Classifiers: Naïve Bayes, k-NN, evaluation

Tomáš Svoboda, Petr Pošík, and Matěj Hoffmann thanks to Daniel Novák and Filip Železný, Ondřej Drbohlav
Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 2, 2024

Bayes optimal strategy

- The Bayes optimal strategy : one minimizing mean risk. $\delta^{*}=\arg \min _{\delta} r(\delta)$
- s states, x possible measurements, $P(s, x)$ joint probababilities

$$
\begin{aligned}
r(\delta) & =\sum_{x} \sum_{s} \ell(s, \delta(x)) P(x, s)=\sum_{s} \sum_{x} \ell(s, \delta(x)) P(s \mid x) P(x) \\
& =\sum_{x} P(x) \underbrace{\sum_{s} \ell(s, \delta(x)) P(s \mid x)}_{\text {Conditional risk }}=\sum_{x} P(x) r(\delta(x), x)
\end{aligned}
$$

where conditional risk $r(d, x)=\sum_{s} \ell(s, d) P(s \mid x)$.

- Risk of a strategy is a weighted sum of conditional risks (conditioned on x)
- The optimal strategy is obtained by minimizing the conditional risk separately for each x :

$$
\delta^{*}(x)=\underset{d}{\operatorname{argmin}} r(d, x)=\arg \min _{d} \sum_{s} \ell(s, d) P(s \mid x)
$$

A special case - Bayesian classification

- Attribute vector $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$: pixels $1,2, \ldots$.
- State set $\mathcal{S}=$ decision set $\mathcal{D}=\{0,1, \ldots 9\}$.
- State $=$ actual class, Decision $=$ recognized class

Notes
We are using different word - classification instead of decision but the reasoning and methods can be well applied in both. In classification problem we usually treat all mistakes - wrong classificaions - equally painful, contrary to decision problem - remember "What to cook for dinner" problem?

A special case - Bayesian classification

- Attribute vector $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$: pixels $1,2, \ldots$.
- State set $\mathcal{S}=$ decision set $\mathcal{D}=\{0,1, \ldots 9\}$.
- State $=$ actual class, Decision $=$ recognized class
- Loss function :

$$
\ell(s, d)= \begin{cases}0, & d=s \\ 1, & d \neq s\end{cases}
$$

We are using different word - classification instead of decision but the reasoning and methods can be well applied in both. In classification problem we usually treat all mistakes - wrong classificaions - equally painful, contrary to decision problem - remember "What to cook for dinner" problem?

A special case - Bayesian classification

- Attribute vector $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$: pixels $1,2, \ldots$.
- State set $\mathcal{S}=$ decision set $\mathcal{D}=\{0,1, \ldots 9\}$.
- State $=$ actual class, Decision $=$ recognized class
- Loss function :

$$
\ell(s, d)= \begin{cases}0, & d=s \\ 1, & d \neq s\end{cases}
$$

Optimal decision strategy:

$$
\delta^{*}(\vec{x})=\arg \min _{d} \sum_{s} \underbrace{\ell(s, d)}_{0 \text { if } d=s} P(s \mid \vec{x})=\arg \min _{d} \sum_{s \neq d} P(s \mid \vec{x})
$$

We are using different word - classification instead of decision but the reasoning and methods can be well applied in both. In classification problem we usually treat all mistakes - wrong classificaions - equally painful, contrary to decision problem - remember "What to cook for dinner" problem?

A special case - Bayesian classification

- Attribute vector $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$: pixels $1,2, \ldots$.
- State set $\mathcal{S}=$ decision set $\mathcal{D}=\{0,1, \ldots 9\}$.
- State $=$ actual class, Decision $=$ recognized class
- Loss function :

$$
\ell(s, d)= \begin{cases}0, & d=s \\ 1, & d \neq s\end{cases}
$$

Optimal decision strategy:

$$
\delta^{*}(\vec{x})=\arg \min _{d} \sum_{s} \underbrace{\ell(s, d)}_{0 \text { if } d=s} P(s \mid \vec{x})=\arg \min _{d} \sum_{s \neq d} P(s \mid \vec{x})
$$

Obviously $\sum_{s} P(s \mid \vec{x})=1$, then:

$$
P(d \mid \vec{x})+\sum_{s \neq d} P(s \mid \vec{x})=1
$$

We are using different word - classification instead of decision but the reasoning and methods can be well applied in both. In classification problem we usually treat all mistakes - wrong classificaions - equally painful, contrary to decision problem - remember "What to cook for dinner" problem?

