Reinforcement learning Il
Active learning

Tom3as Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

April 12, 2023

1/37


http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Recap: Reinforcement Learning
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reward
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» Feedback in form of Rewards

P> Learn to act so as to maximize sum of expected rewards.

» In kuimaze package, env.step(action) is the method.

'Scheme from [3]

action
Ay
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Learning to control flippers

» What are the states?
» How to design rewards?

» How to perform training episodes
(roll-outs)?

» Simulator to reality gap.
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Flippers | | Touching below water surface

@ Construction: 2x main tracks, 4x subtracks (flippers), differential break
great stability and climbing capability

¢ Sensor suite: SICK LMS-151 range finder, Ladybug omnicam, Xsens MTi-G IMU
3D sensing and localization

¢ Control inputs: Velocity vector, 4xflipper angle, 4x flipper stiffness,
differential break (0/1)

difficult to control all of them manually! oy



State s € S C R" concatenates:

¢ Proprioceptive measurements: roll, pitch, torques, velocity, acceleration.

¢ Local exteroceptive measurements. features on digital elevation map

with fixed size.
Features
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Instead of a € A C R® we consider only 5 configurations’:

A = {l-shape , V-shape , L-shape , U-shape soft , U-shape hard}

TN ey i

I-shape V-shape L-shape
aximizes traction rovides observability orward approac
Maximi i Provides ob bili F d h

U-shape soft U-shape hard
(Smooth climbing down) (Lifts the body up)
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Reward r(a,s) : A x S — R is a weighted sum of following contributions:

1.

2
3.
4

Safe pitch and roll reward, avoiding tipping over
. Smoothness reward, suppresses body hits
Speed reward, drives robot forward

. User denoted reward (penalty) indicating the success (failure) of the particular

maneuver indicates failure/possible damages

X r(V-shape, s) =-1

r(L-shape ,s) =1
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From off-line (MDPs) to on-line (RL)

Markov decision process — MDPs. Off-line search, we know:
> A set of states s € S (map)
> A set of actions per state. a € A
> A transition model p(s’|s, a) (robot)
» A reward function r(s, a,s’) (map, robot)

Looking for the optimal policy m(s). We can plan/search before the robot enters the
environment.

On-line problem:
» Transition p and reward r functions not known.

» Agent/robot must act and learn from experience.
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(Transition) Model-based learning

The main idea: Do something and:

» Learn an approximate model from experiences.

» Solve as if the model were correct.
Learning MDP model:

» Try s, a, observe s/, count s, a,s’.

» Normalize to get and estimate of p(s’|s, a)

» Discover each r(s, a,s’) when experienced.
Solve the learned MDP.
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Model-free learning

> r,p not known.
» Move around, observe.
» And learn on the way. T 1

2 (1]

» Goal: Learn the state value v(s), or (better),
g-value q(s, a) functions.

1 2 3 4
Image from [1]
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Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

> time t, at S; SN
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Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

V(St)
> time t, at S; SN
> select and take A; € A(S:), observe Rit1, Sti1 ! Ai .
7/ 1 _ \\
g - St, At \? h
o<
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Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

V(St)
> time t, at S; AN
> select and take A; € A(S:), observe Rit1, Sti1 /I At .
» compute trial/sample estimate at time t /'/ //}_ RS
trial = Ret1 + 7 V/(Se+1) g " f\ St, At ) .
Yo <
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Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

V(S:)
> time t, at S; AN
> select and take A; € A(S;), observe Ryy1, Sti1 /// Ar .
» compute trial/sample estimate at time t S /}_ ‘\\\\
trial = Res1 +7V(Ses1) L s A
> « temporal difference update ;>\‘_/</\
V(S:) « V(St) + aftrial — V(S,)) PN
0 R
e \ N

11/37



Recap: V — learning

Learn V/(s) values as the robot/agent goes (temporal difference).

vy

V(S:)
time t, at S; AN
select and take A; € A(S;), observe Ryy1, St11 /// A .
compute trial /sample estimate at time ¢t S /}_ ‘\\\\
trial = Reyq +vV/(Ser1) SR
o temporal difference update ;\/\ _/</\
V(S:) « V(St) + aftrial — V(1)) Rl
St < Si11 and repeat (unless S; is terminal) TLI
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Recap: V — values, converged ...
v =1, rewards —1, 410, —10, and deterministic robot

