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Speed of Arithmetic Operations

Operation C language operator

Bitwise complement (negation) ~x

Multiply and divide by 2n x<<n ,  x>>n

Increment, decrement 
++x, x++, --x, 
x--

Negate ← complement + increment -x

Addition x+y

Subtraction <- negation + addition x-y

Multiply on hardware multiplier
x*y

Multiply on sequential multiplier/SW

Division x/y
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Multiply/Divide by 2

Logical Shift

C 0b7 ----------------- b0

Cb7 ----------------- b00

Arithmetic Shift

C 0b7 ----------------- b0

Cb7 ----------------- b0

Multiply by 2

Divide by 2 unsigned Divide by 2 signed

C represents Carry Flag, it is present only
on some processors: x86/ARM yes, MIPS no

loss of the
precision



5B35APO   Computer Architectures

Barrel Shifter

Barrel shifter can be used for fast variable shifts
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Overflow of Unsigned Number Binary Representation

• The carry from MSB (the most significant bit) is observed in 
this case

• The arithmetic result is incorrect  because it is out of range.

For 5 bit representation:

28 1 1 1 0 0

+5 + 0 0 1 0 1

?1 1 0 0 0 0 1

12 0 1 1 0 0

+5 + 0 0 1 0 1

17 0 1 0 0 0 1

28 1 1 1 0 0

21 + 1 0 1 0 1

?17 1 1 0 0 0 1

28 1 1 1 0 0

19 + 1 0 0 1 1

?15 1 0 1 1 1 1

The incorrect result is smaller than each of addends
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Overflow of Signed Binary Representation

• Result is incorrect, numeric value is outside of the 
range that can be represented with a given 
number of digits

• It is manifested by result sign different from 
the sign of addends when both addends signs 
are the same, and

• the exclusive-or (xor) of carry to and from MSB 
differs.

For 5 bit representation:

-4 1 1 1 0 0

+5 + 0 0 1 0 1

1 1 0 0 0 0 1

12 0 1 1 0 0

+5 + 0 0 1 0 1

?-15 0 1 0 0 0 1

-4 1 1 1 0 0

-11 + 1 0 1 0 1

-15 1 1 0 0 0 1

-4 1 1 1 0 0

-13 + 1 0 0 1 1

?15 1 0 1 1 1 1
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Sign Extension

  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Example:
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Hardware Divider – Simple Sequential Algorithm

ALU does not check, 
if the dividend is 
smaller or not than 
divisor. It finds that 
during subtraction 
and needs to correct 
the result by addition.

7 / 3

7 – 4*3 = -5

(non-restoring)
-5+2*3 = 1 
=7 - 2*3

1 – 3 = -2
(restoring)
-2+3 =  1
Restoring is required 
only for last operation

Non-restoring division

negate
hot one

reminder

return

quotient
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Hardware divider logic (32b case)

dividend = quotient  divisor + reminder

AC                  MQ

negate
hot one

return

reminder quotient
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Algorithm of the sequential division

MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;

for( int i=1; i <= n; i++) {
   SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)

   if(AC >= B)   {
AC = AC – B;
MQ0 = 1; // the LSB of the MQ register is set to 1

    }
}

 Value of MQ register represents quotient and AC remainder
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Example of X/Y division

i operation AC MQ B comment
0000 1010 0011 initial setup

1 SL 0001 0100

nothing 0001 0100 the if condition not true

2 SL 0010 1000

0010 1000 the if condition not true

3 SL 0101 0000 r  y

AC = AC – B;   MQ0 = 1;
0010 0001

4 SL 0100 0010 r  y

AC = AC – B;   MQ0 = 1;
0001 0011 end of the cycle

Dividend x=1010 and divisor y=0011

x : y = 1010 : 0011 = 0011 reminder 0001,   (10 : 3 = 3 reminder 1)
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*Real Numbers
and their representation in computer
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Higher Dynamic Range for Numbers (REAL/float)