A special case - Bayesian classification

- Attribute vector $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$: pixels $1,2, \ldots$.
- State set $\mathcal{S}=$ decision set $\mathcal{D}=\{0,1, \ldots 9\}$.
- State $=$ actual class, Decision $=$ recognized class
- Loss function :

$$
\ell(s, d)= \begin{cases}0, & d=s \\ 1, & d \neq s\end{cases}
$$

Optimal decision strategy:

$$
\delta^{*}(\vec{x})=\arg \min _{d} \sum_{s} \underbrace{\ell(s, d)}_{0 \text { if } d=s} P(s \mid \vec{x})=\arg \min _{d} \sum_{s \neq d} P(s \mid \vec{x})
$$

Obviously $\sum_{s} P(s \mid \vec{x})=1$, then:

$$
P(d \mid \vec{x})+\sum_{s \neq d} P(s \mid \vec{x})=1
$$

Inserting into above:

$$
\delta^{*}(\vec{x})=\arg \min _{d}[1-P(d \mid \vec{x})]=\arg \max _{d} P(d \mid \vec{x})
$$

We are using different word - classification instead of decision but the reasoning and methods can be well applied in both. In classification problem we usually treat all mistakes - wrong classificaions - equally painful, contrary to decision problem - remember "What to cook for dinner" problem?

Example: Digit recognition/classification

- Input: 8-bit image 13×13, pixel intensities $0-255$. (0 means black, 255 means white)
- Output: Digit $0-9$. Decision about the class, classification.
- Features: Pixel intensities

Digit recognition is a very classical example of classification problem. It has been used for decades, and it is used till today, see e.g. MNIST demo at PyTorch

Example: Digit recognition/classification

- Input: 8-bit image 13×13, pixel intensities $0-255$. (0 means black, 255 means white)
- Output: Digit $0-9$. Decision about the class, classification.
- Features: Pixel intensities ...

Decision/classification problem : What cipher is in the (query) image?

Digit recognition is a very classical example of classification problem. It has been used for decades, and it is used till today, see e.g. MNIST demo at PyTorch

Optimal (Bayes) Classification

$\delta^{*}(\cdots)$

Machine Learning: Prepare training data $\underset{\text { dator ciphero } 0}{ }$, let (an) algorithm learn itself

Training samples: $\left(\vec{x}_{i}, s=0\right)$

What we need to learn:

- Known: the decision rule (function)
- To be learned: parameters of the function

A simplest example: male/female classification beased on height. A simple thresholding function, but what i the threshold?

Machine Learning: Prepare training data data , let (an) algorithm learn itself

Training samples: $\left(\vec{x}_{i}, s=1\right)$

What we need to learn:

- Known: the decision rule (function)
- To be learned: parameters of the function

A simplest example: male/female classification beased on height. A simple thresholding function, but what i the threshold?

Machine Learning: Prepare training data $\underset{\text { dator cipher } 2}{ }$, let (an) algorithm learn itself

Training samples: $\left(\vec{x}_{i}, s=2\right)$

What we need to learn:

- Known: the decision rule (function)
- To be learned: parameters of the function

A simplest example: male/female classification beased on height. A simple thresholding function, but what i the threshold?

Bayes classification in practice; $P(s \mid \vec{x})=$?

- Usually, we are not given $P(s \mid \vec{x})$
- It has to be estimated from already classified examples - training data
- For discrete \vec{x}, training examples $\left(\vec{x}_{1}, s_{1}\right),\left(\vec{x}_{2}, s_{2}\right), \ldots\left(\vec{x}_{l}, s_{l}\right)$
- every ($\left.\vec{x}_{i}, s\right)$ is drawn independently from $P(\vec{x}, s)$, i.e. sample i does not depend on $1, \cdots, i-1$
- so-called i.i.d (independent, identically distributed) multiset
- Without knowing anything about the distribution, a non-parametric estimate:

$$
P(s \mid \vec{x})=\frac{P(\vec{x}, s)}{P(\vec{x})} \approx \frac{\# \text { examples where } \vec{x}_{i}=\vec{x} \text { and } s_{i}=s}{\# \text { examples where } \vec{x}_{i}=\vec{x}}
$$

Notes

Why hard? Way too many various \vec{x}.
What is the difference between set and multiset?
Reminder about math notation. In literature, vectors are mostly denoted by bold lower case \mathbf{x}. In lectures, we use \vec{x} to match notation used on blackboard. It is difficult to write bold with a chalk.

