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Course target: goal-directed system

2Pask, Gordon (1972). "Cybernetics". Encyclopædia Britannica.
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• our motivation from (intelligent) robotics
• yet basic concepts from cybernetics
• modern terminology will be used



where we stand 50 years later: 
 machine control in unstructured environment

V. Salansky, K. Zimmermann, T. Petricek, T. Svoboda. Pose consistency KKT-loss for 
weakly supervised learning of robot-terrain interaction model. IEEE Robotics and 
Automation Letters, 2021, Volume 6, Issue 3.
M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology 
from Incomplete Measurements. In IEEE Transactions on Industrial Electronics, Feb 2017, 
Vol 64, Issue: 2
V. Šalanský, V. Kubelka, K. Zimmermann, M. Reinstein, T. Svoboda. Touching without 
vision: terrain perception in sensory deprived environments. CVWW 2016

http://www.tradr-project.eu, https://robotics.fel.cvut.cz/cras/darpa-subt/, https://cyber.felk.cvut.cz/category/department/cmp/vras/ 4

http://www.tradr-project.eu
https://robotics.fel.cvut.cz/cras/darpa-subt/
https://cyber.felk.cvut.cz/category/department/cmp/vras/


where we stand 50 years later: 
 machine control in unstructured environment

V. Salansky, K. Zimmermann, T. Petricek, T. Svoboda. Pose consistency KKT-loss for 
weakly supervised learning of robot-terrain interaction model. IEEE Robotics and 
Automation Letters, 2021, Volume 6, Issue 3.
M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology 
from Incomplete Measurements. In IEEE Transactions on Industrial Electronics, Feb 2017, 
Vol 64, Issue: 2
V. Šalanský, V. Kubelka, K. Zimmermann, M. Reinstein, T. Svoboda. Touching without 
vision: terrain perception in sensory deprived environments. CVWW 2016

http://www.tradr-project.eu, https://robotics.fel.cvut.cz/cras/darpa-subt/, https://cyber.felk.cvut.cz/category/department/cmp/vras/ 4

http://www.tradr-project.eu
https://robotics.fel.cvut.cz/cras/darpa-subt/
https://cyber.felk.cvut.cz/category/department/cmp/vras/


unstructured, uknown, rough
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Amatrice 2016



DARPA SubTerranean Challenge - Urban Circuit, 2020/02

https://youtu.be/rTP64z52JFE
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When to stop, when visiting or expanding?
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Notes

Complete, optimal search (plan)Problem: graph with costs
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Solution: Path (shortest, chapest, …)
Few examples of search strategies so far
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Run the demos.
9 / 26

Notes

What is wrong with UCS and other strategies?
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Run the demo, or see https://youtu.be/TT5MY8xCgAg 10 / 26
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Consistent heuristics
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State#space#graph# Search#tree#
Admissible h:
h(A)  true cost A ! G

Consistent h:
h(A)� h(C )  true cost A ! C
in general:
h(n)� h(s)  true cost n ! s for any pair: node
n and its successor s

f (n) = g(n) + h(n) along a path never decreases!

23 / 26

Notes

Our heuristic was admissible.
With tree search it would have worked. It would have expanded C and found the alternative, cheaper path.
For graph search, the problem is the A ! C ! G subgraph where the consistent heuristic condition is violated.
The general condition means we have two constraints for (A) for this particuar graph:
h(S)� h(A)  c(S ,A)
h(A)� h(C)  c(A,C)

<latexit sha1_base64="9CK3AhLvvlcCsD4R9oLpblPDrB8="></latexit>

Backward value/cost, accumulates as it goes
g(St) = g(St�1) + c(St�1, St)
g(C) = g(A) + c(A,C)

<latexit sha1_base64="68IQHotBsp8eGribgiMNvGMGOZs="></latexit>

State cost/value: f(St) = g(St) + h(St)