V(S:) = Reg1 + V(St41)
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What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
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What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

> 7(s) = arg;nax Yoo p(s'|s,a)r(s,a,s")+~vV(s)]
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What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

> 7(s) = arg;nax Yoo p(s'|s,a)r(s,a,s")+~vV(s)]

» 7(s) = argmaxQ(s, a)
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Model-free TD learning, updating after each transition

» Observe, experience environment through learning episodes,
collecting:

5t7 At7 Rt+17 St-i-l) At+17 Rt+27 s

» Update by mimicking Bellman updates after each transition
(St’ Ata Rt+17 St+1)
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Recap: Bellman optimality equations for v(s) and g(s, a)

— / I / // a \\ \\
v(s) mfxz p(s'|s,a) [r(s,a,s") + v v(s)] ) o

s’ \ N
— ¥ R Y
- mpete (79 o
The value of a g-state (s, a): . ’ .
SN T)

q(s,a) = Zp(s’|5, a) [r(s,a,s") + v v(s)] S

— ip (5|, a)[ sas)—l—fymaxq(s a)] '/ q(s’,a’)
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Q-learning (off-policy TD control)
Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not

known, initialize.

> time t, at S AERTRN

16/37



Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

> time t, at S; a0
> select and take A; € A(S;), observe Riy1, Sty1 RO
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Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

> time t, at S; TA

> select and take A; € A(S;), observe Riy1, Sty1 RO

» compute trial/sample estimate at time t » . 4
trial = Rep1 + max Q(St+1,a)

Rit1

‘ Q 5t+17
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Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

> tlme t, at St / At \\
» select and take A; € A(S;), observe Rei1, Se41 Sy \
» compute trial/sample estimate at time t » \Q(St ) Ap)
)
trial = Rep1 + max Q(St+1,a)
» o temporal difference update Ret1

Q(St, At) < Q(St, At) + Oé(tl’lal — Q(St, At))

‘ Q 5t+17
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Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

vy

time t, at S P At L

select and take A; € A(S;), observe Rii1, Stt+1 oy \ "

compute trial /sample estimate at time ¢t » \Q(St ) A
b}

trial = Rep1 + max Q(St+1,a)

« temporal difference update Rit1

Q(St, At) < Q(St, At) + Oé(tl’lal — Q(St, At))

St < Sty1 and repeat (unless S; is terminal)

‘ Q 5t+17
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Q-learning (off-policy TD control)

Learn policy (Q-values) as the robot/agent goes (temporal difference). If some Q quantity not
known, initialize.

> tlme t, at St / At \\
> select and take A; € A(S;), observe Riy1, Sty1 oy ‘\
» compute trial/sample estimate at time t » \Q(St ) Ap)
b}
trial = Rep1 + max Q(St+1,a)
» o temporal difference update Rit1

Q(St, At) < Q(St, At) + Oé(tl’lal — Q(St, At))

» S; < S¢i1 and repeat (unless S; is terminal)

In each step Q directly approximates the optimal g* func-
Q 5t+17

tion (learns optimal policy).
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Recap: V— and Q— values, converged ...
v =1, rewards —1,+10, —10, and deterministic robot

6.00 7.00 8.00 0.00
6.00 7.00 | 6.00 8.00 | 7.00 9.00 | 0.00 0.00
5.00 7.00 7.00 0.00

6.00 8.00
5.00 5.00 7.00 X-11.00
4.00 6.00
5.00 7.00 -11.00

4.00 6.00 | 5.00 5.00 | 6.00 5.00

5.00 6.00 5.00

V(St) = Repr+ V(Sei1)
Q(S:, Ar) = Rt+1+m3XQ(5t+1aa)
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Sarsa (on-policy TD control)

Learn Q values as the robot/agent goes (temporal difference). If some Q quantity not known,

initialize.
> time t, at S, select A; € A(S:) /'Ai \\\\\\\
> take A;, observe Riy1,St11 Vo
> select Ari1 € A(St41) > I ‘
» which gives trial estimate Q(St, Ar)
trial = Re1 + 7 Q(St+1, Aev1) ’/;3(5/‘5. a)\
> \‘

