Quest to design intelligent machine
Search, Decisions, Games,
Learning, ...

Tomaié Svoboda, Petr PosSik, Jana Kostliva, Katerina Polakova,
Jan Cerny, BSB33KUI 2022/2023



https://cw.fel.cvut.cz/wiki/courses/b3b33kui/start

Course target: goal-directed system

STATEMENT THAT GOAL
IS REACHED

INSTRUCTION TO
oEEK FOR GOAL

1 SENSOR S
2 GOAL G
3 ERROR E

4 EFFECTOR E'

ENVIRONMENT

A SIMPLE GOAL-DIRECTED SYSTEM

Pask, Gordon (1972). "Cybernetics". Encyclopasdia Britannica. 5



cybernetics now

bandwith
noise
Coding
reliable communication \
information channel capacity
System Theory
Machine Learning CYbe rnetics
Control Theory
Pattern Recognition
A
. 4
X 4
symbolic Al Artificial Intelligence (Al) ,o*°
. 4
’(...... "‘
Computer Vision Rl T o7

Robotics




cybernetics now

bandwith

noise

Coding

reliable communication \
information channel capacity

System Theory
Machine Learning CYbe rnetics
s Control Theory

Pattern Recognition

symbolic Al Artificial Intelligence (Al)

oy
Ny
.....
Ny
oy
|

Computer Vision

Robotics

our motivation from (intelligent) robotics
vet basic concepts from cybernetics
modern terminology will be used



where we stand 50 years later:
machine control in unstructured environment

V. Salansky, K. Zimmermann, T. Petricek, T. Svoboda. Pose consistency KKT-loss for
weakly supervised learning of robot-terrain interaction model. IEEE Robotics and
Automation Letters, 2021, Volume 6, Issue 3.

M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology
from Incomplete Measurements. In [EEE Transactions on Industrial Electronics, Feb 2017,
Vol 64, Issue: 2

V. éalansky, V. Kubelka, K. Zimmermann, M. Reinstein, T. Svoboda. Touching without
vision: terrain perception in sensory deprived environments. CVWW 2016

S——— ] Sain -

A ;- = —
Al 0302 01 0 0.1 02 03704060

~ x [m]

6. 0.7

http://www.tradr-project.eu, https://robotics.fel.cvut.cz/cras/darpa-subt/, https://cyber.felk.cvut.cz/category/department/cmp/vras/ 4



http://www.tradr-project.eu
https://robotics.fel.cvut.cz/cras/darpa-subt/
https://cyber.felk.cvut.cz/category/department/cmp/vras/

where we stand 50 years later:
machine control in unstructured environment

V. Salansky, K. Zimmermann, T. Petricek, T. Svoboda. Pose consistency KKT-loss for
weakly supervised learning of robot-terrain interaction model. IEEE Robotics and
Automation Letters, 2021, Volume 6, Issue 3.

M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology
from Incomplete Measurements. In [EEE Transactions on Industrial Electronics, Feb 2017,
Vol 64, Issue: 2

V. éalansky, V. Kubelka, K. Zimmermann, M. Reinstein, T. Svoboda. Touching without
vision: terrain perception in sensory deprived environments. CVWW 2016

S——— ] Sain -

A ;- = —
Al 0302 01 0 0.1 02 03704060

~ x [m]

6. 0.7

http://www.tradr-project.eu, https://robotics.fel.cvut.cz/cras/darpa-subt/, https://cyber.felk.cvut.cz/category/department/cmp/vras/ 4



http://www.tradr-project.eu
https://robotics.fel.cvut.cz/cras/darpa-subt/
https://cyber.felk.cvut.cz/category/department/cmp/vras/

ey &




CTU-CRAS-NORLAB

@DARPA Subterranean Challenge
URBAN CIRCUIT

RS e
@J CENTER (JU S

Ihin: //ranalhAatrircre fal mnw¢ Fro2/rrvac/Aarma_cii1ing/
DARPA SubTerranean Challenge - Urban Circuit, 2020/02



https://youtu.be/rTP64z52JFE

CTU-CRAS-NORLAB

@DARPA Subterranean Challenge
URBAN CIRCUIT

RS e
@J CENTER (JU S

Ihin: //ranalhAatrircre fal mnw¢ Fro2/rrvac/Aarma_cii1ing/
DARPA SubTerranean Challenge - Urban Circuit, 2020/02



https://youtu.be/rTP64z52JFE

Mission time: 24 s Command :
Prize round Status:

