Reinforcement learning Il
Active learning

Tom3as Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

April 12, 2023

1/37
Notes
Not all slides with notes. What can be noted about the title page, eh?

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Recap: Reinforcement Learning

Agent

state reward

S, R,
- Rr+1 i
S ! Environment

» Feedback in form of Rewards

P> Learn to act so as to maximize sum of expected rewards.

» In kuimaze package, env.step(action) is the method.

'Scheme from [3]

Notes

action
Ay

2/37

Robot/agent action changes environment.
e Environment is everything . ..
e battery state
e robot position

object position (manipulation task)

Learning to control flippers

» What are the states?
» How to design rewards?

» How to perform training episodes
(roll-outs)?

» Simulator to reality gap.

http://cyber.felk.cvut.cz/vras/ i 3/
otes

States may contain interoceptive as well as exteroceptive sensing.

Reward shaping.

e Train in simulator, then go for a real roll-out, back to simulator and so on.

Physical simulator for robot terrain interactions.

Sensor models.

Next few slides display a possible parameterization of the flipper control task.

http://cyber.felk.cvut.cz/vras/

Flippers |Touching below water surface

@ Construction: 2x main tracks, 4x subtracks (flippers), differential break
great stability and climbing capability

¢ Sensor suite: SICK LMS-151 range finder, Ladybug omnicam, Xsens MTi-G IMU
3D sensing and localization

¢ Control inputs: Velocity vector, 4xflipper angle, 4x flipper stiffness,
differential break (0/1)

difficult to control all of them manually! oy

Notes
This and the next three slides introduce some ideas and approaches published in:

e Karel Zimmermann, Petr Zuzanek, Michal Reinstein, Vaclav Hlavac. Adaptive traversability of unknown
complex terrain with obstacles for mobile robots. In 2014 IEEE international conference on robotics and
automation (ICRA).

The work has been exteneded in several directions:

e Martin Pecka, Vojt&ch Salansky, Karel Zimmermann, Toma¥ Svoboda. Autonomous flipper control with
safety constraints. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

e M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology from
Incomplete Measurements. In IEEE Transactions on Industrial Electronics, Feb 2017, Vol 64, Issue: 2, pp.
1773-1782

e M. Pecka, K. Zimmermann, T. Svoboda. Fast Simulation of Vehicles with Non-deformable Tracks. In
Intelligent Robots and Systems (IROS), 2017.

e Martin Pecka, Karel Zimmermann, Maté&j Petrlik, Tom3a% Svoboda. Data-driven Policy Transfer with
Imprecise Perception Simulation. /EEE Robotics and Automation Letters, Vol. 3, Issue 4, Oct 2018

State s € S C R" concatenates:

¢ Proprioceptive measurements: roll, pitch, torques, velocity, acceleration.

¢ Local exteroceptive measurements. features on digital elevation map

with fixed size.
Features

5/37

Notes

e Colors encode height of the terrain.

e Haar's features: Think about sum of heights in white are - sum of heights in the black area.

Instead of a € A C R® we consider only 5 configurations’:

A = {l-shape , V-shape , L-shape , U-shape soft , U-shape hard}

TN ey i

I-shape V-shape L-shape
(Maximizes traction) (Provides observability) (Forward approach)
U-shape soft U-shape hard
(Smooth climbing down) (Lifts the body up)
6/37
Notes

e Discretization of the Action space.

e Colors of the flippers encode wheather they are stiff (red) or soft — terrain compliant (green).

Reward r(a,s) : A x S — R is a weighted sum of following contributions:

1. Safe pitch and roll reward, avoiding tipping over
2. Smoothness reward, suppresses body hits
3. Speed reward, drives robot forward
4. User denoted reward (penalty) indicating the success (failure) of the particular

maneuver indicates failure/possible damages

X r(V-shape , s) =-1

r(L-shape ,s) =1

7/37

Notes

e Hand-crafted reward function.