« temporal difference update ’,’/
Q(St, Ac) « Q(S, Ae) + altrial — Q(St, Ar)) @
» S < Sti1, At < App1 and repeat (unless S; is Avir

terminal) )
\
In each step learns Q. R
X
Sti1,Art1
Q(St+1, At+1) 18/37



Q-learning: algorithm

stepsize 0 <a <1
initialize Q(s, a) for all s € S,a € S(s)
repeat episodes:
initialize S
for for each step of episode: do
choose A from S
take action A, observe R, S’
Q(S,A) <+ Q(S,A) + a[R +ymax, Q(5',a) — Q(S, A)]
S« 5
end for until S is terminal
until Time is up, ...
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Sarsa: algorithm

stepsize0<a<1
initialize Q(s, a) for all s € S, a € S(s)
repeat episodes:
initialize S
choose A from S
for for each step of episode: do
take action A, observe R, S’
choose A’ from S’

Q(S, A) + Q(S,A) + a[R+vQ(S",A) — Q(S, A)]

S S A A
end for until S is terminal
until Time is up, ...
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How to select A; in S5;7 What policy?

> time t, at S;
take A; € A(S:) , observe Ryi1,S:11

> compute trial/sample estimate at time t
trial = Ry1 + 7y max Q(St+1,a)

v

> « temporal difference update
Q(St,At) < Q(St,At) + a(trlal — Q(St,At))
» S; < Sty1 and repeat (unless S; is terminal)
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How to select A; in S5;7 What policy?

v

time t, at S;

take A derived from @ , observe Ryi1,S:41
compute trial /sample estimate at time ¢t

trial = Rep1 + 7 max Q(St+1,a)

« temporal difference update

Q(St, At) < Q(St, Ar) + aftrial — Q(St, Ar))
St < Sty1 and repeat (unless S; is terminal)

21/37



... A; derived from Q

What about keeping optimality, taking max?
Ay = arg max,Q(S:, a)

see the demo run of rl_agents.py.
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Two good goal states

0 1 2 3
-0.50 -0.50 -0.50
O 000 050 0-00 050 r\‘nn OIE!\
0.00 0.00 0.00
-050 0.00 0.00
1 0.00 X 0.00 | 0.00 X 0.00 | 0.00 XX 0.00
0.00 0.00 0.00
0.00 0.00 0.00
2 0.00 % 0.00 | 0.00 X 0.00 | 0.00 X 0.00
0.00 0.00 0.00
0 1 2 3
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Exploration vs Exploitation

—— e .
Drive the known road or try a new one?

Go to the university menza or try a nearby restaurant?

>
>
» Use the SW (operating system) | know or try new one?
» Go to bussiness or study a demanding program?

| 2
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How to explore?

Random (e-greedy):
» Flip a coin every step.

» With probability €, act randomly.

> With probability 1 — ¢, use the policy.

25 /37



How to explore?
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» Flip a coin every step.

» With probability €, act randomly.
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How to explore?

Random (e-greedy):

» Flip a coin every step.

» With probability €, act randomly.

> With probability 1 — ¢, use the policy.
Problems with randomness?

> Keeps exploring forever.

» Should we keep ¢ fixed (over learning)?

P> ¢ same everywhere?
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How to evaluate the

result? When to stop learning?

0 1 2 3 4
-0.04 -0.06 -0.06 -0.06 -0.08
0 0.04 W-0.05 | -0.05 %¢-0.04 | -0.06 »¢-0.05 | -0.07 3¢ -0.07 | -0.06 3 -0.08
-0.04 -0.04 -0.06 -0.06 -0.07
-0.02 -0.03 -0.05 -0.07 -0.08
1 0.00 W-0.03 | 0.21 3-0.04 | -0.04 W-0.05 | -0.05 %¢-0.05-1-0.08 3¢ -0.08
072 -0.03 -0.03 -0.09 0,07
-0.02 0552
2 0.03 X-0.52 -0.52
-0.02 0/10
084 -0.03 052 0l10 0,09
3 0.02 YX-0.02 | -0.02 3<-0.05 | -0.05 W-0.54 | -0.09 }-0.09-1-0.08 3£ -0.09
002 -0.03 -0.05 0,09 0,09
0.44 -0.03 -0.06 0l10 0,09
4 0.02 Y-0.03-0.07-3-0.04-| -0.06 3< -0.06 | -0.08 3 -0.08-| -0.10¢ -0.09
-0.02 -0.04 -0.06 -0.08 -0.10
0 1 2 3 4

» What is the actual result of g-learning?
» How to evaluate it?