Spot 1 True detections: ©

: @ False detections: 0

https://youtu.be/HzBh6QdySDI
https://robotics.fel.cvut.cz/cras/darpa-subt/



https://youtu.be/HzBh6QdySDI
https://robotics.fel.cvut.cz/cras/darpa-subt/

Mission time: 24 s Command :
Prize round Status:

Spot 1 True detections: ©

: @ False detections: 0

https://youtu.be/HzBh6QdySDI
https://robotics.fel.cvut.cz/cras/darpa-subt/



https://youtu.be/HzBh6QdySDI
https://robotics.fel.cvut.cz/cras/darpa-subt/

Problem: graph with costs

Complete, optimal search (plan)



Solution: Path (shortest, chapest, ...

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0:00
0.00 0.00 0.00 0.00 0.00 0.00 2 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 3 0.00 0.00 0.00 0:00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4 4 0.00 0.00 0.00 0.00 0.00 0.00
0.06 0.00 0.00 0.00 0.00 0.00 0.00 0:00 0.00 0.00 0.00 5 5 0.00 0.00 0.00 0:00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0@ 0.00 0.00 0:00 6 6 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7 7 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 8 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 9 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00




State cost/value: f(S;) = g(S;) + h(S;)

Backward value/cost, accumulates as it goes

9(S:) = g(Si-1) + e(Se—1, ) °
g(C) = g(A) + ¢(A,C)
Forward cost, guess of e °
h(St) ~ C(St, G) h=2
2

(&) |
Solution minimizes overall cost. h=1
From Start to Goal (terminal): e
Zg f(S¢) Solution: S;—g, S1,5%,...,G; here: S, A, C, G

h=0

10



Viki1(S) <= max
k_l_l( ) acA(s)

h=1

D p(s'Is a) [r(s, a,8") + 7 Vi(s)]

S/

h

0

11



Maximize sum of (expected) rewards, (state) Value iteration:

h=2
h=1
Viet1(s) < max ZP(S/\S» a) [r(s, a,s') + VVk(S/)]

acA(s) "

h

0

11



Maximize sum of (expected) rewards, (state) Value iteration:

assume deterministic robot, no discounting

h=2
h=1
Viet1(s) < max ZP(S/\S» a) [r(5> a,s') + VVk(S/)]

acA(s) "

h

0

11



Maximize sum of (expected) rewards, (state) Value iteration:

assume deterministic robot, no discounting

* init all V(s)=0, [V(S),V(A),V(B),V(C),V(G)] = [0,0,0,0,0] °

h=2
h=1
Viet1(s) < max ZP(S/\S» a) [r(5> a,s') + VVk(S/)]

acA(s) "

h=0

11



Maximize sum of (expected) rewards, (state) Value iteration:

assume deterministic robot, no discounting

. init all V(s)=0, [V(S),V(A),V(B),V(C),V(G)] = [0,0,0,0,0]
+ V(S) = -1, V(A) = -1, V(B) = -2, V(C) = -3, V(G) = 10 °

h=2
o 3

h=1
Vis1(s) < max Z p(s'|s,a) |r(s,a,s") + V(s e

acA(s) " h=0

11



Maximize sum of (expected) rewards, (state) Value iteration:
assume deterministic robot, no discounting

. init all V(s)=0, [V(S),V(A),V(B),V(C),V(G)] = [0,0,0,0,0]
+ V(S) = -1, V(A) = -1, V(B) = -2, V(C) = -3, V(G) = 10 °

