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Bayes optimal strategy
» The Bayes optimal strategy : one minimizing mean risk. 6* = argming r(0)
> s states, x possible measurements, P(s, x) joint probababilities

=3 ) s, 5(x))P(x,5) =D Y U(s,5(x))P(s|x)P(x)
=Y P(x)>_Us,8(x))P(s|x) = Z P(x)r

Conditional risk
where conditional risk r(d,x) =>"_¢(s,d)P(s|x).
> Risk of a strategy is a weighted sum of conditional risks (conditioned on x)

» The optimal strategy is obtained by minimizing the conditional risk separately for each x:

0% (x) = argmin r(d, x) = arg mdin Zf(s, d)P(s|x)
d s
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A special case - Bayesian classification

> Attribute vector X = (x1,x2,...): pixels 1, 2, ....
> State set S = decision set D = {0,1,...9}.
> State = actual class, Decision = recognized class
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A special case - Bayesian classification
> Attribute vector X = (x1,x2,...): pixels 1, 2, ....
> State set S = decision set D = {0,1,...9}.
> State = actual class, Decision = recognized class
» Loss function :

0, d=s
K(s,d):{1 d+s
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A special case - Bayesian classification

> Attribute vector X = (x1,x2,...): pixels 1, 2, ....
> State set S = decision set D = {0,1,...9}.
> State = actual class, Decision = recognized class

» Loss function :
0, d=s
E(s,d)—{L d+s

Optimal decision strategy:

0*(X) = arg m‘jn Z U(s,d) P(s|X) = arg mdin Z P(s|X)

S 0if d=s s#d
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A special case - Bayesian classification

> Attribute vector X = (x1,x2,...): pixels 1, 2, ....
> State set S = decision set D = {0,1,...9}.
> State = actual class, Decision = recognized class

» Loss function :
0, d=s
E(s,d)—{L d+s

Optimal decision strategy:

54 () — : S : "
(X) = arg min Z U(s,d) P(s|X) = arg min Z P(s|X)
° 0if d=s s7d
Obviously ). P(s|X) = 1, then:
P(d|%)+ ) P(sIx) =1
s#d
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A special case - Bayesian classification

> Attribute vector X = (x1,x2,...): pixels 1, 2, ....
> State set S = decision set D = {0,1,...9}.
> State = actual class, Decision = recognized class

» Loss function :
0, d=s
E(s,d)—{L d+s

Optimal decision strategy:

3 (X) = [ {(s,d) P(s|X) = [ P(s|x
(X) argmdmzs: (s,d) P(s|X) argm‘;n; (s]X)
0 if d=s

Obviously ). P(s|X) = 1, then:
P(d|%)+ ) P(sIx) =1
s#d
Inserting into above:

0*(X) = arg mdin[l — P(d|X)] = arg max P(d|x)
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Example: Digit recognition/classification

07123456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Qutput: Digit 0 — 9. Decision about the class, classification.

» Features: Pixel intensities ...
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Example: Digit recognition/classification

07123456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.

» Features: Pixel intensities ...

Decision/classification problem : What cipher is in the (query) image?
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Optimal (Bayes) Classification

5*(“) = arg max P(a’|n)



Machine Learning: Prepare training data , let (an) algorithm learn itself

data for cipher 0

Training samples: (Xj,s = 0)
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Machine Learning: Prepare training data , let (an) algorithm learn itself

data for cipher 1

1%

Training samples: (X;,s = 1)
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Machine Learning: Prepare training data , let (an) algorithm learn itself

data for cipher 2

Training samples: (X;,s = 2)
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Bayes classification in practice; P(s|x) =7
» Usually, we are not given P(s|X)
P It has to be estimated from already classified examples — training data
» For discrete X, training examples (X1, s1), (X2, s2), ... (X, 51)
> every (X}, s) is drawn independently from P(X,s), i.e. sample i does not depend on
1, ,i—1
> so-called i.i.d (independent, identically distributed) multiset
> Without knowing anything about the distribution, a non-parametric estimate:

P(s|5) = P(X,s) _ # examples where X; =X and s; = s

P(x) # examples where X; = X
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Bayes classification in practice; P(s|x) =7
» Usually, we are not given P(s|X)
P It has to be estimated from already classified examples — training data
» For discrete X, training examples (X1, s1), (X2, s2), ... (X, 51)
> every (X}, s) is drawn independently from P(X,s), i.e. sample i does not depend on
1, ,i—1
> so-called i.i.d (independent, identically distributed) multiset
> Without knowing anything about the distribution, a non-parametric estimate:

P(X,s)  # examples where X; =X and s; = s

P(s|X) = ~
(s[X) P(X) # examples where X; = X

» Hard in practice:

> To reliably estimate P(s|X), the number of examples grows
exponentially with the number of elements of X.

> e.g. with the number of pixels in images
> curse of dimensionality
» denominator often 0
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How many images?