<latexit sha1_base64="tfRmxixjNyazMOdcBP8r2JxqHTc="></latexit>

Solution minimizes overall cost.
From Start to Goal (terminal):PG

S f(St) Solution: St=0, S1, S2, . . . , G; here: S, A, C, G

<latexit sha1_base64="f6FbCYC622bX7TJtJSBEn6Yu+R0=">AAACVnicZVBdaxNBFJ1dra1btak++jKYCi2UsFtFfSwK6mNF0xa6IdydvZsMnS9m7lrDkh/ir/FV/4H+GXGSRrTtgYEz59wL95zKKRkoz38l6a3ba3fWN+5mm/fuP9jqbT88Drb1AofCKutPKwiopMEhSVJ46jyCrhSeVOdvFv7JZ/RBWvOJZg5HGiZGNlIARWnce/bW+gvwNRc20D6ftBgCtw0vy2xnuvtxTHu8BOe8/cLF4rv/bm9n3Ovng3wJfpMUK9JnKxyNt5PNsrai1WhIKAjhrMgdjTrwJIXCeVa2AR2Ic5jgWaQGNIZRt0w350+jUvPG+vgM8aX6/0YHOoSZruKkBpqG695C/Od5NHghrNZg6q5sQEs1q7GBVtG8K0Pzl1+9iZpXo04a1xIacXlS0ypOli9K5bX0KEjNIgHhZUzFxRQ8CIrVZ6UDL00dw/MYO4v1FdfLukmODwbFi8HzDwf9w9erIjfYY/aE7bKCvWSH7D07YkMm2Ff2jX1nP5Kfye90LV2/HE2T1c4jdgVp7w8hL7NE</latexit>

Forward cost, guess of
h(St) ⇡ c(St, G)
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Notes

Our heuristic was admissible.
With tree search it would have worked. It would have expanded C and found the alternative, cheaper path.
For graph search, the problem is the A ! C ! G subgraph where the consistent heuristic condition is violated.
The general condition means we have two constraints for (A) for this particuar graph:
h(S)� h(A)  c(S ,A)
h(A)� h(C)  c(A,C)

Value iteration

I Bellman equations characterize the optimal values

v⇤(s) = max
a2A(s)

X

s0

p(s 0|s, a)
⇥
r(s, a, s 0) + �v⇤(s 0)

⇤

I Value iteration computes them:

Vk+1(s) max
a2A(s)

X

s0

p(s 0|s, a)
⇥
r(s, a, s 0) + �Vk(s

0
)
⇤

s

s, a

s 0

a

p(s 0|s, a)

q⇤(s, a)

v⇤(s 0)

v⇤(s)

Value iteration is a fixed point solution method.

12 / 28

Notes
Bellman equations:

1. Take correct first action (1 ply of Expectimax)

2. Keep being optimal (recursion v
⇤(s 0))

Recall that we may simplify equations by marginalizing rewards if all r(s, a, s 0) are the same.

r(s) =
X

s0

p(s 0|a, s)r(s, a, s 0)
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Notes
A few demo runs of mdp agents.py.
Test of understanding: Policy evaluation: Repeats until convergence. Hmm, just like for Value iteration. So how
come we are saving time? Because we do not iterate (and max) over the actions. We can solve directly (system
of linear equations), even though for large problems in practice, iterative methods are still used.

Policy improvement: Note that the value is taken from “old policy” on RHS.
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h(n)� h(s)  true cost n ! s for any pair: node
n and its successor s

f (n) = g(n) + h(n) along a path never decreases!
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Notes

Our heuristic was admissible.
With tree search it would have worked. It would have expanded C and found the alternative, cheaper path.
For graph search, the problem is the A ! C ! G subgraph where the consistent heuristic condition is violated.
The general condition means we have two constraints for (A) for this particuar graph:
h(S)� h(A)  c(S ,A)
h(A)� h(C)  c(A,C)
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Figure 3.1: The agent–environment interaction in a Markov decision process.

its action, the agent receives a numerical reward , Rt+1 2 R � R, and finds itself in a new state, St+1.4

