensor

I Turtlebots are equipped with RGBD sensors

I In addition to RGB image they provide depth information

I get depth image() numpy 480x640

I Depth corresponds to distance in meters (x , y need to be computed from ray)

(a) RGB (b) Depth

LAR 2021, Depth Estimation
Vladiḿır Petŕık 13 / 20

Point Cloud

I Our library:
I We also provide point cloud with topology
I get point cloud() numpy 480x640x3
I Channels correspond to x , y , z-coordinates in camera frame

I In general:
I Point clouds are without topology
I Set of points

LAR 2021, Depth Estimation
Vladiḿır Petŕık 14 / 20

Troubles with Depth Maps and Point Clouds

I Depth reconstruction is not perfect (black areas in the image2)

I In python represented by NaN

I Not every pixel in RGB has reconstructed depth value

I RGB and Depth data are not aligned (you need to calibrate them)

2https://commons.wikimedia.org, User:Kolossos

LAR 2021, Depth Estimation
Vladiḿır Petŕık 15 / 20

How Depth Sensors Work

I Laser projects pattern and camera recognizes it

I Depth information is computed using triangulation

o50

Camera

Laser

M
ov

in
g

Su
pp

or
t

Object

50 cm

R
ev

ol
vi

ng
 T

ab
le

LAR 2021, Depth Estimation
Vladiḿır Petŕık 16 / 20

Kinect/Astra/Realsense

I Structured light based sensors

I Projects 2d infra red patterns

I There is one projector and two cameras (RGB + IR)

LAR 2021, Depth Estimation
Vladiḿır Petŕık 17 / 20

Comparison of Sensors

Kinect Xbox 360 Orbbec Astra Realsense R200 Realsense D435

FOV [deg]: 57 x 45 60 x 49.5 59 x 45.5 69.4 x 42.5

Range [m]: 1.5 . . . 3.5 0.6 . . . 8.0 0.5 . . . 3.5 (4.0) 0.105 . . . 10

Error XY [mm]: 10 (2.5m) 7.2 (3m) — –

Error Z [mm]: 10 (2.5m) 12.7 (3m) 10 (2m) –

Resolution [px]: 640x480 640x480 640x480 1280x720

LAR 2021, Depth Estimation
Vladiḿır Petŕık 18 / 20

Our scene

LAR 2021, Depth Estimation
Vladiḿır Petŕık 19 / 20

Our RGBD data

I Sensor range is limited - NaNs for too close and too far away points.

LAR 2021, Depth Estimation
Vladiḿır Petŕık 20 / 20

Are RGB/DEPTH aligned?

(a) In reality without calibration (b) In simulation

Figure: Overlay of DEPTH data over the RGB image.