● Scientific notation, semi-logarithmic, floating point
● The value is represented by:

– EXPONENT (E) – represents scale for given value
– MANTISSA (M) – represents value in that scale
– the sign(s) are usually separated as well
– Mantissa x baseExponent

● Normalized notation
● The exponent and mantissa are adjusted such way, that 

mantissa is held in some standard range. Usually 〈1, base)
● When considered base z=2 is considered then mantissa range 

is 〈1, 2) or alternatively 〈0.5, 1).
● Decimal representation: 7.26478 x 10

3

● Binary representation: 1,010011 x 2
1001
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Fractional Binary Numbers/Fixed Point

Real number representation in fixed point (fractional numbers)

Bits following “binary point” specify fractions in power two series

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
1
2
4

2i–1

2i

• • •
• • •

1/2
1/4
1/8

2–j

bk 2
k

k j

i


They can be used directly or as base for mantissa of float
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Fixed Point Examples

Value Representation

5+3/4 101.112

2+7/8  10.1112

63/64   0.1111112

Operations

Divide by 2 → shift right

Multiply by 2 → shift left.

Numbers 0.111111…2 are smaller than 1.0

1/2 + 1/4 + 1/8 + … + 1/2i + …  1.0
Exact notation → 1.0 – ε
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Binary and Decimal Real Numbers Examples

23.47 = 2×101 + 3×100 + 4×10-1 + 7×10-2

      decimal point

10.01two = 1×21 + 0×20 + 0×2-1 + 1×2-2

      binary point

= 1×2   + 0×1  + 0×½   + 1×¼

= 2 + 0.25 = 2.25
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Scientific Notation and Binary Numbers

Decimal number:

-123 000 000 000 000  →  -1.23 × 1014

0.000 000 000 000 000 123 →  +1.23× 10-16

Binary number:

110 1100 0000 0000  →  1.1011× 214   = 2969610

-0.0000 0000 0000 0001 1101 → -1.1101 × 2-16

=-2.765655517578125 x 10-5
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Standardized Format for REAL Type Numbers

● Standard IEEE-754 defines next REAL representation 
and precision
● single-precision – in the C language declared as float 

– uses 32 bits (1 + 8 + 23) to represent a number
● double-precision – C language double

– Uses 64 bits (1 + 11 + 52) to represent a number
● actual standard (IEEE 754-2008) adds half-precision float 

(16 bits ) mainly for graphics and neural networks, 
quadruple-precision (128 bits) and octuple-precision 
(256 bits) for special scientific computations
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The Representation/Encoding of Floating Point Number

● Mantissa encoded as the sign and absolute value 
(magnitude) – equivalent to the direct representation

● Exponent encoded in biased representation (K=+127 for 
single precision, +1023 for double)

● The implicit leading one can be omitted due to 
normalization of m ∈ 1, 2) 〈  – 23+1 implicit bit for single

Radix point position for E and M

Sign of M

X = -1s 2A(E)-127 m where m ∈ 1, 2)〈
m = 1 + 2-23 M
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ANSI/IEEE Std 754-1985 – 32b and 64b Formats

ANSI/IEEE Std 754-1985 — double precision format — 64b

g . . . 11b f . . . 52b

ANSI/IEEE Std 754-1985 — single precision format — 32b

fraction point

ANSI/IEEE Std 754-1985 — half precision format — 16b

g . . . 5b f . . . 10b
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Examples of (De)Normalized Numbers in Base 10 and 2

binary

The radix point position for E and M

Sign of M
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IEEE 754 – Conversion Examples

Find IEEE-754 float  representation of -12.62510

• Step #1: convert  -12.62510 = -1100.1012   = 101 / 8
• Step #2: normalize -1100.1012 = -1.1001012 *  23

• Step #3: 
Fill sign field, negative for this case -> S=1. 
Exponent + 127 -> 130 -> 1000 0010 .  
The first mantissa bit 1 is a hidden one ->