» When to stop learning?
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Going beyond tables — generalizing across states

0 0.84 0.92 0.96
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Going beyond tables — generalizing across states

0 1 2 3 4
0 0.84 0.80 0.76 0.72 .
1 0.88 0.84 0.80 0.76 0.72
2 0.92 0.88 0.84 0.80 0.76
3 0.96 0.92 0.88 0.84 0.80
4 1.00 0.96 0.92 0.88 0.84
0 1 2 3 4
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v(s) not as a table but as an approximation function ¥(s,w)

0 1 2 3 4

0 0.84 0.92 0.96 1.00

0 1 2 3 4

V(s,w) =wp+ wys

What are wy, wy equal to?
Instead of the complete table, only 2 parameters to learn w = [wp, wy] "
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Linear value functions

State s € S C R" concatenates:

¢ Proprioceptive measurements: roll, pitch, torques, velocity, acceleration.

¢ Local exteroceptive measurements. features on digital elevation map
with fixed size.
Features

UV(s,w) = wifi(s) + wafa(s) + wafz(s) + - - - + wufu(s)
4(s,a,w) = wifi(s,a) + wafa(s,a) + wafz(s,a) + - - + wyfy(s, a)
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Smérova a parcialni derivace (a stolen slide)
e At f: D CRR? = R pfitazuje bodiim na map& D nadmo¥skou vy&ku.

@ V mapé se vyddme z bodu a rovnomérné pf¥imocare rychlosti v. Jaka
bude okamZitd zména nadmovtské vysky v bodé a?

Martin Bohata Matematicka analyza 2 Smé&rova a parcidlni derivace 2/22
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Learning w by Stochastic Gradient Descent (SGD)

> assume V(s,w) differentiable in all states
> we update w in discrete time steps t
» in each step S; we observe a new example of (true) v7(5;)

» (St w) is an approximator — error = v (5;) — V(S¢, wy)
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Learning w by Stochastic Gradient Descent (SGD)

assume ¥(s,w) differentiable in all states
we update w in discrete time steps t

in each step S; we observe a new example of (true) v™(S;)

vVVvYyVvy

V(S¢, w) is an approximator — error = v (5;) — V(S¢, wy)

2
Wipp = wp— —aV [v”(St) — O(St,wt)}

— wit a[v”(st) _ O(St,wt)]V\“/(St,wt)

Vi(w) =

I 9 i

.
Of(w) Of(w) 8f(w)]

0 w1 0 wWo 0 Wy
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Approximate Q-learning (of a linear combination)

G(s,a,w) = wifi(s,a) + wafa(s,a) + wafz(s,a) + - - - + wpfy(s, a)

» transition = St7 Atu Rt+17 St+1
» trial Rey1 + mgx G(Ses1,a,wy)

> diff = |Ress —I—vm;)xc?(StH,a,wt)] — 4(Se, Ar, wy)

> Update: w = [wy, wo, -, wy]"
from previous slide we know that wyy1 = wi + a|v™(S5;) — \A/(St,wt)}VO(St,wt)
and §(s, a,w) is linear in w
w; < w; + o [diff ] £;(Se, A¢)
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How to design the g-function? Overfitting . ..

0 1 2 3 4
0 0.84 0.92 0.96 1.00 0
0 1 2 3 4

% original data
— exact lin fit
1.1  noisy data
approximate lin fit to noisy data
—— exact fit, polynomial of degree 4

state s
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Going beyond - Dyna-Q integration planning, acting, learning

value/policy

acting
planning direct
RL
model experience
model
learning

?Schemes from [3]

/SN

| Policy/value functions |

planning

real
experience

experience

update

simulated

search
control

Model

[Environment]
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Further reading: Chapter 21 of [1] (chapter 23 of [2]). More detailed discussion in [3]
Chapters 6 and 9. You can read about strategies for exploratory moves at various places,
Tensor Flow related®. More RL URLs at the course pages*.
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