The MDP and agent together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite number of
elements. In this case, the random variables Rt and St have well defined discrete probability distribu-
tions dependent only on the preceding state and action. That is, for particular values of these random
variables, s� 2 S and r 2 R, there is a probability of those values occurring at time t, given particular
values of the preceding state and action:

p(s�, r |s, a)
.
= Pr{St =s�, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s�, s 2 S, r 2 R, and a 2 A(s). The dot over the equals sign in this equation reminds us that it
is a definition (in this case of the function p) rather than a fact that follows from previous definitions.
The function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four arguments. The ‘|’
in the middle of it comes from the notation for conditional probability, but here it just reminds us that
p specifies a probability distribution for each choice of s and a, that is, that

X

s��S

X

r�R

p(s�, r |s, a) = 1, for all s 2 S, a 2 A(s). (3.3)

The probabilities given by the four-argument function p completely characterize the dynamics of a
finite MDP. From it, one can compute anything else one might want to know about the environment,
such as the state-transition probabilities (which we denote, with a slight abuse of notation, as a three-
argument function p : S ⇥ S ⇥ A ! [0, 1]),

p(s� |s, a)
.
= Pr{St =s� | St�1 =s, At�1 =a} =

X

r�R

p(s�, r |s, a). (3.4)

We can also compute the expected rewards for state–action pairs as a two-argument function r : S⇥A !
R:

r(s, a)
.
= E[Rt | St�1 =s, At�1 =a] =

X

r�R

r
X

s��S

p(s�, r |s, a), (3.5)

or the expected rewards for state–action–next-state triples as a three-argument function r : S⇥A⇥S !
R,

r(s, a, s�)
.
= E[Rt | St�1 =s, At�1 =a, St = s�] =

X

r�R

r
p(s�, r |s, a)

p(s� |s, a)
. (3.6)

it simply as A.
4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next reward and next

state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are widely used in the literature.

2

I Feedback in form of Rewards

I Learn to act so as to maximize expected rewards.
2Scheme from [3]
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Notes
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Q-learning

MDP update: Qk+1(s, a) 
P

s0 p(s
0 | s, a)


r(s, a, s 0) + � max

a0
Qk(s 0, a0)

�

Learn Q values as the robot/agent goes (temporal di↵erence)

I Drive the robot and fetch rewards (s, a, s 0,R)

I We know old estimates Q(s, a) (and Q(s 0, a0)), if not, initialize.

I A new trial/sample estimate at time t

trial = Rt+1 + � max
a

Q(St+1, a)

I ↵ update
Q(St ,At) Q(St ,At) + ↵(trial� Q(St ,At))
or (the same)
Q(St ,At) (1� ↵)Q(St ,At) + ↵ trial

In each step Q approximates the optimal q⇤ function.

29 / 34

Notes
There are alternatives how to compute the trial value. SARSA method takes Q(St+1,At+1) directly, not the max.

More next week.
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Notes

Init state, actions function, and result function defines game tree.

Note: game tree as opposed to search tree. Game tree are all possible evolutions of the game.
(With standard search, we similarly had state space graph vs. search tree.)

Note: Tic-tac-toe actually is literally zero-sum (at least in our slides, winner: 1, loser: -1, draw: both 0). Unlike

chess (sum is 1)... Conceptually, it is the same.
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↵-� pruning

↵ highest (best) value choice found so far for any choice along max
� lowest (best) value choice found so far for any choice along min

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

↵ = �1
� =1, v = �1

↵ = �1
� = 3, v = 3

↵ = �1
� = 3, v = 3

↵ = 3
� =1, v = �1

↵ = 3
v = 2, . . .

↵ = 3
� =1, v = �1

↵ = 3
� = 14, v = 14

↵ = 3
v = 2, v < ↵, . . .

↵ = �1, � =1, v =?↵ = 3, � =1, v = 3

In min-val: v  2
v  ↵ then: return v !