Discuss the difference with AlphaGo Zero, Atari games etc. There you can afford to learn about your performance
only at the end of the game, as you can play many many games.
In robotics, you usually can’t do that...

From off-line (MDPs) to on-line (RL)

Markov decision process — MDPs. Off-line search, we know:
> A set of states s € S (map)
P> A set of actions per state. a € A
> A transition model p(s’|s, a) (robot)
» A reward function r(s, a,s’) (map, robot)

Looking for the optimal policy m(s). We can plan/search before the robot enters the
environment.

On-line problem:
» Transition p and reward r functions not known.

» Agent/robot must act and learn from experience.

8/37
Notes
For MDPs, we know p, r for all possible states and actions.

(Transition) Model-based learning

The main idea: Do something and:
» Learn an approximate model from experiences.
» Solve as if the model were correct.
Learning MDP model:
» Try s, a, observe s/, count s, a,s’.
» Normalize to get and estimate of p(s’|s, a)

» Discover each r(s, a,s’) when experienced.
Solve the learned MDP.

9/37
Notes

Model-free learning

> r,p not known.
» Move around, observe.
» And learn on the way. 5 1 1

» Goal: Learn the state value v(s), or (better),
g-value g(s, a) functions.

g

1 2 3 4
Image from [1]

10/37
Notes

Executing policies - training, then learning from the observations. We want to do policy evaluation but the

necessary model is not known.

Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

> time t, at S; PAEERIAN

11/37

Notes

The S;, Ar chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain

outcome of action A; taken in state S;.

Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

V(5:)
> time t, at S; SN
// ! A \\
> select and take A; € A(S:), observe Rii1, Se41 R i .
// ’/ ’/_\\\\\
v v/ VN

! St*At 1

\ 7

Yo <

11/37
Notes

The S;, Ar chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain
outcome of action A; taken in state S;.

Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

V(St)
> time t, at S; AT
> select and take A; € A(S;), observe Rey1, Sey1 // Ar
» compute trial/sample estimate at time t /'/ //}_ RS
trial = Rey1 + 7 V(St1) g ’ f\ S At
Yo <

11/37
Notes

The S;, Ar chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain
outcome of action A; taken in state S;.

Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

V(S:) +
> time t, at S; /,’ K \\
> select and take A; € A(S;), observe Ryy1, Sti1 /// Ar .
» compute trial/sample estimate at time t S /}_ ‘\\\\
trial = Res1 +7V(Se41) s A
> « temporal difference update ;>\‘_/</\
V(S:) « V(St) + aftrial — V(S,)) PN
o0 R
e \ N

11/37

Notes
The S;, Ar chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain
outcome of action A; taken in state S;.

Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

vy

V(S:)
time t, at S /,’ K \\
select and take A; € A(S;), observe Rii1, St11 /// Ar .
compute trial /sample estimate at time ¢t S /}_ ‘\\\\
trial = Res1 +7V(Se41) s A
o temporal difference update ;\/\ _/</\
V(S,) < V(S.) + altrial — V(S,)) R'
St < Si11 and repeat (unless S; is terminal) Tl

11/37

Notes

The S;, Ar chance node is depicted in gray purposively. It is not directly observable, it is our model of uncertain

outcome of action A; taken in state S;.

Recap: V — values, converged . ..
v =1, rewards —1, 410, —10, and deterministic robot

V(St) = Rey1 + V(St41)

12/37

Notes
v = 1, Rewards —1,+10,—10, and no uncertainty on the outcome of actions — deterministic robot/agent.
Rewards associated with leaving the state. Q values close next to terminal state includes the actual reward and
the transition cost steping in, or better, leaving the last living state.

How would the Values change if v = 0.97

What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.

13/37
Notes

Learn Q-values, not V-values, and make the action selection model-free too!

What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

> 7(s) = arg;nax o p(s|s,a)[r(s,a,s)+vV(s)]

Notes

13/37

Learn Q-values, not V-values, and make the action selection model-free too!