1  1000 0010 . 1001 0100 0000 0000 0000 000

Alternative approach, separate sign, find floor of binary 
logarithm for absolute value, compute equivalent power  of 
two, divide number (result is normalized) and, subtract one, 
multiply by two, if > 1 subtract and append 1 to result else 
append 0, multiply by two and repeat.
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Example 0.75

0.75 10 = 0.11 2 = 1.1 x 2 -1 = 3/4

1.1 = 1. F → F = 1

E – 127 = -1 → E = 127 -1 = 126 = 011111102

S = 0

00111111010000000000000000000000 = 
0x3F400000
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Example 0.110 – Conversion to Float

0.110 = 0.000110011....2

         = 1.100112 x 2 
-4 = 1.F x 2 E-127

F = 10011    -4 = E – 127

E = 127 -4 = 123 = 011110112

0011 1101 1100 1100 1100 1100 1100 1100 1100 11..

0x3DCCCCCD, why the last is a D ?
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Example 0.110 – Conversion to Float

0.110 = 0.000110011....2 =
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Often Inexact Floating Point Number Representation

Decadic number with finite expansion → infinite binary expansion

Examples: 

0.1ten → 0.2 → 0.4 → 0.8 → 1.6 → 3.2 → 6.4 → 12.8 →…

0.110 = 0.00011001100110011…2

         = 0.000112 (infinite bit stream)

More bits only enhance precision of 0.110 

representation
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Real Number Representation - Limitations

Limitation
Only numbers corresponding to x/2k allows  
exact representation, all other are stored 
inexact

Value representation
1/3 0.0101010101[01]…2

1/5 0.001100110011[0011]…2

1/10 0.0001100110011[0011]…2
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Special Values – Not a Number (NaN) and Infinity

● If the result of the mathematical operation is not defined, 
such as the calculation of log (-1), or the result is 
ambiguous 0/0, +Inf + -Inf, then the value NaN (Not-a-
Number) is saved

= exponent is set to all ones and the mantissa is nonzero.

● If the operation results only overflow the range or infinity 
is on input (X + +Inf) and result sign is unambiguous

NaN

positive 0 11111111   mantisa !=0 NaN

Infinity

positive 0 11111111 00000000000000000000000 +Inf

negative 1 11111111 00000000000000000000000 -Inf
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Implied (Hidden) Leading 1 bit

● Most significant bit of the mantissa is one for each 
normalized number and it is not stored in the 
representation for the normalized numbers

● If exponent representation is zero then encoded value is 
zero or denormalized number which requires to store 
most significant bit and there is zero considered on usual 
hidden one location

● Denormalized numbers allow to keep resolution in the 
range from the smallest normalized number to zero but 
the computation when some of operands is denormalized 
is more complex. Some coprocessors do not support 
denormalized numbers and emulation is required to fulfill 
IEEE-754 strict requirements, Intel coprocessors supports 
denormalized numbers



31B35APO   Computer Architectures

Underflow/Lost of the Precision for IEEE-754 Representation

● The case where stored number value is not zero but it is 
smaller than smallest number which can be represented 
in the normalized form

● The direct underflow to the zero can be prevented by 
extension of the representation range by denormalized 
numbers

smallest positive representable number
denormalized

0

underflow

normalized

denormalized
positive

denormalized
negative normalized numbers

normalized
numbers
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Representation of the Fundamental Values

Zero

Infinity

Representation corner values

Positive zero 0 00000000 00000000000000000000000 +0.0

Negative zero 1 00000000 00000000000000000000000 -0.0

Positive infinity 0 11111111 00000000000000000000000 +Inf

Negative infinity 1 11111111 00000000000000000000000 -Inf

Smallest 
normalized

* 00000001 00000000000000000000000 ±2(1-127)

±1.1755 10-38

Biggest 
denormalized

* 00000000 11111111111111111111111 ±(1-2-23)2(1-126)