15 / 28

Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values are propagated towards the root.
In MAX nodes ↵ is changing and � is stopping, in MIN nodes � is changing and ↵ is stopping.

We can go (think) deeper if we prune …
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eval(s) – Problems

What if something important happens just after the cut – in the next ply?

(b) White to move(a) White to move
Additional improvements:

I “Killer moves”—capturing opponent’s pieces, check etc.—should be considered first.
I Quiescence search – EVAL function should be applied only once things calm down.

During capturing of pieces, depth should be locally increased.
23 / 28

Notes

Cutting search at a wrong moment – im-
portant moves/changes are beyond horizon.
Think about the two situations – states sa, sb
on the right. They are almost indentical. The
only di↵erence is the position of white rook,
see bottom right corner. Very likely:

Eval(sa) ⇡ Eval(sb)

for many possible Eval functions. (b) White to move(a) White to move

A good heuristics – which moves to be considered first – may help a lot. Remember perfect ordering from ↵-�

pruning?

Eval(state)

20



Uncertainty recap (enough games, back to the robots/agents)

I Uncertain outcome of an action.

I Robot/Agent may not know the current state!

20 / 35

Notes

What is state for the robot?

• inner state of the robot (interoceptive measurement)

– speed
– inclination, orientation (N,E,S,W)
– battery status
– · · ·

• environment (exteroceptive measurement/sensing)

– terrain profile close to robot
– robot position within the world frame
– · · ·

All of this may influence the decision about the best next action(s).

21



What state (disease) given some 
observation (symptoms)?

Rules of probability and notation II

I Conditional probability : P(Y = yj |X = xi )

I Product rule of probability :
I P(X = xi ,Y = yi ) = P(Y = yj |X = xi )P(X = xi )
I general rule, compact notation: P(X ,Y ) = P(Y |X )P(X )

I Bayes theorem :
I from P(X ,Y ) = P(Y ,X ) and product rule

P(Y |X ) =
P(X |Y )P(Y )

P(X )

P(disease|symptoms) =
P(symptoms|disease)⇥ P(disease)

P(symptoms)

posterior =
likelihood ⇥ prior

evidence

I Independence : P(X ,Y ) = P(X )P(Y ) 7 / 24

Notes
What does is mean when we say that random variables X and Y are independent?

22



Introducing decision loss: What to cook for dinner [3]

I Wife is coming back from work. Husband: what to cook for dinner?

I 3 dishes ( decisions ) in his repertoire:
I nothing . . . don’t bother cooking ) no work but makes wife upset
I pizza . . . microwave a frozen pizza ) not much work but won’t impress
I g.T.c. . . . general Tso’s chicken ) will make her day, but very laborious

I “Hassle” incurred by the individual options depends on wife’s mood.

I For each of the 9 possible situations (3 possible decisions ⇥ 3 possible states), the cost is
quantified by a loss function l(d , s):

l(s, d) d = nothing d = pizza d = g.T.c.
s = good 0 2 4

s = average 5 3 5
s = bad 10 9 6

The wife’s state of mind is an uncertain state.

14 / 24

Notes
Was the state known, the decision would be simple.

Calculating r(�) =
P

x

P
s l(s, �(x))P(x , s)

l(s, d) d = nothing d = pizza d = g.T.c.
s = good 0 2 4

s = average 5 3 5
s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming
s = good 0.35 0.28 0.07 0.00

s = average 0.04 0.10 0.04 0.02
s = bad 0.00 0.02 0.05 0.03

�(x) x = mild x = irritated x = upset x = alarming
�1(x) = nothing nothing pizza g.T.c.
�2(x) = nothing pizza g.T.c. g.T.c.
�3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

...
...

...
...

...

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)

17 / 24

Notes

• Risk depends on strategy (decisions).

• Strategy (decisions) depends on observation.

• Loss combines decision and state.

• The total weighted average is weighted by joint probability of observation and state.

Calculate r(�1) and r(�2), which strategy is better?

Bayes optimal strategy

I The Bayes optimal strategy : one minimizing mean risk.