Bayes classification in practice; $P(s \mid \vec{x})=$?

- Usually, we are not given $P(s \mid \vec{x})$
- It has to be estimated from already classified examples - training data
- For discrete \vec{x}, training examples $\left(\vec{x}_{1}, s_{1}\right),\left(\vec{x}_{2}, s_{2}\right), \ldots\left(\vec{x}_{l}, s_{l}\right)$
- every ($\left.\vec{x}_{i}, s\right)$ is drawn independently from $P(\vec{x}, s)$, i.e. sample i does not depend on $1, \cdots, i-1$
- so-called i.i.d (independent, identically distributed) multiset
- Without knowing anything about the distribution, a non-parametric estimate:

$$
P(s \mid \vec{x})=\frac{P(\vec{x}, s)}{P(\vec{x})} \approx \frac{\# \text { examples where } \vec{x}_{i}=\vec{x} \text { and } s_{i}=s}{\# \text { examples where } \vec{x}_{i}=\vec{x}}
$$

Hard in practice:

- To reliably estimate $P(s \mid \vec{x})$, the number of examples grows exponentially with the number of elements of \vec{x}.
- e.g. with the number of pixels in images
- curse of dimensionality
- denominator often 0

Notes
Why hard? Way too many various \vec{x}.
What is the difference between set and multiset?
Reminder about math notation. In literature, vectors are mostly denoted by bold lower case \mathbf{x}. In lectures, we use \vec{x} to match notation used on blackboard. It is difficult to write bold with a chalk.

How many images?

8-bit image 13×13, pixel intensities $0-255$. (0 means black, 255 means white)
A: 169^{256}
B: 256^{169}
C: 13^{13}
D: 169×256
E: different quantity

Notes
Think about simple binary 10×10 image $-\vec{x}$ contains 0,1 , position matters. What is the total number of unique images? Think binary, 1×8 binary image? Hence: $\mathrm{B}-256^{169}$ is the answer.
And a minimal dataset would contain each possible image at least once! We must be ready for any image (like for any state).

Naive Bayes

Naïve Bayes classification

- For efficient classification we must thus rely on additional assumptions.
- In the exceptional case of conditional statistical independence between components of \vec{x} for each class s it holds

$$
P(\vec{x} \mid s)=P(x[1] \mid s) \cdot P(x[2] \mid s) \cdot \ldots
$$

Use simple Bayes law and maximize:

$$
P(s \mid \vec{x})=\frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}=\frac{P(s)}{P(\vec{x})} P(x[1] \mid s) \cdot P(x[2] \mid s) \cdot \ldots=
$$

- No combinatorial curse in estimating $P(s)$ and $P(x[i] \mid s)$ separately for each i and s.
- No need to estimate $P(\vec{x})$. (Why?)
- $P(s)$ may be provided apriori.
- naïve $=$ when used despite statistical dependence

Notes

Why naïve at all? Consider N-dimensional feature space and 8 - bit values. Instead of considering 8^{N} combinations (joint prob. distribution), we can consider only $N \times 8$-treating every feature separately.
Think about statistical independence. Example1: person's weight and height. Are they independent? Example2: pixel values in images.

Example: Digit recognition/classification

- Input: 8-bit image 13×13, pixel intensities $0-255$. (0 means black, 255 means white)
- Output: Digit $0-9$. Decision about the class, classification.
- Features: Pixel intensities ...

Notes
We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions.
Dimension of \vec{x} is $13 \times 13=169$. There are 256^{169} possible images. (we already know)

Example: Digit recognition/classification

- Input: 8-bit image 13×13, pixel intensities $0-255$. (0 means black, 255 means white)
- Output: Digit $0-9$. Decision about the class, classification.
- Features: Pixel intensities

Collect data

- $P(\vec{x})$. What is the dimension of \vec{x} ? How many possible images?
- Learn $P(\vec{x} \mid s)$ per each class (digit).
- Classify $s^{*}=\operatorname{argmax}_{s} P(s \mid \vec{x})$.