° [_2! _45 _55 75 10] e °
h=2
O |

h=1
Viii1(s) < max Z p(s'|s,a) |r(s,a,s") + V(s e
acA(s) " h=0

11



Maximize sum of (expected) rewards, (state) Value iteration:

assume deterministic robot, no discounting

. init all V(s)=0, [V(S),V(A),V(B),V(C),V(G)] = [0,0,0,0,0]
+ V(S) = -1, V(A) = -1, V(B) = -2, V(C) = -3, V(G) = 10 °

(2 -4 5.7 10 e °
+ [-5,6,5,7,10] s
O ‘°’

h=1
Vis1(s) < max Z p(s'|s,a) |r(s,a,s") + V(s e

acA(s) " h=0



Maximize sum of (expected) rewards, (state) Value iteration:

assume deterministic robot, no discounting

. init all V(s)=0, [V(S),V(A),V(B),V(C),V(G)] = [0,0,0,0,0]
+ V(S) = -1, V(A) = -1, V(B) = -2, V(C) = -3, V(G) = 10 °

(2 -4 5.7 10 e °

. [-5,6,5,7,10] o

¢ |5,6, 5,7, 10] o 2 .

h=1
Vis1(s) < max Z p(s'|s,a) |r(s,a,s") + V(s e

acA(s) " h=0



h=2
Policy m evaluation. Solve equations or iterate until convergence. o
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]
s’ h=1

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

miv1(s) = argmax » p(s' | s, a) [r(s,a,8) + V(5]
aE.A(S) s/

12



Maximize sum of (expected) rewards, Policy iteration:

h=2
2
Policy m evaluation. Solve equations or iterate until convergence. o 3
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]
S/

h=1
Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

mir1(s) = argmax » p(s'|s,a)[r(s,a,s") + V()] _
QEA(S) S/ h_o
12



Maximize sum of (expected) rewards, Policy iteration:
assume deterministic robot, no discounting

h=2

Policy m evaluation. Solve equations or iterate until convergence. 3

V.1 1(s) + Zp s'| s, 7(s)) |r(s,7(s),s") + vV (s")
h=1

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

mir1(s) =argmax » p(s'|s,a)|r(s,a,s)+~V](s)
" acA(s) Z [ } h=0

12



Maximize sum of (expected) rewards, Policy iteration:
assume deterministic robot, no discounting
init: p([S,A,B,C,G]) = [right,go,g0,00,exit]

h=2
2
Policy m evaluation. Solve equations or iterate until convergence. o 3
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]
S/

h=1
Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

mir1(s) = argmax » p(s'|s,a)[r(s,a,s") + V()] _
QEA(S) S/ h_o
12



Maximize sum of (expected) rewards, Policy iteration:
assume deterministic robot, no discounting

init: p([S,A,B,C,G]) = [right,go,g0,00,exit]

. policy eval => V([]) = [4,6,5,7,10] °

h=2
Policy m evaluation. Solve equations or iterate until convergence. o
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]
s’ h=1

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

miv1(s) = argmax » p(s' | s, a) [r(s,a,8) + V(5]
aE.A(S) s/

12



Maximize sum of (expected) rewards, Policy iteration:
assume deterministic robot, no discounting
init: p([S,A,B,C,G]) = [right,go,g0,00,exit]

* policy eval => V([]) = [4,6,5,7,10]
* policy update p = [left,go,go,go,exit}
h=2
Policy m evaluation. Solve equations or iterate until convergence. o
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]
s’ h=1

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

miv1(s) = argmax » p(s' | s, a) [r(s,a,8) + V(5]
aE.A(S) s/

12



Maximize sum of (expected) rewards, Policy iteration:
assume deterministic robot, no discounting
init: p([S,A,B,C,G]) = [right,go,g0,00,exit]

* policy eval => V([]) = [4,6,5,7,10]
* policy update p = [left,go,go,go,exit}
» eval V([]) =1[5,6,5,7,10] e
h=2
Policy m evaluation. Solve equations or iterate until convergence. o
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]
s’ h=1

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

miv1(s) = argmax » p(s' | s, a) [r(s,a,8) + V(5]
aE.A(S) s/

12



Maximize sum of (expected) rewards, Policy iteration:
assume deterministic robot, no discounting
init: p([S,A,B,C,G]) = [right,go,g0,00,exit]

