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(Re-)introduction uncertainty/probability

▶ Markov Decision Processes (MDP)/RL – uncertainty about outcome of actions
▶ Sequential decisions (robot/agent goes from s0 to sG )
▶ π : S → A
▶ Policy (Strategy): knowing what to do for all possible states.

▶ Now: uncertainty associated with states
▶ Different states may have different prior probabilities.
▶ The states s ∈ S are not directly observable.
▶ They need to be inferred from features x ∈ X .
▶ Single (repeated) decision δ : X → S (δ : X → D);
▶ Strategy: knowing how to decide for all possible measurements.

▶ Decision example, crossing street:
▶ x = camera image; X is the space of all possible images
▶ S = {car, bus, bicycle, truck} approaching
▶ I decide to: D = {go, wait}
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Decision example: Insure or not? (from late 1980s) [5]

Known about HIV testing: HIV test falsely positive only in 1 case out of 1000.
A doctor calls: “Your HIV test is positive, 999/1000 you will die in 10 years. I’m sorry . . . ”.
Insurance company does not want to insure a married couple.

▶ Was the doctor right?

▶ Was the insurance company rational?

S = {healthy, infected}, X = {positive test, negative test}
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A doctor calls: “Your HIV test is positive, 999/1000 you will die in 10 years. I’m sorry . . . ”.
Insurance company does not want to insure a married couple.

▶ Was the doctor right?

▶ Was the insurance company rational?

S = {healthy, infected}, X = {positive test, negative test}
What is the probability the man is infected?

A: 1
1000

B: 999
1000

C: Don’t know yet, more info needed, but less than 1
2

D: Don’t know yet, more info needed, but more than 1
2

3 / 24



Classification example: What’s the fish?

▶ Factory for fish processing

▶ 2 classes s1,2:
▶ salmon
▶ sea bass

▶ Features x⃗ : length, width, lightness etc.
from a camera
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Fish – classification using probability

posterior =
likelihood × prior

evidence

▶ Notation for classification problem
▶ Classes sj ∈ S (e.g., salmon, sea bass)
▶ Features xi ∈ X or feature vectors (x⃗i ) (also called attributes)

▶ Optimal classification of x⃗ :
δ∗(x⃗) = argmax

j
P(sj |⃗x)

▶ We thus choose the most probable class for a given feature vector .
▶ Both likelihood and prior are taken into account – recall Bayes rule:

P(sj |⃗x) =
P(x⃗ |sj)P(sj)

P(x⃗)

▶ Can we do (classify) better?
5 / 24



Fish – classification using probability

posterior =
likelihood × prior

evidence

▶ Notation for classification problem
▶ Classes sj ∈ S (e.g., salmon, sea bass)
▶ Features xi ∈ X or feature vectors (x⃗i ) (also called attributes)

▶ Optimal classification of x⃗ :
δ∗(x⃗) = argmax

j
P(sj |⃗x)

▶ We thus choose the most probable class for a given feature vector .
▶ Both likelihood and prior are taken into account – recall Bayes rule:

P(sj |⃗x) =
P(x⃗ |sj)P(sj)

P(x⃗)

▶ Can we do (classify) better?
5 / 24



Decision making under uncertainty
▶ An important feature of intelligent systems

▶ make the best possible decision
▶ in uncertain conditions

▶ Example: Take a tram OR subway from A to B?
▶ Tram: timetables imply a quicker route, but adherence uncertain.
▶ Subway: longer route, but adherence almost certain.

▶ Example: where to route a letter with this ZIP?

▶ 15700? 15706? 15200? 15206?
▶ What is the optimal decision ?

▶ What is the cost of the decision? What is the associated loss ?
▶ What is the relation between loss and utility ?
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Introducing decision loss: Coin recognition

7 / 24



Recognizing/classifying coins: components

▶ s ∈ {1, 2, 5, 10, 20, 50} – state - the true value

▶ x ∈ {0.0, 0.1, · · · , 9.9}[g ] – measurement, observation

▶ P(s, x) joint probability

▶ d ∈ {1, 2, 5, 10, 20, 50}– decision, result of the algorithm

How many strategies?:

A 100

B 1006

C 600

D 6100

What is the best strategy?