What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

> 7(s) = arg;nax o p(s|s,a)[r(s,a,s)+vV(s)]

» 7(s) = argmaxQ(s, a)

13/37
Notes

Learn Q-values, not V-values, and make the action selection model-free too!

Model-free TD learning, updating after each transition

» Observe, experience environment through learning episodes,
collecting:

5t7 At7 Rt+17 5t+17 At+17 Rt+27 s

» Update by mimicking Bellman updates after each transition
(St7 Ata Rt+17 St+1)

14 /37
Notes

Think about S; — Ar — St+1 — At+1 — Si4o tree with associated rewards. Episode starts in a start state and ends

in a terminal state.

Recap: Bellman optimality equations for v(s) and g(s, a)

pr— / I / // a \ A
v(s) m;xz p(s'ls, a) [r(s, a,s’)+vyv(s)]) o
s/

s \ \\
= maxq(s,a) g q(s,a) *

The value of a g-state (s, a):)) =
SRV T

q(s,a) = Zp(s’]s, a) [r(s,a,s") + v v(s)] S

' q(s',)
- E p(s'|s, a) [r(s, a,s’) +ymaxq(s, a’)]
a/
S/

Notes

15/37

The tree continues from s’ through a’ and so on until it terminates.

Q-learning (off-policy TD control)
Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not

known, initialize.

> time t, at S; AERTRN

16/37

Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”

Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

> time t, at S; A0
> select and take A; € A(S;), observe Riy1, Sty1 RO

16/37

Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”

Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

> time t, at S; AN
> select and take A; € A(S;), observe Riy1, Sty1 PGS N
» compute trial/sample estimate at time t » . “
trial = Rep1 + max Q(St+1,a)
Rtt1

‘ Q 5t+17

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”

16/37

Notes

Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

> tlme t, at St / At \\
> select and take A; € A(S;), observe Riy1, Sty1 oy ‘\
» compute trial/sample estimate at time t » \Q(St) A;)
)
trial = Rep1 + max Q(St+1,a)
» o temporal difference update Rit1

Q(St, At) < Q(St, At) + Oé(tl’lal — Q(St, At))

‘ Q 5t+17

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”

16/37
Notes

Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

vy

time t, at 5; p At .

select and take A; € A(S:), observe Rii1, Se41 Sy ‘\

compute trial /sample estimate at time ¢t » \Q(St) A;)
)

trial = Rep1 + max Q(St+1,a)

« temporal difference update Ret1

Q(St, At) < Q(St, At) + Oé(tl’lal — Q(St, At))

St < Sty1 and repeat (unless S; is terminal)

‘ Q 5t+17

16/37
Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”

Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

> tlme t, at St / At \\
> select and take A; € A(S;), observe Riy1, Sty1 oy ‘\
» compute trial/sample estimate at time t » \Q(St) A;)
b}
trial = Rep1 + max Q(St+1,a)
» o temporal difference update Ret1

Q(St, At) < Q(St, At) + Oé(tl’lal — Q(St, At))

» S; < S¢+1 and repeat (unless S; is terminal)

In each step Q directly approximates the optimal g* func-
Q 5t+17

tion (learns optimal policy).

16/37
Notes

Why off-policy ? It learns Q-values answering “What would be this action worth in this state, assuming
abandoning current policy and start according the policy that chooses the best action”

Recap: V— and Q— values, converged ...
v =1, rewards —1, 410, —10, and deterministic robot

6.00 7.00 8.00 0.00
6.00 7.00 | 6.00 8.00 | 7.00 9.00 | 0.00 0.00
5.00 7.00 7.00 0.00

6.00 8.00
5.00 5.00 7.00 X-11.00
4.00 6.00
5.00 7.00 -11.00

4.00 6.00 | 5.00 5.00 | 6.00 5.00

5.00 6.00 5.00

V(St) = Repr+ V(Se41)
Q(S:,Ar) = Rt+1+maaxQ(5t+1,a)