* policy eval => V([]) = [4,6,5,7,10]
* policy update p = [left,go,go,go,exit}
e eval V([]) =[5,6,5,7,10] e
* update p = [left,go,00,g0,exit]
h=2
Policy m evaluation. Solve equations or iterate until convergence. o
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]
s’ h=1

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

miv1(s) = argmax » p(s' | s, a) [r(s,a,8) + V(5]
aE.A(S) s/

12



Maximize sum of (expected) rewards, Policy iteration:
assume deterministic robot, no discounting
init: p([S,A,B,C,G]) = [right,go,g0,00,exit]

* policy eval => V([]) = [4,6,5,7,10]
* policy update p = [left,go,go,go,exit}
e eval V([]) =[5,6,5,7,10] e
* update p = [left,go,00,g0,exit]
* no change, stops h=2
2
Policy m evaluation. Solve equations or iterate until convergence. o 3
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]

h=1
Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

mir1(s) = argmax » p(s'|s,a)[r(s,a,s") + V()] _
QEA(S) S/ h_o
12



h

2

h

1

h

0

13



Let robot/agent walk at random and learn from experience (episodes):

h

0

13



Let robot/agent walk at random and learn from experience (episodes):

reward

R,
§< Rt+1
. S.. | Environment

13



Let robot/agent walk at random and learn from experience (episodes):

2
Agent o 3
state reward
S, R, A, h=1
i Rt+1
| .
. S.. | Environment

13



Let robot/agent walk at random and learn from experience (episodes):

S,left,-1,A, go,-1,C, go,-3,G, exit,10 => Return = 6

2
Agent o 3
state reward
S, R, A, h=1
i Rt+1
| .
. S.. | Environment

13



Let robot/agent walk at random and learn from experience (episodes):

S,left,-1,A, go,-1,C, go,-3,G, exit,10 => Return = 6
S,right,-1,B, go,-2,C, go,-3,G, exit,10 => Return =5 °

O 3

state reward action

St Rt At h=1
i Rt+1
- .
. S.. | Environment

13



Let robot/agent walk at random and learn from experience (episodes):

S,left,-1,A, go,-1,C, go,-3,G, exit,10 => Return = 6
S,right,-1,B, go,-2,C, go,-3,G, exit,10 => Return =5 °

O 3

state reward action

St Rt At h=1
i Rt+1
- .
. S.. | Environment

13



h

2

h

1

h

0

14



Let robot/agent walk at random and learn from experience (episodes)

h

0

14



Let robot/agent walk at random and learn from experience (episodes)
Direct evaluation, init all Q(state, action) = 0

h

0

14



Let robot/agent walk at random and learn from experience (episodes)

Direct evaluation, init all Q(state, action) = 0
S,left,-1,A, go,-1,C, go,-3,G, exit,10

h

0

14



Let robot/agent walk at random and learn from experience (episodes)

Direct evaluation, init all Q(state, action) = 0
S,left,-1,A, go,-1,C, go,-3,G, exit,10

(G < 0 and loop backwards, t =1"— 1,1 — 2,. °

G Rit1 +17G

Append G to Returns(Q(S;, A;)) e

Q(Sy, Ay) < average|Returns(Q(S;, A;)) o

o 3
h=1 e

14



Let robot/agent walk at random and learn from experience (episodes)

Direct evaluation, init all Q(state, action) = 0
S,left,-1,A, go,-1,C, go,-3,G, exit,10

(G < 0 and loop backwards, t =1"— 1,1 — 2,. °

G Rit1 +17G

Append G to Returns(Q(S;, A;)) e

Q(Sy, Ay) < average|Returns(Q(S;, A;)) o

S,right,-1,B, go,-2,C, go,-3,G, exit,10 => Return =5 o 3

- e

14



Let robot/agent walk at random and learn from experience (episodes)

Direct evaluation, init all Q(state, action) = 0
S,left,-1,A, go,-1,C, go,-3,G, exit,10