Smallest 
denormalized

* 00000000 00000000000000000000001 ±2-232-126

±1.4013 10-45

Max. value 0 11111110 11111111111111111111111 (2-2-23)2(127)

+3.4028 10+38
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The Table in Another Format
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Some Features of ANSI/IEEE Standard Floating-point Formats 

Feature Single/Float Double/Long
Word width in bits 32 64
Significand in bits 23 + 1 hidden 52 + 1 hidden
Significand range [1, 2 – 2–23] [1, 2 – 2–52]
Exponent bits 8 11
Exponent bias 127 1023
Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0
Denormal e + bias = 0, f ≠ 0

represents ±0.f  2–126
e + bias = 0, f ≠ 0
represents ±0.f  2–1022

Infinity (∞) e + bias = 255, f = 0 e + bias = 2047, f = 0
Not-a-number (NaN) e + bias = 255, f ≠ 0 e + bias = 2047, f ≠ 0
Ordinary number e + bias  [1, 254]

e  [–126, 127]
represents 1.f  2e 

e + bias  [1, 2046]
e  [–1022, 1023]
represents 1.f  2e

min 2–126  1.2  10–38 2–1022  2.2  10–308

max  2128  3.4  1038  21024  1.8  10308
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IEEE-754 Formats

Half precision (binary16)

Single precision (binary32)

Double precision (binary64)

Quadruple precision (binary128)

Source: Herbert G. Mayer, PSU
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X86 Extended Precision Format (80-bits)

Bit 1. is not hidden in mantissa!

Advanced readers note:
 Intel processors integrate arithmetic coprocessor on the single chip with 

processor (from Intel 80486), which computes float and double 
expressions in „extended precision“ internally and the results are rounded 
to float/double when stored.

 But Streaming SIMD Extensions (SSE) instructions (vector operations) 
from Intel Pentium III on provides only double precision and the result 
rounding/precission can be dependent on compiler selection

Source: Herbert G. Mayer, PSU
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IEEE-754 Special Values Summary

sign bit Exponent 
representation

Mantissa Represented value/meaning

0 0<e<255 any value normalized positive number

1 0<e<255 any value normalized negative number

0 0 >0 denormalized positive number

1 0 >0 denormalized  negative number

0 0 0 positive zero

1 0 0 negative zero

0 255 0 positive infinity

1 255 0 negative infinity

0 255 ≠0 NaN – does not represent a number

1 255 ≠0 NaN – does not represent a number
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Comparison

● Comparison of the two IEEE-754 encoded numbers 
requires to solve signs separately but then it can be 
processed by unsigned ALU unit on the representations

   A ≥ B  A − B ≥ 0  D(A) − D(B) ≥ 0⇐⇒ ⇐⇒
● This is advantage of the selected encoding and reason 

why sign is not placed at start of the mantissa
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Addition of Floating Point Numbers

● The number with bigger exponent value is selected
● Mantissa of the number with smaller exponent is shifted 

right – the mantissas are then expressed at same scale
● The signs are analyzed and mantissas are added (same 

sign) or subtracted (smaller number from bigger)
● The resulting mantissa is shifted right (max by one) if 

addition overflows or shifted left after subtraction until all 
leading zeros are eliminated

● The resulting exponent is adjusted according to the shift
● Result is normalized after these steps
● The special cases and processing is required if inputs are 

not regular normalized numbers or result does not fit into 
normalized representation 
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Hardware of the Floating Point Adder
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Multiplication of Floating Point Numbers

● Exponents are added and signs xor-ed
● Mantissas are multiplied
● Result can require normalization

max 2 bits right for normalized numbers
● The result is rounded

● Hardware for multiplier is of the same or even lower 
complexity as the adder hardware – only adder part is 
replaced by unsigned multiplier
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Floating Point Arithmetic Operations Overview

Addition: A⋅za , B⋅zb , b < a unify exponents
                         B⋅zb = (B⋅zb-a)⋅zb-(b-a) by shift of mantissa