Loss function ℓ(?)
is a function of:

A s

B s, d

C s, x , d

D d

Strategy d = δ(?)
is a function of:

A x

B s

C s, x
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Introducing decision loss: What to cook for dinner [4]

▶ Wife is coming back from work. Husband: what to cook for dinner?

▶ 3 dishes ( decisions ) in his repertoire:
▶ nothing . . . don’t bother cooking ⇒ no work but makes wife upset
▶ pizza . . . microwave a frozen pizza ⇒ not much work but won’t impress
▶ g.T.c. . . . general Tso’s chicken ⇒ will make her day, but very laborious

▶ “Hassle” incurred by the individual options depends on wife’s mood.

▶ For each of the 9 possible situations (3 possible decisions × 3 possible states), the cost is
quantified by a loss function ℓ(d , s):

ℓ(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

The wife’s state of mind is an uncertain state.
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Example (cont’d), State uncertain, symptoms, . . .

▶ Husband’s experiment. He tells her he accidentally overtaped their wedding video and
observes her reaction.

▶ Anticipates 4 possible reactions:
▶ mild . . . all right, we keep our memories.
▶ irritated . . . how many times do I have to tell you....
▶ upset . . . Why did I marry this guy?
▶ alarming . . . silence

▶ The reaction is a measurable attribute/symptom ( “feature” ) of the mind state.

▶ From experience, the husband knows how probable individual reactions are in each state
of mind; this is captured by the joint distribution P(x , s) .

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03
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Decision strategy
▶ Decision strategy : a rule selecting a decision for any given value of the measured

attribute(s).
▶ i.e. function d = δ(x).
▶ Example of husband’s possible strategies:

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.
δ4(x) = nothing nothing nothing nothing

▶ How many strategies?
▶ How to define which strategy is the best? How to sort them by quality?
▶ Define the risk of a strategy as a mean (expected) loss value .

r(δ) =
∑
x

∑
s

ℓ(s, δ(x))P(x , s)
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Calculating r(δ) =
∑

x

∑
s ℓ(s, δ(x))P(x , s)

ℓ(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ1(x) = nothing nothing pizza g.T.c.
δ2(x) = nothing pizza g.T.c. g.T.c.
δ3(x) = g.T.c. g.T.c. g.T.c. g.T.c.

...
...

...
...

...

Do we need to evaluate all possible strategies? P(x , s) = P(s|x)P(x)
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Bayes optimal strategy
▶ The Bayes optimal strategy : one minimizing mean risk.

δ∗ = argmin
δ

r(δ)

▶ From P(x , s) = P(s|x)P(x) (Bayes rule), we have

r(δ) =
∑
x

∑
s

ℓ(s, δ(x))P(x , s) =
∑
s

∑
x

ℓ(s, δ(x))P(s|x)P(x)

=
∑
x

P(x)
∑
s

ℓ(s, δ(x))P(s|x)︸ ︷︷ ︸
Conditional risk

▶ The optimal strategy is obtained by minimizing the conditional risk separately for each x :

δ∗(x) = argmin
d

∑
s

ℓ(s, d)P(s|x)
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Optimal strategy: δ∗(x) = argmind
∑

s ℓ(s, d)P(s|x)

ℓ(s, d) d = nothing d = pizza d = g.T.c.

s = good 0 2 4
s = average 5 3 5

s = bad 10 9 6

P(x , s) x = mild x =irritated x = upset x = alarming

s = good 0.35 0.28 0.07 0.00
s = average 0.04 0.10 0.04 0.02

s = bad 0.00 0.02 0.05 0.03

δ(x) x = mild x = irritated x = upset x = alarming

δ∗(x) = ?? ?? ?? ??
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Statistical decision making: wrapping up

▶ Given:
▶ A set of possible states : S
▶ A set of possible decisions : D
▶ A loss function ℓ : D × S → ℜ
▶ The range X of the attribute
▶ Distribution P(x , s), x ∈ X , s ∈ S.