(G < 0 and loop backwards, t =1"— 1,1 — 2,. °

G Rit1 +17G

Append G to Returns(Q(S;, A;)) e

Q(Sy, Ay) < average|Returns(Q(S;, A;)) o

S,right,-1,B, go,-2,C, go,-3,G, exit,10 => Return =5 o 3

- e

14



h

2

h

1

h

0

15



Let robot/agent walk at random and learn from experience (episodes)

h

0

15



Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q(state, action) = 0

h

0

15



Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q(state, action) = 0

A new trial/sample estimate at time t

trial = Ry 1 +ymax Q(S¢y1, a) °

o update

Q(St, At) < Q(St, At) -+ Oz(trial — Q(5t7 At)) e °
h=2

2
o 3
h=1 e

15



Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q(state, action) = 0

A new trial/sample estimate at time t

trial = Ry 1 +ymax Q(S¢y1, a) °

o update

Q(St, At) < Q(St, At) -+ Oz(trial — Q(5t7 At)) e °
h=2

2
o 3
h=1 e

15



Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q(state, action) = 0

A new trial/sample estimate at time t

trial = Ry 1 +ymax Q(S¢y1, a) °

o update

Q(St, At) < Q(St, At) -+ Oz(trial — Q(5t7 At)) e °
h=2 >

2
o 3
h=1 e

15



Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q(state, action) = 0

A new trial/sample estimate at time t

trial = Ry 1 +ymax Q(S¢y1, a) °

o update

Q(St, At) < Q(St, At) -+ Oz(trial — Q(5t7 At)) e °
h=2 >

left 0 | -1 -1

2

o
—

right
left

3
0 6
A
right | 0 | -2
B | go | o -2 h=1
C | 90 0 V4

G| et]o |10/ 10

15



Me (x)

thinking
Me playing
Opp (o) A X
thinking
OpP playing N
X|[O X[ [0 [X
Me (x) 0
thinking
Me playing
Opp (0) X|0|X| [X]|O X|0
thinking X X
OPp playing N
terminal X[O|X| [X|O[X]| |X|O
states O|X| [0jOIX] | |X
O X[ X]Of |X][O
—1 0 +1

16




Me (x)

thinking
Me playing
Opp (o) X
thinking
Opp playing
Me (x) X10
thinking
Me playing
Opp (o) X0 X
thinking
Opp playing
terminal X|0|X
states O[X
o)
—1

O|X

X0

X|O[X

O|X|X

O |IX|O|OF— .

O|X|IO—.

+
ek

16

Player 1: Me



Me (x)

thinking

Vi playing \
Opp (o) X 2 3 X X X
thinking X X X

Opp playing N Player 1: Me

X|0 X| 10

Me (x) <)§
thinking
Me playing
Opp (o) X[O[X § O X §()
thinking

Game
Opp playing N Environment

O|X|IO—.

OOO+———.

O |IX|O|OF— .

terminal X|0[X] [X]|O|X| [X]|O|X
states X| |0/0|X
X X|[O X O
—1 +1

16



Me (x)

thinking
Vi playing \
Opp (o) X 2 3 X X X
thinking X X X
Opp playing N Player 1 : Me
Me (x) X|[O X[ 10 ()g L
thinking
Me playing
Opp (o) X|0[X| [X]|O X0
thinking : X

Game
Opp playing N Environment

O|X|IO—.

OOO+———.

O |IX|O|OF— .

terminal X|0[X] [X]|O|X| [X]|O|X
states X| |0/0|X
X X|[O X O
—1 +1

Player 2: Opp

16



Me (x)

thinking
Vi playing \
Opp (o) X 2 3 X X X
thinking X X X
Opp playing N Player 1 : Me
Me (x) X|[O X[ 10 ()g L
thinking
Me playing
Opp (o) X|0[X| [X]|O X0
thinking : X

Game
Opp playing N Environment

O|X|IO—.

OOO+———.

O |IX|O|OF— .

terminal X|0[X] [X]|O|X| [X]|O|X
states X| |0/0|X
X X|[O X O
—1 +1

Player 2: Opp

16



Me (x)

thinking

Me playing \
Opp (o) X X 2 K X X
thinking X X X

Opp playing N

X|0 X| 10

Player 1: Me

Me (x) <)§
thinking
Me playing
Opp (o) X[O[X § O X §()
thinking

Game
Opp playing N Environment

Player 2: Opp

O|X|IO—.