  A⋅za + B⋅zb = [A+(B⋅zb-a)]⋅za sum  + normalization

Subtraction: unification of exponents, subtraction and 
normalization

Multiplication: A⋅za ⋅ B⋅zb = A⋅B⋅za+b

                 A⋅B - normalize if required
 A⋅B⋅za+b = A⋅B⋅z⋅za+b-1 - by left shift

Division:          A⋅za/B⋅zb = A/B⋅za-b

                 A/B  - normalize if required
                          A/B⋅za-b = A/B⋅z⋅za-b+1 - by right shift
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*Memory and Data
and their store in computer memory
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John von Neumann Computer Block Diagram

28. 12. 1903 - 
8. 2. 1957

von Neumann's computer architecture
Princeton Institute for Advanced Studies Processor

Input Output

Memory

ctrl
ALU

●5 functional units – control unit, arithmetic logic unit, memory, input (devices), 
output (devices)

●An computer architecture should be independent of solved problems. It has to 
provide mechanism to load program into memory. The program controls what the 
computer does with data, which problem it solves.

●Programs and results/data are stored in the same memory. That memory consists 
of a cells of same size and these cells are sequentially numbered (address).

●The instruction which should be executed next, is stored in the cell exactly after 
the cell where preceding instruction is stored (exceptions branching etc. ). 

●The instruction set consists of arithmetics, logic, data movement, jump/branch 
and special/control instructions.
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Memory Address Space

data path, 
usual width 
32b/4BAddress

width a bits

The most common size of addressable 
memory unit is 1B (8 bits)

  a 2↑a

  8 256 distinct locations

16 64K (K=1024)

… ……

32 4G (4096M, M=K↑2)
000000H

FFF…FFH
memory location
holds value – contents

It is an array of addressable units (locations) where each unit can hold a data value.
Number/range of addresses same as addressable units/words are limited in size.

Memory

ALU
Unit

Control
Unit

Input Output

Processor
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Program Layout in Memory at Process Startup

Stack

Uninitialized data
.bss

Program code
.text

0x7fffffff

0x00000000

Initialized data
.data

Dynamic memory
alloc. – heap

● The executable file is mapped 
(“loaded”) to process address space 
– sections .data and .text (note: 
LMA != VMA for some special 
cases)

● Uninitialized data area (.bss – block 
starting by symbol) is reserved and 
zeroed for C programs

● Stack pointer is set and control is 
passed to the function _start

● Dynamic memory is usually 
allocated above _end symbol 
pointing after .bss 
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Key Technological Gaps Prediction

Note: The increase in complexity of algorithms over time has been formalized in literature as 
the so-called Shannon's Law of Algorithmic Complexity.
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1980 1985 1990 1995 2000 2005 2010

1.00 

10.00 

100.00 

1,000.00 

10,000.00 

100,000.00 

Year

P
e

rf
o

rm
a

n
c

e
Memory and CPU Speed – Moore's Law

Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU performance 25%
per year

52%
per year

20%
per year

Throughput of memory 
only +7% per year

Memory

CPU
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PC Computer Motherboard

http://www.pcplanetsystems.com/abc/product_details.php?
item_id=3263&category_id=208
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Computer Architecture (Desktop x86 PC)

generic
example
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From UMA to NUMA Development (Even in PC Segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

SATA

USB
PCI-E

MC - Memory controller – contains circuitry responsible for SDRAM read and 
writes. It also takes care of refreshing each memory cell every 64 ms. 

CPU 1 CPU 2

MC

Southbridge

RAM

SATA

USB
PCI-E

RAM

MC  Northbridge

Southbridge
SATA

USB
PCI-E

CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform 
Memory 
Architecture
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Intel Core 2 Generation

Northbridge became Graphics and Memory Controller Hub (GMCH)
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Intel i3/5/7 Generation
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 Memory Subsystem – Terms and Definitions

● Memory address – fixed-length sequences of bits or index
● Data value – the visible content of a memory location

Memory location can hold even more control/bookkeeping 
information
● validity flag, parity and ECC bits etc.