0723456788

8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
A:

mO oW

169256

256169

1313

169 x 256
different quantity
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Naive Bayes

9/39



Naive Bayes classification

» For efficient classification we must thus rely on additional assumptions.

P In the exceptional case of conditional statistical independence
between components of X for each class s it holds

P(x|s) = P(x[1]ls) - P(x[2]|s) - ...

> Use simple Bayes law and maximize:
P(s|z) = © (?IL?E?I)D () _ gg P(x[1]ls) - P(x[2]]s) - ... =

» No combinatorial curse in estimating P(s) and P(x[i]|s) separately for each i and s.
> No need to estimate P(X). (Why?)
» P(s) may be provided apriori.

> naive = when used despite statistical dependence
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Example: Digit recognition/classification

071236456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.
P Features: Pixel intensities ...
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Example: Digit recognition/classification

071236456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.
P Features: Pixel intensities ...
Collect data , ...
» P(X). What is the dimension of X? How many possible images?
» Learn P(X|s) per each class (digit).
» Classify s* = argmax, P(s|X).
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From images to X

Ellill - —
‘. S —
: S —
! N —
1. ———
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Conditional probabilities, likelihoods

» Apriori digit probabilities P(s)
» Likelihoods for pixels. P(x;c = li|sk)
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Conditional likelihoods
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Unseen events (sparsity of training data)

0123456788

Images 13 x 13, intensities 0 — 255, 100 exemplars per each class.

P(X()’o = 100 ’ S = 7) = 0.05
P(X0,0 =101 ’ S = 7) =0
P(Xo’() =102 ’ S = 7) = 0.06
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Unseen events (sparsity of training data)

0123456788

Images 13 x 13, intensities 0 — 255, 100 exemplars per each class.

P(X()’o = 100 ’ S = 7) = 0.05
P(X0,0 =101 ’ S = 7) =0
P(Xo’() =102 ’ S = 7) = 0.06

A new (not in training) query image with xpo = 101. How would you classify?
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Unseen event, how to decide?

A new (not in training) query image with xg o = 101. How would you classify?

P(x0,0 = 101 | 5;) = 0, for all classes
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Laplace smoothing ( “additive smoothing”)
Think about a particular pixel with intensity x

P(x) = count(x)
total samples

Problem: count(x) =0

17/39



Laplace smoothing ( “additive smoothing”)
Think about a particular pixel with intensity x

P(x) = count(x)
total samples

Problem: count(x) =0
Pretend you see the (any) sample one more time.

PLap(x) =
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Laplace smoothing ( “additive smoothing”)
Think about a particular pixel with intensity x

count
P(x) = unt(x)
total samples
Problem: count(x) =0
Pretend you see the (any) sample one more time.

o oc(x)+1
Pae() = 5 1e6) + 1)
Piap(x) = m

where N is the number of (total) observations; | X| is the number of possible values X can
take (cardinality).
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PI_AP(X) _ CEX)—l—l _ C(X)—l—l _

2 leG)+1]  N+[X]

Observation:

0,

What is PLAP(X = ) and PLAP(X = que)?

oo w>»

: Puap(X = ) = 7/10, PLap(X = blue) = 3/10
Piap(X = fed) = 2/3, PLap(X = blue) = 1/3
PLap(X = red) = 3/5, PLap(X = blue) = 2/5
None of the above.

18/39



Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

c(x)+ k
Piap(X) = =50
D le(x) + 4]
c(x)+ k
P = 7
AP () = kX
For conditional, smooth each condition independently
c(x,s)+ k
PLAP(X|S) = ( )

c(s) + k| X|
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Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

c(x)+ k
Piap(X) = =50
D le(x) + 4]
c(x)+ k
P = 7
Lar () = N kX
For conditional, smooth each condition independently
c(x,s) + k
P =27 -
Lap (x]s) c(s) + k| X|

What is | X| equal to?
A: 10
B: 2

C: 256
D

: None of the above

19/39



What is the right degree of polynomial (hyperparameter of a regressor)
Fitting n-degree polynomial to training data

1.2
——1:0.00143
11b ——2:0.00088
) 3:0.00011
——4:0.00000
1 O training
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What is the right degree of polynomial (hyperparameter of a regressor)
Fitting n-degree polynomial to training data

1.2
——1:0.00143
116 ——2:0.00088
’ 3:0.00011
——4:0.00000
1H O training
¢ validation
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Generalization and overfiting
» Data: training, validating, testing . Wanted classifier performs well on what data?
» Overfitting: too close to training, poor on testing.

1o Fitting n-degree polynomial to training data

—1:0.00143
——2:0.00088
3:0.00011
——4:0.00000
1+ O training
¢ validation

1.1

0.9

0.8

0.7

0.6
-2 -1 0 1 2 3 4 5 6 7
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Training and testing

Data labeled instances.

» Training set

» Held-out (validation) set
P> Testing set.

Features : Attribute-value pairs.
Learning cycle:

> Learn parameters (e.g. probabilities) on training set.