Notes

We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions.
Dimension of \vec{x} is $13 \times 13=169$. There are 256^{169} possible images. (we already know)

From images to \vec{x}

Conditional probabilities, likelihoods

- Apriori digit probabilities $P\left(s_{k}\right)$
- Likelihoods for pixels. $P\left(x_{r, c}=I_{i} \mid s_{k}\right)$

Notes

A lexical note, especially for Czech speakers. probability as well as likelihood can be translated as pravděpodobnost. I suggest the following mental model than can work for our purposes.

- Probability is related to the future events (unknown outcome). E.g. what is the probability of selecting blue box? What is the probability that a random ZIP Code number begins with 7 ?
- Likelihood refers to past events (known outcome). In my data, how many images of 7 have dark pixel in top right corner? We can think about relative frequency (relativní četnost). Or, we can think: what is the probability that an obervation of a dark pixel in the top right corner was generate by an image of 7. Jak věrohodné to je?

Conditional likelihoods

For each pixel (position) and possible instensity (image/pixel value) we create such a table.

Unseen events (sparsity of training data)

Images 13×13, intensities $0-255,100$ exemplars per each class.

$$
\begin{aligned}
\vdots & =\vdots \\
P\left(x_{0,0}=100 \mid s=7\right) & =0.05 \\
P\left(x_{0,0}=101 \mid s=7\right) & =0 \\
P\left(x_{0,0}=102 \mid s=7\right) & =0.06 \\
\vdots & =\vdots
\end{aligned}
$$

Notes

Think about the problem of classifying numerals. Some $P\left(x_{r, c}=I \mid s\right)=0$. What about an example:

$$
\begin{aligned}
\vdots & =\vdots \\
P\left(x_{0,0}=100 \mid s=7\right) & =0.05 \\
P\left(x_{0,0}=101 \mid s=7\right) & =0 \\
P\left(x_{0,0}=102 \mid s=7\right) & =0.06 \\
\vdots & =\vdots
\end{aligned}
$$

A new (not in training) query image with $x_{0,0}=101$. How would you classify?

Unseen events (sparsity of training data)

Images 13×13, intensities $0-255,100$ exemplars per each class.

$$
\begin{aligned}
\vdots & =\vdots \\
P\left(x_{0,0}=100 \mid s=7\right) & =0.05 \\
P\left(x_{0,0}=101 \mid s=7\right) & =0 \\
P\left(x_{0,0}=102 \mid s=7\right) & =0.06
\end{aligned}
$$

A new (not in training) query image with $x_{0,0}=101$. How would you classify?

Notes

Think about the problem of classifying numerals. Some $P\left(x_{r, c}=I \mid s\right)=0$. What about an example:

$$
\begin{aligned}
\vdots & =\vdots \\
P\left(x_{0,0}=100 \mid s=7\right) & =0.05 \\
P\left(x_{0,0}=101 \mid s=7\right) & =0 \\
P\left(x_{0,0}=102 \mid s=7\right) & =0.06 \\
\vdots & =\vdots
\end{aligned}
$$

A new (not in training) query image with $x_{0,0}=101$. How would you classify?

Unseen event, how to decide?

A new (not in training) query image with $x_{0,0}=101$. How would you classify?

$$
P\left(x_{0,0}=101 \mid s_{j}\right)=0, \text { for all classes }
$$

Laplace smoothing ("additive smoothing")

Think about a particular pixel with intensity x

$$
P(x)=\frac{\operatorname{count}(x)}{\text { total samples }}
$$

Problem: $\operatorname{count}(x)=0$

Laplace smoothing ("additive smoothing")

Think about a particular pixel with intensity x

$$
P(x)=\frac{\operatorname{count}(x)}{\text { total samples }}
$$

Problem: $\operatorname{count}(x)=0$
Pretend you see the (any) sample one more time.

$$
P_{\mathrm{LAP}}(x)=\frac{c(x)+1}{\sum_{x}[c(x)+1]}
$$

Laplace smoothing ("additive smoothing")

Think about a particular pixel with intensity x

$$
P(x)=\frac{\operatorname{count}(x)}{\text { total samples }}
$$

Problem: $\operatorname{count}(x)=0$
Pretend you see the (any) sample one more time.

$$
\begin{gathered}
P_{\mathrm{LAP}}(x)=\frac{c(x)+1}{\sum_{x}[c(x)+1]} \\
P_{\mathrm{LAP}}(x)=\frac{c(x)+1}{N+|X|}
\end{gathered}
$$

where N is the number of (total) observations; $|X|$ is the number of possible values X can take (cardinality).
$P_{\text {LAP }}(x)=\frac{c(x)+1}{\sum_{x}[c(x)+1]}=\frac{c(x)+1}{N+|X|}=?$