�⇤ = argmin
�

r(�)

I From P(x , s) = P(s|x)P(x) (Bayes rule), we have

r(�) =
X

x

X

s

l(s, �(x))P(x , s) =
X

s

X

x

l(s, �(x))P(s|x)P(x)

=
X

x

P(x)
X

s

l(s, �(x))P(s|x)
| {z }

Conditional risk

I The optimal strategy is obtained by minimizing the conditional risk separately for each x :

�⇤(x) = argmin
d

X

s

l(s, d)P(s|x)

18 / 24
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Notes
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Classification as a special case of statistical decision theory

I Attribute vector ~x = [x1, x2, . . . ]>: pixels 1, 2, . . . .

I State set S = decision set D = {0, 1, . . . 9}.
I State = actual class, Decision = recognized class

I Loss function: l(s, d) =

⇢
0, d = s
1, d 6= s

Optimal decision strategy:

�⇤(~x) = argmin
d

X

s

l(s, d)| {z }
0 if d=s

P(s|~x) = argmin
d

X

s 6=d

P(s|~x)

Obviously
P

s P(s|~x) = 1, then: P(d |~x) +
P

s 6=d P(s|~x) = 1
Inserting into above:

�⇤(~x) = argmin
d

⇣
1 � P(d |~x)

⌘
= argmax

d
P(d |~x)

3 / 29

Notes
We are using di↵erent word – classification instead of decision but the reasoning and methods can be well applied

in both. In classification problem we usually treat all mistakes – wrong classificaions – equally painful, contrary

to decision problem – remember “What to cook for dinner” problem?

Optimal (Bayes) Classification

�⇤( ) = arg max
d

P(d | )

4 / 29

Notes
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K� Nearest Neighbor and Bayes j⇤ = argmaxj P(sj |x)
Assume data:

I N points x in total.

I Nj points in sj class. Hence,
P

j Nj = N.

We want to classify x. Draw a sphere centered
at x containing K points irrespective of class.
V is the volume of this sphere. P(sj |x) =?

x1

x2

(a)

P(sj |x) =
P(x|sj)P(sj)

P(x)

Kj is the number of points of class sj among
the K nearest neighbors.

P(sj) =
Nj

N

P(x) =
K

NV

P(x|sj) =
Kj

NjV

P(sj |x) =
P(x|sj)P(sj)

P(x)
=

Kj

K

4 / 21

Notes
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Bayes classification in practice; P(s|~x) =?
I Usually, we are not given P(s|~x)
I It has to be estimated from already classified examples – training data
I For discrete ~x , training examples (~x1, s1), (~x2, s2), . . . (~x l , sl)

I every (~xi , s) is drawn independently from P(~x , s), i.e. sample i does not depend on
1, · · · , i � 1

I so-called i.i.d (independent, identically distributed) multiset
I Without knowing anything about the distribution, a non-parametric estimate:

P(s|~x) = P(~x , s)

P(~x)
⇡ # examples where ~x i = ~x and si = s

# examples where ~x i = ~x

I Hard in practice:

I To reliably estimate P(s|~x), the number of examples grows
exponentially with the number of elements of ~x .

I e.g. with the number of pixels in images
I curse of dimensionality
I denominator often 0

6 / 29

Notes
Why hard? Way too many various ~x .
What is the di↵erence between set and multiset?

Reminder about math notation. In literature, vectors are mostly denoted by bold lower case x. In lectures, we

use ~x to match notation used on blackboard. It is di�cult to write bold with a chalk.

Näıve Bayes classification
I For e�cient classification we must thus rely on additional assumptions.

I In the exceptional case of statistical independence between components of ~x for each
class s it holds

P(~x |s) = P(x [1]|s) · P(x [2]|s) · . . .

I Use simple Bayes law and maximize:

P(s|~x) = P(~x |s)P(s)
P(~x)

=
P(s)

P(~x)
P(x [1]|s) · P(x [2]|s) · . . . =

I No combinatorial curse in estimating P(s) and P(x [i ]|s) separately for each i and s.