● Basic memory parameters:
● Access time – delay or latency between a request and the access 

being completed or the requested data returned
● Memory latency – time between request and data being available 

(does not include time required for refresh and deactivation)
● Throughput/bandwidth – main performance indicator. Rate of 

transferred data units per time.
● Maximal, average and other latency parameters



55B35APO   Computer Architectures

Memory Types and Maintenance

● Types: RWM (RAM), ROM, FLASH
● Implementation: SRAM, DRAM

● Data retention time and conditions (volatile/nonvolatile)
● Dynamic memories (DRAM, SDRAM) require specific 

care
● Memory refresh – state of each memory cell has to be 

internally read, amplified and fed back to the cell once 
every refresh period (usually about 60 ms), even in idle 
state. Each refresh cycle processes one row of cells.

● Precharge – necessary phase of access cycle to restore 
cell state after its partial discharge by read

● Both contribute to maximal and average access time.
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Typical Memory Parameters

• Memory types: RWM (RAM), ROM, FLASH,  
• RAM realization:

 SRAM (static), DRAM (dynamic).

• RAM = Random Access Memory

type transistor
s  per cell

1 bit area data availability latency

SRAM cca 6  < 0,1 m2 always < 1ns – 5ns

DRAM 1 < 0,001 m2 requires refresh today 20 ns – 35 ns
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Detail of static and Dynamic Memory Bit Cell

Single transistor cell of dynamic 
memory

6 transistor static memory cell (single bit)
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Flip-flop Circuits

RS

D latch, level-controlled flip-flop     D flip-flop, edge-controlled flip-flop

http://upload.wikimedia.org/wikipedia/commons/8/8c/D-Type_Flip-flop.svg
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Usual SRAM Chip and SRAM Cell

Usual SRAM chip 

Bigger memory size?

SRAM memory cell
CMOS technology



60B35APO   Computer Architectures

Usual Static Memory Chip Cell

Area of one memory cell(bit):

SRAM memory cell
6-transistors CMOS, 4 trans. Version exists

Principle:

http://educypedia.karadimov.info/library/SEC08.PDF
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Usual SRAM Chip

Typical synchronous
SRAM chip 

Read example for synchronous case:

OE signal can be
asynchronous

https://www.ece.cmu.edu/~ece548/localcpy/sramop.pdf
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Memory Cell Connection to Matrix

stored 
bit = 1

bitline =1

row-address
 

1

stored 
bit = 0

row-address 1

bitline =0

stored 
bit = 0

row-address
 

= 0

bitline =Z

stored 
bit = 1

row-address
 

= 0

bitline =Z

stored 
bit

row-address

bitline
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Selector Switch – One from N Decoder

y y 

    

  1  

 

    

  0  

 

    

  3  

 

   

  2  

 

1  0  

x 0
 

x 3
 

x 2
 

x 1
 

 y1 y0
x

0

x
3

x
2

x
1'1'

One Hot Decoder   cz: Dekodér 1 ze 4
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Switch Analogy of Multiplexer

x
0

x3

x
2

x
1    1

    

   0 

   3
 

   2

 

y1 y0

 y1 y0x
0

x3

x
2

x
1

zz

Select

x0

x1

   1

    

   0 
 

z
Select

x0

x1

z

y0
x0

x1

x2

x3

y1

z

Multiplexer 4 to 1 or 1 of 4  cz : 4 kanálový (4-vstupový) multiplexor

Multiplexer 2 to 1 or 1 of 2  cz :2 kanálový (2-vstupový) multiplexor
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Memory Matrix

data out

Register is necessary for synchronous memory implementation (SDRAM)
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Memory Matrix – Operation

Address is setup at input and it is confirmed by rising edge.