▶ Define:
▶ Strategy : function δ : X → D
▶ Risk of strategy δ : r(δ) =

∑
x

∑
s ℓ(s, δ(x))P(x , s)

▶ Bayes problem:
▶ Goal: find the optimal strategy δ∗ = argminδ r(δ)
▶ Solution: δ∗(x) = argmind

∑
s ℓ(s, d)P(s|x) (for each x)
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A special case - Bayesian classification
▶ Bayesian classification is a special case of statistical decision theory:

▶ Attribute vector x⃗ = (x1, x2, . . . ): pixels 1, 2, . . . .
▶ State set S = decision set D = {0, 1, . . . 9}.
▶ State = actual class, Decision = recognized class
▶ Loss function:

ℓ(s, d) =

{
0, d = s
1, d ̸= s

δ∗(x⃗) = argmin
d

∑
s

ℓ(s, d)︸ ︷︷ ︸
0 if d=s

P(s |⃗x) = argmin
d

∑
s ̸=d

P(s |⃗x)

Obviously
∑

s P(s |⃗x) = 1, then:

P(d |⃗x) +
∑
s ̸=d

P(s |⃗x) = 1

Inserting into above:

δ∗(x⃗) = argmin
d

[1− P(d |⃗x)] = argmax
d

P(d |⃗x)
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Additional material for thinking
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Decision: guilty or not? (people of CA vs Collins, 1968) [5]
▶ Robbery, LA 1964, fuzzy evidence of the offenders:

▶ female, around 65 kg
▶ wearing something dark
▶ hair of light color, between light and dark blond, in

a ponytail

▶ At the same time, additional evidence close to the
crime scene:
▶ loud scream, yelling, looking at the this direction

. . .
▶ a woman sitting into a yellow car
▶ car starts immediately and passes close to the

additional witness
▶ a black man with beard and moustache was driving

▶ No more evidence

▶ Testimony of both the victim and the witness not
unambiguous (didn’t recognize suspects)

▶ Still, the suspects were sentenced to jail.
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Decision: guilty or not? (people of CA vs Collins, 1968) [5]

P(yellow car) = 1/10

P(man with moustache) = 1/4

P(black man with beard) = 1/10

P(woman with pony tail) = 1/10

P(woman blond hair) = 1/3

P(mix race pair in a car) = 1/1000

Assume (wrong!) mutual indepedence:

P(?) =
1

12, 000, 000

What probability?

A Convicted pair not guilty.

B A randomly selected pair matches characteristics.

C Some other.
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people of CA vs Collins, 1968, [1]
Computed (wrongly):

Pr = P(randomly selected pair matches discussed characteristics) =
1

12, 000, 000

Judge needs:
P(a pair matching characteristics is guilty) =?

P(randomly selected pair does not match) = 1− Pr

possible/existing pairs in California . . .N
P(pair will never appear in N) = P(NA) = (1− Pr )

N

P(pair will appear at least once in N) = P(ALO) = 1− P(NA) = 1− (1− Pr )
N

P(pair will appear exactly once in N) = P(EO) = NPr (1− Pr )
N−1

P(pair will appear more than once in N) = P(MTO) = P(ALO)− P(EO)

P(MTO|ALO) = P(MTO,ALO)
P(ALO) = P(MTO)

P(ALO)

P(MTO|ALO) =
1− (1− Pr )

N − NPr (1− Pr )
N−1

1− (1− Pr )N
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P(MTO|ALO) = f (N); people of CA vs Collins, 1968

0 1 2 3 4 5 6 7 8 9 10

total number of all pairs 10
7
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1
P(MTO|ALO); Probability of more matching pairs if one exists
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