Observation:

What is $P_{\text {LAP }}(X=$ red $)$ and $P_{\text {LAP }}(X=$ blue $)$?
A: $P_{\text {LAP }}(X=$ red $)=7 / 10, P_{\text {LAP }}(X=$ blue $)=3 / 10$
B: $P_{\text {LAP }}(X=$ red $)=2 / 3, P_{\text {LAP }}(X=$ blue $)=1 / 3$
C: $P_{\text {LAP }}(X=$ red $)=3 / 5, P_{\text {LAP }}(X=$ blue $)=2 / 5$
D: None of the above.

$P_{M L}(X)=$
$P_{L A P}(X)=$
originally:

- $P($ red $)=2 / 3$
- $P($ blue $)=1 / 3$
after Laplace smoothing - adding one red ball and blue ball to the actual observations:
- $P_{\text {LAP }}($ red $)=(2+1) /(2+1+1+1)=3 / 5$
- $P_{\text {LAP }}($ blue $)=(1+1) /(2+1+1+1)=2 / 5$
this slide: courtesy of P. Abeel, http://ai.berkeley.edu. 21st lecture of CS 188.

Laplace smoothing - as a hyperparameter k

Pretend you see every sample k extra times:

$$
\begin{gathered}
P_{\mathrm{LAP}}(x)=\frac{c(x)+k}{\sum_{x}[c(x)+k]} \\
P_{\mathrm{LAP}}(x)=\frac{c(x)+k}{N+k|X|}
\end{gathered}
$$

For conditional, smooth each condition independently

$$
P_{\mathrm{LAP}}(x \mid s)=\frac{c(x, s)+k}{c(s)+k|X|}
$$

Hyperparameter would be tuned along with your classifier
For $k=100$ and blue and red, you would get:

- $P_{\text {LAP }}($ red $)=(2+100) /(3+100 * 2)=102 / 203$
- $P_{\text {LAP }}($ blue $)=(1+100) /(3+100 * 2)=101 / 203$

In this case, smoothing ("prior") would dominate over the observations - shifting estimate from empirical to uniform.
In the digit recognition from pixels example: 256 intensity values; $13 \times 13=169$ pixels: Applying Laplace smoothing with $k=1$ to $P(x)$ (prior probability of a particular pixel will take an intensity value i): $P\left(x_{r, c}=i\right)=$ $(c(x)+1) /(N+256)$
Conditional: relevant for the Naïve Bayes case.

Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

$$
\begin{gathered}
P_{\mathrm{LAP}}(x)=\frac{c(x)+k}{\sum_{x}[c(x)+k]} \\
P_{\mathrm{LAP}}(x)=\frac{c(x)+k}{N+k|X|}
\end{gathered}
$$

For conditional, smooth each condition independently

$$
P_{\mathrm{LAP}}(x \mid s)=\frac{c(x, s)+k}{c(s)+k|X|}
$$

What is $|X|$ equal to?
A: 10
B: 2
C: 256
D: None of the above

Hyperparameter would be tuned along with your classifier
For $k=100$ and blue and red, you would get:

- $P_{\text {LAP }}($ red $)=(2+100) /(3+100 * 2)=102 / 203$
- $P_{\text {LAP }}($ blue $)=(1+100) /(3+100 * 2)=101 / 203$

In this case, smoothing ("prior") would dominate over the observations - shifting estimate from empirical to uniform.
In the digit recognition from pixels example: 256 intensity values; $13 \times 13=169$ pixels: Applying Laplace smoothing with $k=1$ to $P(x)$ (prior probability of a particular pixel will take an intensity value i): $P\left(x_{r, c}=i\right)=$ $(c(x)+1) /(N+256)$
Conditional: relevant for the Naïve Bayes case.

What is the right degree of polynomial (hyperparameter of a regressor)
Fitting n-degree polynomial to training data

See the tuning_hyper_parameter.m demo. The small values depict sum of square errors on training data.

What is the right degree of polynomial (hyperparameter of a regressor)
Fitting n-degree polynomial to training data

See the tuning_hyper_parameter.m demo. The small values depict sum of square errors on training data.

Generalization and overfiting

- Data: training, validating, testing . Wanted classifier performs well on what data?
- Overfitting: too close to training, poor on testing.