17/37
Notes
v = 1, Rewards —1,+10,—10, and no uncertainty on the outcome of actions — deterministic robot/agent.
Rewards associated with leaving the state. Q values close next to terminal state includes the actual reward and
the transition cost steping in, or better, leaving the last living state.
Q(s, a) — expected sum of rewards having taken the action and acting according to the (optimal) policy.
How would the (q)values change if v = 0.97

Sarsa (on-policy TD control)

Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,

initialize.

time t, at S, select A; € A(S:) A

>

> take A;, observe Riy1, 511
> select Ari1 € A(St41) ’

» which gives trial estimate)

»
trial = Req1 4+ 7 Q(Se41, Arr1) 7 p(s'|s, a
’//

> « temporal difference update
Q(St, Ac) Q(Se, Ac) + altrial — Q(S:, Ar)) @

» S < Sti1, At < App1 and repeat (unless S; is

N
\
\
\
\

Al

s

N

Q(

~—

o

N

A
\
N\
N
N
N
4
St7 At)
N
A
Y

Ari1

terminal))
\
In each step learns Q. R
X
Sti1,Art1
Q(St+1, At+1) 18/37
Notes

on-policy : It learns @ answering “What would be this action worth in this state, assuming | stick with my
policy?” SARSA — State-Action-Reward-State-Action.

e Q-learning: Learning from 4-tuples S, A¢, Rey1, Sti1-
e SARSA: Learning from 5-tuples S¢, A¢, Ret1, St+1, Att1.

Q-learning: algorithm

stepsize 0 <a <1
initialize Q(s, a) for all s € S,a € S(s)
repeat episodes:
initialize S
for for each step of episode: do
choose A from S
take action A, observe R, S’
Q(S,A) < Q(S,A) + a[R +ymax, Q(5',a) — Q(S, A)]
S« 8
end for until S is terminal
until Time is up, ...

19/37
Notes

Sarsa: algorithm

stepsize0<a<1
initialize Q(s, a) for all s € S, a € S(s)
repeat episodes:
initialize S
choose A from S
for for each step of episode: do
take action A, observe R, S’
choose A’ from S’

Q(S,A) « Q(S,A) + a[R+Q(S", A) — Q(S, A)]

S S A A
end for until S is terminal
until Time is up, ...

Notes

20/37

How to select A; in S;7 What policy?

> time t, at S;
take A; € A(S:) , observe Ryi1,S:11

» compute trial/sample estimate at time t
trial = Ry1 + 7y max Q(St+1,a)

v

> « temporal difference update
Q(St,At) — Q(St,At) + Oé(tl'lal — Q(St,At))
» S; < Sty1 and repeat (unless S; is terminal)

21/37
Notes

How to select A; in S;7 What policy?

v

time t, at S;

take A; derived from @ , observe Ryi1,S:11
compute trial /sample estimate at time ¢t

trial = Rep1 + max Q(St+1,a)

« temporal difference update
Q(St, At) < Q(St, At) + Oé(trlal — Q(St, At))
St < Sty1 and repeat (unless S; is terminal)

Notes

21/37

... A; derived from Q

What about keeping optimality, taking max?
Ay = arg max,Q(S¢, a)

see the demo run of rl_agents.py.

22/37
Notes

Two good goal states

0 1 2 3
0.50 0.50 0.50
O 0.00 0-50-1-0-00- 0.50--0.00 9.50. 0
0.00 0.00 0.00
-0l50 0.00 0.00
1 0.00 X 0.00 | 0.00 X 0.00 | 0.00 X 0.00 1
0.00 0.00 0.00
0.00 0.00 0.00
2 0.00 % 0.00 | 0.00 % 0.00 | 0.00 X 0.00 2
0.00 0.00 0.00
0 1 2 3
23/37
Notes