» Tune hyperparameters on held-out (validation) set.

» Evaluate performance on testing set.

PONOORUNQD
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Nearest Neighbour classifier

1. Query x
2. Select N nearest neighbours of x from the training set. N is odd.

3. Pick up the class the majority of neighbours belongs to.
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K—NN p(x) estimate

o1 Female/Male classification

O Female
% Male

measured sample
0.05 H=—1-nn p(z)
——3-knn p(z)

0 O OO0 O OO xxO ©Ox x x x

60 80 100 120 140 160 180
2 = height [cm]

p(x) = %

V = 2r(x), where r(x) is the distance of k—th nearest data point to x



K — Nearest Neighbor and Bayes j* = argmax; P(s;|X)

Assume data: 221
> N samples X in total. ° o®
» N; samples in s; class. Hence, ZJ- N; = N. o " °
We want classify to X. We draw a circle (hypher-sphere) cen- ° ° .
tered at X containing K points irrespective of class. V is the o« o °
volume of this sphere. P(sj|X) =7 e o ° °
[}
p(six) = PEI)P(s) el
P(X) . °* .
€1
(a)
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Female/male classification based on height. N data points available.

Female/Male classification

O Female

x

Male
measured sample

0.05 -

(o} (o o] (o} OO0 %O O x % % %

60

80 100 120 140 160 180 200
x = height [cm]

Ignore the y axis. A new measurement comes, x = 163 cm. Female or male?

220

26 /39



K—NN p(x|s;) estimates

Female/Male classification

0.1

O Female
% Male

measured sample
0.05 || —3-knn p(z|f)
——3-knn p(z|m)

\ \ \ \ \ \ \ |
60 80 100 120 140 160 180 200 220
x = height [cm]
K:
J
X|Sj) = ——
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K—NN p(sj|x) posteriors

Female/Male classification

1
O Female
0.8H % Male
measured sample
0.6 | memmm 3-knn p( f|z)
——3-knn p(m|x)

0.4 -
0.2 -

O L L o L .Y 0 Ve TRy

60 80 100 120 140 160 180 200 220

x = height [cm]

p(x|s;)p(s;)

s = P2
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Volume in kK — NN in higher dimensions

Complement slide, for the sake of completeness. The decision rule P(sj|x) = N;/N is the same
for all dimensions.

K
P(R) = —
X)) = v
V = VyRY(R)
Rk (X) - distance from X to its k—th nearest neighbour point (radius)

d/2

Va = r(d/2+1)

volume od unit d—dimensional sphere,
I denotes gamma function.
Vi=2Vo=m V3=3m
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Evaluation (comparisons) of classifiers
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Precision and Recall, and . ..

Consider digit detection (is there a digit?) or SPAM/HAM,

Male/Female classification
Recall

» How many relevant items are selected?
> Are we missing some items?

> Also called: True positive rate
rate ...

(TPR), sensitivity, hit

Precision

» How many selected items are relevant?
> Also called: Positive predictive value
(FPR)

» Probability of false alarm

False positive rate

relevant elements

false negatives true negatives

° o ° o o

selected elements

How many selected
items are relevant?

elevant
items are selected?

Precision = Recall = ——

By Walber - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36926283
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Studying a classifier . ..
50 T T T

<

45 -

number of samples classified as ...
= N N w w N
[ o (6] o [8;] o
T T T T T T

[y
o
T

—TP
—FP

——FN

0 5 10 15 20

25

30

35

some parameter of a classifier

40

45

50

relevant elements

false negatives true negatives

true positives

false positives

selected elements

How many data samples x;?
A 50

B 100
C 150
D 200
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ROC — Receiver operating characteristics curve

ROC curve
TP TP
* PR=p =T
il FP FP
FPR= — = ——
o 8 N FP+4+TN
£ |
o
= |
0 L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FPR - False positive rate
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Precision — recall curve

Precision - recall curve
.

1

TP

TP FP
TP

TP FN

0.95 - Precision =

09r
Recall =

0.85

Recall

0.75

0.65

0.6

055 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision
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Matching table for test set
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Product of many small numbers . ..

P(X|s)P(s) _ P(s)
P(X) P(X)

P(s|%) = P(x[1]s) - P(x[2]ls) - ...

P(X) not needed, ... ...
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Product of many small numbers . ..

P(X[s)P(s) _ P(s)
P(X) P(X)

P(s|X) = P(x[1]]s) - P(x[2]|s) - - ..
P(X) not needed, ... ...

log(P(x[1]|s)P(x[2]]s) - - - ) = log(P(x[1]|s)) + log(P(x[2]]s)) + - --
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Further reading: Chapter 13 and 14 of [5]. Books [1] and [3] are classical textbooks in the
field of pattern recognition and machine learning. This lecture has been also inspired by the
21st lecture of CS 188 at http://ai.berkeley.edu (e.g., Laplace smoothing). Many Matlab
figures created with the help of [4].
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