OOO+———.

O |IX|O|OF— .

terminal X[O|X| [X|O[X| [X[O[|X
states X| 10]O|X
X X|[O X O
—1 +1

16



Me (x)

thinking

Me playing \
Opp (o) X X 2 K X X
thinking X X X

Opp playing N

X|0 X| 10

Player 1: Me

Me (x) <)§
thinking
Me playing
Opp (o) X[O[X § O X §()
thinking

Game
Opp playing N Environment

Player 2: Opp

O|X|IO—.

OOO+———.

O |IX|O|OF— .

terminal X[O|X| [X|O[X| [X[O[|X
states X| 10]O|X
X X|[O X O
—1 +1

16



Me (x)

thinking

Vi playing \
Opp (o) X 2 3 X X X
thinking X X X

O|X

X0

Opp playing);( ON Player 1 : Me
Me (x -
think(in)g
Me playing
0pp (O) X|O[X ))E O X o
thinking
N Zame

Opp playing Environment

O|X|IO—.

OOO+———.

O |IX|O|OF— .

terminal X|0[X] [X]|O|X| [X]|O|X
states X| |0/0|X
X X|[O X O
—1 +1

Player 2: Opp

16



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

[ 2\

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17




(recursive) thinking game: what if my/opp move is ...

17




(recursive) thinking game: what if my/opp move is ...

17



(recursive) thinking game: what if my/opp move is ...

17




(recursive) thinking game: what if my/opp move is ...

17




(recursive) thinking game: what if my/opp move is ...

17




We can go (think) deeper if we prune ...




(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

[ 2\

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19




(recursive) thinking game: what if my/opp move is ...

19




(recursive) thinking game: what if my/opp move is ...

19



(recursive) thinking game: what if my/opp move is ...

19




(recursive) thinking game: what if my/opp move is ...

19




(recursive) thinking game: what if my/opp move is ...

19




Eval(state)




D

£

- w - ’ -
~" \17 '-' -y - e
e o . - . v » J
v 3 - - - -
- .- N - s Q)
o~ - 3
, — - 3
- .
- -‘-.ﬂ - -
- B -
-
“’ I N e - 3 '
r.’ 4% )
. - _— ;
- - ] . P —— -
r - - "
o™y
- ' &5
- ! !V
-~ : ./"
. : ¢ /j ‘
2 .~
. . - 3
’ _—
o "— , )
-
L 4
'f‘ L
-
»
)
- - -
- =
- —a :

» Uncertain outcome of an action.

» Robot/Agent may not know the current state!



What state (disease) given some
observation (symptoms)?

P(disease|symptoms)

posterior

P(symptoms|disease) x P(disease)

P(symptoms)
likelihood X prior

evidence



» For each of the 9 possible situations (3 possible decisions x 3 possible states), the cost is

quantified by a loss function /(d,s):
I(s,d) | d = nothing d = pizza d=g.T.c.
s = good 0 2 4
S = average 5 3 5
s = bad 10 9 6

The wife's state of mind i1s an uncertain state.

P(x,s) | x = mild x =irritated x = upset x = alarming
P(x,s) = P(s|x)P(x) s — (gooc)l 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02
5*(x) = arg mcjn Z I(s, d)P(s|x) s = bad 0.00 0.02 0.05 0.03
> 0(x) | x = mild x = irritated x = upset x = alarming
01(x) = | nothing nothing pizza g.T.c
02(x) = | nothing pizza g.T.c g.T.c

53(X) —

g.Il.c

g.l.c g.Il.c g.Il.c

23



Classification as a special case of statistical decision theory

> Attribute vector X = [x1,xp,...]": pixels 1, 2, ....
» State set S = decision set D = {0,1,...9}.