Discuss the on-line demo with two good goal states. v = 1,a = 0.5, Living reward —1, R(1,2) = 10, R(0,3) =
20, R(1,1) = —10. Taking the action, corresponding the max Q. If equal options, than in the 0,1,2,3 action
order. 50 training episodes. What happened?

e No exploration step: https://youtu.be/Y5yLttbkPMM
e Exploring steps involved (will be talking in a few minutes): https://youtu.be/cAr-IrawF_c

0 1 2 3
050 0.50 -0.50 0.00
0 0.00 W-0.50 | 0.00 X-0.50 | 0.00 X 9.50 | 0.00 X 0.00 0
0.00 0.50 0.00 0.00
0.50 0.50
1 0.00 1
0.00 0.00
0.50 450 0.00
2 0.00 }-0.50 | 0.00 Y0.00 | 0.00 Y 0.00 2
0.00 0.00 0.00

https://youtu.be/Y5yLttbkPMM
https://youtu.be/cAr-IrawF_c

Exploration vs Exploitation

Drive the known road or try a new one?
Go to the university menza or try a nearby restaurant?

>
>
» Use the SW (operating system) | know or try new one?
» Go to bussiness or study a demanding program?

| 2

24 /37
Notes

How to explore?

Random (e-greedy):
» Flip a coin every step.
» With probability €, act randomly.
> With probability 1 — ¢, use the policy.

Notes

25 /37

We can think about lowering € as the learning progresses.

How to explore?

Random (e-greedy):
» Flip a coin every step.
» With probability €, act randomly.
> With probability 1 — ¢, use the policy.

Problems with randomness?

Notes

25 /37

We can think about lowering € as the learning progresses.

How to explore?

Random (e-greedy):

» Flip a coin every step.

» With probability €, act randomly.

> With probability 1 — ¢, use the policy.
Problems with randomness?

> Keeps exploring forever.

» Should we keep ¢ fixed (over learning)?

P> ¢ same everywhere?

Notes

25/37

We can think about lowering € as the learning progresses.

How to evaluate the result? When to stop learning?

0 1 2 3 4
» What is the actual result of g-learning?
0.04 0.06 -0.06 0.06 0.08
0 -0.043-0.05 | -0.05 ¢ -0.04 | -0.06 >-0.05 | -0.073¢0.07 | -0.06 %¢-0.08 0 » How to evaluate it?
oo o o i 7 4 When to Stop |earning7
0.02 0.03 -0.05 0,07 0.08
1 0.00 % 0.03 | 021 3¢-0.04 | -0.04)0.05 | -0.05 ¢ -0.05 | -0.08 3¢ 0.08 1
072 0.03 -0.03 -0.09 007
0.02 -0ls2
2 0.03 X-0.52 052 2
0.02 olto
084 0.03 -0.52 olo olos
3 0,02 Y“0.02 | -0.0235¢-0.05 | -0.05) 0.54 | -0.09 3¢-0.09| 0083 0.09 3
0,02 0.03 -0.05))
0.44 0.03 -0.06 olo olos
4 0.02 Y-0.03|-0.07-5¢-0.04 | -0.06-3-0.06.| -0.08 3¢ -0.08 | 0103 0.09 4
0.02 0.04 -0.06 0.08 0.10
0 1 2 3 4

26/37
Notes

e Accurate estimation of g-values in every state, which gives:

1. Estimate of the sum of expected future rewards from every state.
2. Policy — which action to take in every state. Simply a max over g-values.

e Note that the policy can be poorly estimated in areas less visited.
e Evaluating learning progress. Recall (Q-learning, but similar for SARSA):
— trial = Rep1 + vy max Q(S¢41, a)
a

— « temporal difference update
Q(St7 At) < Q(St, At) + a(trlal — Q(St, At))
— learning progress / convergence: (trial — Q(S;, A;)) — 0

e When to stop learning

— The more learning the better - think about visiting all places/states.
— Never... If you can afford it, keep learning with a small learning rate...
— Note: the learning rate is embedded in two parameters: « and ¢

Going beyond tables — generalizing across states

0 1 2 3 4
0 0.84 0.92 0.96 1.00 0
0 1 2 3 4
-
Notes

We were talking about v— and g— functions but what was the representation? (look-up) Tables. Looking at
v(s), we need a table for each of the state!