Training and testing
Data labeled instances.

- Training set
- Held-out (validation) set
- Testing set.

Features : Attribute-value pairs.
Learning cycle:

- Learn parameters (e.g. probabilities) on training set.
- Tune hyperparameters on held-out (validation) set.
- Evaluate performance on testing set.

Training set - biggest part.

Nearest Neighbour classifier

1. Query x
2. Select N nearest neighbours of x from the training set. N is odd.
3. Pick up the class the majority of neighbours belongs to.

$K-\mathrm{NN} p(x)$ estimate

$V=2 r_{k}(x)$, where $r_{k}(x)$ is the distance of k-th nearest data point to x
$K-$ Nearest Neighbor and Bayes $j^{*}=\operatorname{argmax}_{j} P\left(s_{j} \mid \vec{x}\right)$

Assume data:

- N samples \vec{x} in total.
- N_{j} samples in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

We want classify to \vec{x}. We draw a circle (hypher-sphere) centered at \vec{x} containing K points irrespective of class. V is the volume of this sphere. $P\left(s_{j} \mid \vec{x}\right)=$?

$$
P\left(s_{j} \mid \vec{x}\right)=\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})}
$$

(a)

$$
\begin{aligned}
P\left(s_{j}\right) & =\frac{N_{j}}{N} \\
P(\vec{x}) & =\frac{K}{N V} \\
P\left(\vec{x} \mid s_{j}\right) & =\frac{K_{j}}{N_{j} V} \\
P\left(s_{j} \mid \vec{x}\right) & =\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})}=\frac{K_{j}}{K}
\end{aligned}
$$

Female/male classification based on height. N data points available.

Ignore the y axis. A new measurement comes, $x=163 \mathrm{~cm}$. Female or male?

$K-$ NN $p\left(x \mid s_{j}\right)$ estimates

Female/Male classification

$$
p\left(x \mid s_{j}\right)=\frac{K_{j}}{N_{j} V}
$$

$K-$ NN $p\left(s_{j} \mid x\right)$ posteriors

Female/Male classification

$$
p\left(s_{j} \mid x\right)=\frac{p\left(x \mid s_{j}\right) p\left(s_{j}\right)}{p(x)}
$$

Notes

On the first sight it looks suspiciously regular but it is all true:

$$
p\left(s_{j} \mid x\right)=\frac{\frac{K_{j}}{N_{j} V} \frac{N_{j}}{N}}{\frac{K}{N V}}=\frac{K_{j}}{K}
$$

Volume in $k-N N$ in higher dimensions
Complement slide, for the sake of completeness. The decision rule $P\left(s_{j} \mid x\right)=N_{j} / N$ is the same for all dimensions.

$$
\begin{aligned}
& P(\vec{x})=\frac{K}{N V} \\
& V=V_{d} R_{k}^{d}(\vec{x})
\end{aligned}
$$

$R_{k}(\vec{x})$ - distance from \vec{x} to its k-th nearest neighbour point (radius)

$$
V_{d}=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)}
$$

volume od unit d-dimensional sphere,
Γ denotes gamma function.
$V_{1}=2, V_{2}=\pi, V_{3}=\frac{4}{3} \pi$

More details, including a computational example, in [2].
A $K-$ NN belongs to non-parametric methods for density estimation, see section 2.5 from [1]. (Figure from [1]) You may try it yourself, https://scikit-learn.org/stable/modules/density.html\#kernel-density

Evaluation (comparisons) of classifiers

Precision and Recall, and ...
Consider digit detection (is there a digit?) or SPAM/HAM, Male/Female classification
Recall :

- How many relevant items are selected?
- Are we missing some items?
- Also called: True positive rate (TPR), sensitivity, hit rate ...

Precision

- How many selected items are relevant?

selected elements
- Also called: Positive predictive value

False positive rate (FPR)

- Probability of false alarm

By Walber - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36926283

$$
\begin{gathered}
\mathrm{TPR}=\frac{\mathrm{TP}}{P}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \\
\text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}} \\
\mathrm{FPR}=\frac{\mathrm{FP}}{N}=\frac{\mathrm{FP}}{\mathrm{FP}+\mathrm{TN}}
\end{gathered}
$$

Think about TPR vs FPR graph, what is the best classifier?

relevant elements

How many data samples x_{i} ?
A 50
B 100
C 150
D 200

Notes
How many data samples in the testing (evaluation) set?

