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where we stand 50 years later:
machine control in unstructured environment
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Problem: graph with costs

Complete, optimal search (plan)



Solution: Path (shortest, chapest, ...
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State cost/value: f(S;) = g(S;) + h(S;)

Backward value/cost, accumulates as it goes

9(S:) = g(Si-1) + e(Se—1, ) °
g(C) = g(A) + ¢(A,C)
Forward cost, guess of e °
h(St) ~ C(St, G) h=2
2

(&) |
Solution minimizes overall cost. h=1
From Start to Goal (terminal): e
Zg f(S¢) Solution: S;—g, S1,5%,...,G; here: S, A, C, G

h=0
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h=2
Policy m evaluation. Solve equations or iterate until convergence. o
Vit (s) < > p(s" | s,7(s)) [r(s,7(s),s") + 7 Vii(s")]
s’ h=1

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.
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aE.A(S) s/
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Let robot/agent walk at random and learn from experience (episodes):
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Let robot/agent walk at random and learn from experience (episodes)
Direct evaluation, init all Q(state, action) = 0
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Let robot/agent walk at random and learn from experience (episodes)

Direct evaluation, init all Q(state, action) = 0
S,left,-1,A, go,-1,C, go,-3,G, exit,10
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Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q(state, action) = 0
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O |IX|O|OF— .

terminal X|0[X] [X]|O|X| [X]|O|X
states X| |0/0|X
X X|[O X O
—1 +1

Player 2: Opp
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(recursive) thinking game: what if my/opp move is ...
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We can go (think) deeper if we prune ...
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Eval(state)
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» Uncertain outcome of an action.

» Robot/Agent may not know the current state!



What state (disease) given some
observation (symptoms)?

P(disease|symptoms)

posterior

P(symptoms|disease) x P(disease)

P(symptoms)
likelihood X prior

evidence



» For each of the 9 possible situations (3 possible decisions x 3 possible states), the cost is

quantified by a loss function /(d,s):
I(s,d) | d = nothing d = pizza d=g.T.c.
s = good 0 2 4
S = average 5 3 5
s = bad 10 9 6

The wife's state of mind i1s an uncertain state.

P(x,s) | x = mild x =irritated x = upset x = alarming
P(x,s) = P(s|x)P(x) s — (gooc)l 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02
5*(x) = arg mcjn Z I(s, d)P(s|x) s = bad 0.00 0.02 0.05 0.03
> 0(x) | x = mild x = irritated x = upset x = alarming
01(x) = | nothing nothing pizza g.T.c
02(x) = | nothing pizza g.T.c g.T.c

53(X) —

g.Il.c

g.l.c g.Il.c g.Il.c

23



Classification as a special case of statistical decision theory

> Attribute vector X = [x1,xp,...]": pixels 1, 2, ....
» State set S = decision set D = {0,1,...9}.

» State = actual class, Decision = recognized class

0, d=s

» Loss function: [(s,d) = { 1, d+#s

Optimal decision strategy:

0" (X) = arg mm Z I(s,d) P(s|X) = arg mm Z P(s|X)

S Olfd s s#d

Obviously ) ,; P(s|X) =1, then: P(d|X) + > .4 P(s|X) =1 0 0
Inserting Into above: ) — are max P(d
(W) = arg max P(d/| )

0" (X) = arg min (1 — P(d|x)) = arg max P(d|x)

24



K— Nearest Neighbor and Bayes ;* = argmax; P(s;|x)
Assume data:
» N points x in total. P(sj|x) =
> Nj points in s; class. Hence, ) . Nj = N.

We want to classify x. Draw a sphere centered
at x containing K points irrespective of class.

P(x|s;)P(s;)

P(x)
K; is the number of points of class s; among
the K nearest neighbors.

V' is the volume of this sphere. P(sj|x) =7 N;
P(sj) = N
P(x) = %
P(xls) = 1
P(si|x) = P("Ljf())g(sj) %
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vy

Usually, we are not given P(s|X)
It has to be estimated from already classitfied examples — training data
For discrete X, training examples (X1, s1), (X2, 52), ... (X}, s/)
» every (x;,s) is drawn independently from P(X,s), i.e. sample i does not depend on
1o i—1
» so-called i.i.d (independent, identically distributed) multiset
Without knowing anything about the distribution, a non-parametric estimate:

P(s|%) = P(X,s)  # examples where X; = X and s; = s

P(X) # examples where X; = X

In the exceptional case of statistical independence between components of X for each
class s it holds

P(x|s) = P(x[1]|s) - P(x[2]|5) - . ..

Use simple Bayes law and maximize:

P(=ls)P(s) _ P(s)
PR PR)

P(s|X) = P(x[1]|s) - P(x[2]|s) ... =

26



value of discriminant functions

O
U1

Discriminant functions

Female/Male classification
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Female-discr-func
Male-discr-func
= Ftalon-sep-func

O OO
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5(x) = argmax,cs f(x)
Discriminant functions for 2 classes:

f/:(X) — arX + br =
1
— eFx — 5e,% — 140x — 9800
fM(X) — apX + by =

1
— eyx — 5@,2\4 — 180x — 16200

A single discriminant function separating 2
classes:

g(x) = fr(x) — fm(x) =
= —40x 4+ 6400



g(x) =w'x+ wg
Decide s; if g(x) > 0 and s, if g(x) <0
8(x)

W, % output unit
bias unit W,
% Wi [w,
o o o Input units

x] xZ e o ©o xd
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Gradient descent

Initialize w, threshold @, learning rate «

k<0
repeat

k< k—+1

w < w — a(k)VJ(w)
until |a(k)VJ(w)| <6

return w

2.5 X 10

O Female
21_\ X Male

] Female-etalon
el 1 Male-etalon

value of discriminant functions

AN

Female/Male classification

Female-discr-func

Male-discr-func
= Ftalon-sep-func
= Perceptron-sep-func
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80
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height [cm]
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What next?

» gradient descent, linear programming, ... Optimization, BOB330OPT

 machine learning, classifiers, Bayesian and non-Bayesian decisions, ...
Pattern Recognition and Machine Learning (B4B33RP/Z), Statistical Machine
Learning (BE4M33SSU)

 machine learning pragmatically, deep nets Robot Learning (B3B33UROB)
» deeper in deep nets, Deep Learning, BEVO33DLE

e perception, Computer Vision Methods, B4M33MPV

* planning, Artificial Intelligence in Robotics, BAM36UIR
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https://cw.fel.cvut.cz/wiki/courses/b0b33opt/start
https://cw.fel.cvut.cz/wiki/courses/b4b33rpz/start
https://cw.fel.cvut.cz/wiki/courses/be4m33ssu/start
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
https://cw.fel.cvut.cz/wiki/courses/bev033dle/start
https://cw.fel.cvut.cz/wiki/courses/mpv/start
https://cw.fel.cvut.cz/wiki/courses/uir/start