I No need to estimate P(~x). (Why?)

I P(s) may be provided apriori.

I näıve = when used despite statistical dependence
8 / 29

Notes
Why näıve at all? Consider N�dimensional feature space and 8 � bit values. Instead of considering 8N combi-
nations (joint prob. distribution), we can consider only N ⇥ 8—treating every feature separately.

Think about statistical independence. Example1: person’s weight and height. Are they independent? Example2:

pixel values in images.
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Discriminant functions
<latexit sha1_base64="KgeZHFdKYrsgu6GkMDRsYQYKYyQ="></latexit>

�(x) = argmaxs2S fs(x)Example: F/M – Linear discriminant functions based on etalons
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#104 Female/Male classification
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Discriminant functions for 2 classes:

fF (x) = aF x + bF =

= eF x � 1

2
e2F = 140x � 9800

fM(x) = aMx + bM =

= eMx � 1

2
e2M = 180x � 16200

A single discriminant function separating 2
classes:

g(x) = fF (x)� fM(x) =

= �40x + 6400
6 / 42

Notes
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Linear classifiers II

g(x) = w>x+ w0

Decide s1 if g(x) > 0 and s2 if g(x) < 0

x0=1

x1

. . .
w2

w0

w1

wd

g(x)

x2 xd
. . .

bias unit

input units

output unit

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products,

∑
wixi. We show in each unit its effective input-output function. Thus each of

the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wtx + w0 > 0 or a −1 otherwise. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

Figure from [2] 12 / 21

Notes
g(x) = 0 is the separating hyperplane. Its dimension is one less that that of the input space – for 2D space, it is
a line. (This is a bit counterintuitive - “hyper” normally means above, more...)
What is the geometric meaning of the weight vector w?

One could mention the metaphor of the biological neuron here.



Finding the best projection y = w>x, y � �w0 ) C1, otherwise C2

w

�w0

kwk

g(x) < 0g(x) > 0

g(x) = w�x + w0 = 0
x2

x1

y = w�x −2 2 6

−2

0

2

4

16 / 21

Notes
This is just to make sure we understand geometric meaning of w,w0 and the separating hyperplane. Remind the

vector notation w means the same as ~w .
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Learning w, gradient descent

A criterion to be minimized J(w); assume to be known

Initialize w, threshold ✓, learning rate ↵
k  0
repeat

k  k + 1
w w � ↵(k)rJ(w)

until |↵(k)rJ(w)| < ✓
return w

28 / 42

Notes
This is a general scheme, we do not know J(w), yet.
We’re looking into error-based classification methods: missclassified examples are used to tune the classifier...

We already discussed (stochastic) Gradient descent when talking about Q�function learning.

Gradient descent Example: F/M – Can we do better?
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Etalon-based linear classifier makes some
errors.

A perceptron algorithm may be used to find
a zero-error classifier (if one exists).

7 / 42

Notes
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What next?
• gradient descent, linear programming, … Optimization, B0B33OPT


• machine learning, classifiers, Bayesian and non-Bayesian decisions, … 
Pattern Recognition and Machine Learning (B4B33RPZ), Statistical Machine 
Learning (BE4M33SSU)


• machine learning pragmatically, deep nets Robot Learning (B3B33UROB)


• deeper in deep nets, Deep Learning, BEV033DLE


• perception, Computer Vision Methods, B4M33MPV


• planning, Artificial Intelligence in Robotics, B4M36UIR
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https://cw.fel.cvut.cz/wiki/courses/b0b33opt/start
https://cw.fel.cvut.cz/wiki/courses/b4b33rpz/start
https://cw.fel.cvut.cz/wiki/courses/be4m33ssu/start
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
https://cw.fel.cvut.cz/wiki/courses/bev033dle/start
https://cw.fel.cvut.cz/wiki/courses/mpv/start
https://cw.fel.cvut.cz/wiki/courses/uir/start