Notes

- How do you slide along the curve?
- What is the meaning of the diagonal?
- What would be the shape of the curve for the ideal/worst classifier?
- How would you compare various curve and select the best classifier?
- Think/read about other ways to evaluate/visualise classification results.

Precision - recall curve

Precision - recall curve

$$
\begin{gathered}
\text { Precision }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}} \\
\text { Recall }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}
\end{gathered}
$$

Think about a different classifier (curve), how would you compare?
Try to explain meaning of Precision and Recall from the user's (buyer's) perspective.

How to evaluate a multi-class classifier? Confusion table
Matching table for test set

Figure from [6]

A result for a one particular classifer and its setting (parameters), one particular testing set.

$$
P(s \mid \vec{x})=\frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}=\frac{P(s)}{P(\vec{x})} P(x[1] \mid s) \cdot P(x[2] \mid s) \cdot \ldots
$$

$P(\vec{x})$ not needed,

Notes

just try

- $\operatorname{prod}(\operatorname{rand}(1,100))$ and $\operatorname{prod}(r a n d(1,10000))$ in Matlab.
- $\operatorname{prod}(\operatorname{rand}(1,100))==0$ and $\operatorname{prod}(\operatorname{rand}(1,10000))==0$ in Matlab.
or in python console:
- >>> import numpy as np
- >>> np.prod(np.random.rand(100))==0
- >>> np.prod(np.random.rand(1000))==0
- >>> a = np.random.rand(1000)
>>> b = np.random.rand(1000)
>>> np. prod(a)>np.prod(b)
False
>>> np. prod(a)<np.prod(b)
False
>>> np. sum (np. $\log (a))>n p . \operatorname{sum}(n p . \log (b))$
True
Hitting the limit of number representation.
What is the way out?
$P(\vec{x})$ not needed - does not depend on the class.
Laws of logarithms...

Product of many small numbers

$$
P(s \mid \vec{x})=\frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}=\frac{P(s)}{P(\vec{x})} P(x[1] \mid s) \cdot P(x[2] \mid s) \cdot \ldots
$$

$P(\vec{x})$ not needed, $\ldots \ldots$

$$
\log (P(x[1] \mid s) P(x[2] \mid s) \cdots)=\log (P(x[1] \mid s))+\log (P(x[2] \mid s))+\cdots
$$

Notes

just try

- $\operatorname{prod}(\operatorname{rand}(1,100))$ and $\operatorname{prod}(\operatorname{rand}(1,10000))$ in Matlab.
- $\operatorname{prod}(\operatorname{rand}(1,100))==0$ and $\operatorname{prod}(\operatorname{rand}(1,10000))==0$ in Matlab.
or in python console:
- >>> import numpy as np
- >>> np.prod(np.random.rand(100))==0
- >>> np.prod(np.random.rand(1000))==0
- >>> a = np.random.rand(1000)
>>> b = np.random.rand(1000)
>>> np.prod(a)>np.prod(b)
False
>>> np. prod(a)<np.prod(b)
False
>>> np.sum(np.log(a))>np.sum(np.log(b))
True
Hitting the limit of number representation.
What is the way out?
$P(\vec{x})$ not needed - does not depend on the class.
Laws of logarithms...

References I

Further reading: Chapter 13 and 14 of [5]. Books [1] and [3] are classical textbooks in the field of pattern recognition and machine learning. This lecture has been also inspired by the 21st lecture of CS 188 at http://ai.berkeley.edu (e.g., Laplace smoothing). Many Matlab figures created with the help of [4].
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/
Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.
[2] Yen-Chi Chen.
Lecture 7: Density estimation: k-nearest neighbor and basis approach.
Lecture within STAT 425: Introduction to Nonparametric Statistics, 2018.
http://faculty.washington.edu/yenchic/18W_425/Lec7_knn_basis.pdf.

References II

[3] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification.
John Wiley \& Sons, 2nd edition, 2001.
[4] Vojtěch Franc and Václav Hlaváč.
Statistical pattern recognition toolbox.
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.
[5] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

References III

[6] Tomáš Svoboda, Jan Kybic, and Hlaváč Václav.
Image Processing, Analysis and Machine Vision - A MATLAB Companion.
Thomson, Toronto, Canada, $1^{\text {st }}$ edition, September 2007.
http://visionbook.felk.cvut.cz/.