Btw., we always visualize RL on the grid but note that the agent does not know about the topology of the world.
It only knows about g-values! Even in model-based RL: One learns also the transition functions, but these are
still do not give a map of the state space. With stochastic action outcomes, the agent can at most estimate how
the world looks like. This knowledge is, however, irrelevant for the algorithms we study.

This world is small, but think bigger!

Going beyond tables — generalizing across states

0 1 2 3 4
0 0.84 0.80 0.76 0.72 . 0
1 0.88 0.84 0.80 0.76 0.72 1
2 0.92 0.88 0.84 0.80 0.76 2
3 0.96 0.92 0.88 0.84 0.80 3
4 1.00 0.96 0.92 0.88 0.84 4

0 1 2 3 4

28/37
Notes

Looking a V/(s), we need a table for each of the states! This world is small, but think bigger!

v(s) not as a table but as an approximation function ¥(s,w)

0 0.84

What are wy, wy equal to?

2 3 4
0.92 0.96 1.00
2 3 4

V(s,w) =wp+ wys

Instead of the complete table, only 2 parameters to learn w = [wp, wy] "

29 /37

Note: we can approximate v(s) or g(s, a).

Notes

Two key benefits as opposed to keeping the table with v(s) / q(s, a) for every state:

e Space complexity — for large worlds, the table simply won't fit in memory.

o Generalization.

— Pacman example (UC Berkeley, Lecture 11 Reinforcement Learning I1). Running away from
the ghost is what matters, not running away only when pacman is in state (5,7) and ghost is

in position (7,8)...
— Tracked robot — obstacle type not its detailed shape/coordinates determine the action...

What are wo, wi equal to?, we can start from left, target is the true v(s = 0) = 0.84, next target is v(s = 1) =

0.88, ...

Note about notation. Bold lower case letters are used to denote vectors. Vectors are always considered oriented

column-wise unless explicitly stated otherwise.

Linear value functions

State s € S C R" concatenates:

¢ Proprioceptive measurements: roll, pitch, torques, velocity, acceleration.

¢ Local exteroceptive measurements. features on digital elevation map

with fixed size.
Features

V(s,w) = wifi(s) + wafa(s) + wafz(s) + - - - + wufy(s)
4(s,a,w) = wifi(s,a) + wafa(s,a) + wafz(s,a) + -+ - + wyfy(s, a)
30/37
Notes

Note: the state description/encoding has to contain useful information about the context.
What could be the f functions for the grid world?

e Coordinates: (x,y)? Probably not.

e Pit is ahead... These kind of things would be useful, but currently not part of the state description...

Obviously, when data are available, we can fit. How to do it on-line?

Smérova a parcialni derivace (a stolen slide)
e At f: D CRR?> = R pfitazuje bodiim na map& D nadmo¥skou vy¥ku.

@ V mapé se vyddme z bodu a rovnomérné pfimocare rychlosti v. Jaka
bude okamZitd zména nadmovtské vysky v bodé a?

Martin Bohata Matematickd analyza 2 Smérova a parcidlni derivace 2/22
31/37
Notes

Learning w by Stochastic Gradient Descent (SGD)

assume ¥(s,w) differentiable in all states
we update w in discrete time steps t

in each step S; we observe a new example of (true) v™(S;)

vVvyyvyy

V(S¢, w) is an approximator — error = v (5;) — V(S¢, wy)

32/37
Notes
Gradient descent - all samples are known, Stochastic GD - update after each sample
« is a kind of damping factor, convergence of SGD requires that o decreases over time.
(s, w) could be quite complex, e.g. a Multi Layer Perceptron (MLP), Deep Network, and w represents the
weights. See, e.g.