» State = actual class, Decision = recognized class

0, d=s

» Loss function: [(s,d) = { 1, d+#s

Optimal decision strategy:

0" (X) = arg mm Z I(s,d) P(s|X) = arg mm Z P(s|X)

S Olfd s s#d

Obviously ) ,; P(s|X) =1, then: P(d|X) + > .4 P(s|X) =1 0 0
Inserting Into above: ) — are max P(d
(W) = arg max P(d/| )

0" (X) = arg min (1 — P(d|x)) = arg max P(d|x)

24



K— Nearest Neighbor and Bayes ;* = argmax; P(s;|x)
Assume data:
» N points x in total. P(sj|x) =
> Nj points in s; class. Hence, ) . Nj = N.

We want to classify x. Draw a sphere centered
at x containing K points irrespective of class.

P(x|s;)P(s;)

P(x)
K; is the number of points of class s; among
the K nearest neighbors.

V' is the volume of this sphere. P(sj|x) =7 N;
P(sj) = N
P(x) = %
P(xls) = 1
P(si|x) = P("Ljf())g(sj) %

25 4 /21



vy

Usually, we are not given P(s|X)
It has to be estimated from already classitfied examples — training data
For discrete X, training examples (X1, s1), (X2, 52), ... (X}, s/)
» every (x;,s) is drawn independently from P(X,s), i.e. sample i does not depend on
1o i—1
» so-called i.i.d (independent, identically distributed) multiset
Without knowing anything about the distribution, a non-parametric estimate:

P(s|%) = P(X,s)  # examples where X; = X and s; = s

P(X) # examples where X; = X

In the exceptional case of statistical independence between components of X for each
class s it holds

P(x|s) = P(x[1]|s) - P(x[2]|5) - . ..

Use simple Bayes law and maximize:

P(=ls)P(s) _ P(s)
PR PR)

P(s|X) = P(x[1]|s) - P(x[2]|s) ... =

26



value of discriminant functions

O
U1

Discriminant functions

Female/Male classification

b
O)
|

—h
I

O
o

&)
|

_><1O4

Female
Male

OOx O

Female-etalon
Male-etalon
Female-discr-func
Male-discr-func
= Ftalon-sep-func

O OO

60

80

100

120 140
height [cm]

160

180

200

27

5(x) = argmax,cs f(x)
Discriminant functions for 2 classes:

f/:(X) — arX + br =
1
— eFx — 5e,% — 140x — 9800
fM(X) — apX + by =

1
— eyx — 5@,2\4 — 180x — 16200

A single discriminant function separating 2
classes:

g(x) = fr(x) — fm(x) =
= —40x 4+ 6400



g(x) =w'x+ wg
Decide s; if g(x) > 0 and s, if g(x) <0
8(x)

W, % output unit
bias unit W,
% Wi [w,
o o o Input units

x] xZ e o ©o xd




29



Gradient descent

Initialize w, threshold @, learning rate «

k<0
repeat

k< k—+1

w < w — a(k)VJ(w)
until |a(k)VJ(w)| <6

return w

2.5 X 10

O Female
21_\ X Male

] Female-etalon
el 1 Male-etalon

value of discriminant functions

AN

Female/Male classification

Female-discr-func

Male-discr-func
= Ftalon-sep-func
= Perceptron-sep-func

60

30

80

100

120 140
height [cm]

160

180

200



What next?

» gradient descent, linear programming, ... Optimization, BOB330OPT

 machine learning, classifiers, Bayesian and non-Bayesian decisions, ...
Pattern Recognition and Machine Learning (B4B33RP/Z), Statistical Machine
Learning (BE4M33SSU)

 machine learning pragmatically, deep nets Robot Learning (B3B33UROB)
» deeper in deep nets, Deep Learning, BEVO33DLE

e perception, Computer Vision Methods, B4M33MPV

* planning, Artificial Intelligence in Robotics, BAM36UIR

31


https://cw.fel.cvut.cz/wiki/courses/b0b33opt/start
https://cw.fel.cvut.cz/wiki/courses/b4b33rpz/start
https://cw.fel.cvut.cz/wiki/courses/be4m33ssu/start
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
https://cw.fel.cvut.cz/wiki/courses/bev033dle/start
https://cw.fel.cvut.cz/wiki/courses/mpv/start
https://cw.fel.cvut.cz/wiki/courses/uir/start