e https://skymind.ai/wiki/deep-reinforcement-learning

e Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

https://skymind.ai/wiki/deep-reinforcement-learning
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

Learning w by Stochastic Gradient Descent (SGD)

assume ¥(s,w) differentiable in all states
we update w in discrete time steps t

in each step S; we observe a new example of (true) v™(S;)

vVvyyvyy

V(S¢, w) is an approximator — error = v (5;) — V(S¢, wy)

2
Wi = wp— —aV [v”(St) — O(St,wt)}

- w a[v”(st) - O(St,wt)]V\“/(St,wt)

of(w) of(w) Of(w)

I

Vi(w) =

9 i

0 w1 0 wWo 0 Wy

32/37
Notes
Gradient descent - all samples are known, Stochastic GD - update after each sample
« is a kind of damping factor, convergence of SGD requires that o decreases over time.
(s, w) could be quite complex, e.g. a Multi Layer Perceptron (MLP), Deep Network, and w represents the
weights. See, e.g.

e https://skymind.ai/wiki/deep-reinforcement-learning

e Vision for robotics course you may take next term. https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

https://skymind.ai/wiki/deep-reinforcement-learning
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start
https://cw.fel.cvut.cz/wiki/courses/b3b33vir/start

Approximate Q-learning (of a linear combination)

G(s,a,w) = wifi(s,a) + wafa(s,a) + wafz(s,a) + - - - + wpfy(s, a)

» transition = St7 Atu Rt+17 SH']-
» trial Rey1 4+ max G(Se+1,a,wWe)
> diff = |Repa +7max g(Sesa, a,wt)] — 4(Se, Ae, W)
> Update: w = [wy, wo, -, wy]"
from previous slide we know that wyy1 = wi + a|v™(St) — V(St, wi) [VI(St, we)
and §(s, a,w) is linear in w
w; < w; + o [diff] £;(Se, A¢)
33/37
Notes
e We are minimizing the error at the point where we measure (sample).
e However, we know we only approximate.
e « is a kind of damping factor; convergence of SGD requires that o decreases over time.

How is it possible at all? On-line least squares!

10_ ® .Data
L[| — curvefit |:

By Krishnavedala - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15462765

https://commons.wikimedia.org/w/index.php?curid=15462765

How to design the g-function? Overfitting . ..

0 1 2 3 4
0 0.84 . 0.92 0.96 1.00 0
0 1 2 3 4

* original data
— exact lin fit
1.1 * noisy data
approximate lin fit to noisy data
—— exact fit, polynomial of degree 4

state s

34/37

Notes
See the fitdemo.m run, higher degree polynomials perfectly fits, but poorly generalizes outside the range

Going beyond - Dyna-Q integration planning, acting, learning

value/policy

acting
planning direct
RL
model experience
model
learning

?Schemes from [3]

Notes

/SN

| Policy/value functions |

planning update

simulated

experience
experience
search
learning control
Model
[Environment]
35/37

References |

Further reading: Chapter 21 of [1] (chapter 23 of [2]). More detailed discussion in [3]
Chapters 6 and 9. You can read about strategies for exploratory moves at various places,
Tensor Flow related®. More RL URLs at the course pages*.

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 4th edition, 2021.

36/37
Notes

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus
http://aima.cs.berkeley.edu/

References |l

[3] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

3https: //medium.com /emergent-future/
simple-reinforcement-learning-with-tensorflow- part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
*https:
//cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech /tyden_09+# reinforcement_learning_plus
37/37

Notes

http://www.incompleteideas.net/book/the-book-2nd.html
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-7-action-selection-strategies-for-exploration-d3a97b7cceaf
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus
https://cw.fel.cvut.cz/wiki/courses/b3b33kui/cviceni/program_po_tydnech/tyden_09#reinforcement_learning_plus

	Introduction
	Model-based learning
	Model-free learning
	Active reinforcement learning
	Exploration vs. Exploitation

	References