address 
6 = 0110

row 0

Decoder 
one-hot

Address

stored
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row 1

row 2

row 3
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Memory Matrix – Operation

clock

regis ter

address 
6 = 0110

Adress is stored at rising edge into register
and MSB bits select row and LSB bits column
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Memory Matrix – Operation

clock

regis ter

address 
6 = 0110

Decoder activates 1 of N rows and the selected cells are connected  to all 
columns bitlines
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one-hot

0110

stored
bit = 0

row 1

row 2

row 3

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data 3

01

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 1

1 bitline0

Data 2 Data 1 Data 1

3

2

1

0

3 2 1 0

Multiplexer
1 of 4

10



69B35APO   Computer Architectures

Memory Matrix – Operation

clock

regis ter

address 
6 = 0110

Multiplexer selects column - Data 2 = 0
When register is connected before multiplexer then whole row can be read at once

and consecutive data words can be streamed out by multiplexer only switching columns
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Internal Architecture of the DRAM Memory Chip

This 4M × 1 DRAM is internally realized as an 2048x2048 array of 1b 
memory cells
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Detail of Dynamic Memory Cell

Single transistor
dynamic memory cell

 nMOS transistor nMOS works as analog switch which 
connects selected cell to „bitline“.

 „wordline“ controls which capacitor is connected to 
“bitline”

Source: http://www.eetimes.com/document.asp?doc_id=1281315
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Dynamic Memory Capacitor Parameters

Today DRAM parameters
  Capacity fF [femtofarad]
Capacitor capacity from 10 fF to 50 fF
Bit line capacity about 2 fF

[Source: l'INSA de Toulouse]

fF - femtofarad

       fF is SI unit equal to 10−15 Farads.

      10-6 F = 1 μF = 103 nF = 106 pF =  109 fF

~9 fF is capacity between two plates of 1 mm2 area 
with distance between plates around 1 mm,



73B35APO   Computer Architectures

Detail of Dynamic Memory Cell

 Read operation is complex and slow, takes from 20 to 35 ns, and speedup 
is almost impossible 

 Read is destructive, capacitor is discharged and original value has to be 
restored (refreshed) after each read.

 Femto-farad capacitor spontaneously discharges in short time
- it is necessary to refresh it, in optimum case 60 ms for each cell, but 
maintenance frequency is multiplied by row count. Required refresh rate 
depends on temperature

Source: http://www.eetimes.com/document.asp?doc_id=1281315

Single transistor
dynamic memory cell
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DRAM Memories – Price Seems to Be Settled for Now

Price for  1 megabit
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History of DRAM chips development

Year Capacity Price[$]/GB Access time [ns]

1980 64 Kb 1 500 000 250

1983 256 Kb 500 000 185

1985 1 Mb 200 000 135

1989 4 Mb 50 000 110

1992 16 Mb 15 000 90

1996 64 Mb 10 000 60

1998 128 Mb 4 000 60

2000 256 Mb 1 000 55

2004 512 Mb 250 50

2007 1 Gb 50 40
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Old School DRAM – Asynchronous Access

RAS – Row Address Strobe,
CAS – Column Address Strobe

● The address is transferred in two phases – reduces 
number of chip module pins and is natural for internal 
DRAM organization

● This method is preserved even for today chips
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Phases of DRAM Memory Read
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EDO-RAM – About 1995

● Output register holds data during overlap of next read 
CAS phase with previous access data transfer

this overlap (“pipelining”) increases throughput
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SDRAM – end of 90-ties – synchronous DRAM

● SDRAM chip is equipped by counter that can be used to 
define continuous block length (burst) which is read together
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SDRAM – the Most Widely Used Main Memory Technology

● SDRAM – clock frequency up to 100 MHz, 2.5V.
● DDR SDRAM – data transfer at both CLK edges, 2.5V, I/O bus 

clock 100-200 MHz, 0.2-0.4 GT/s (gigatransfers per second)
● DDR2 SDRAM – lower power consumption 1.8V, frequency up 

to 400 MHz,  0.8 GT/s
● DDR3 SDRAM – even lower power consumption at 1.5V, 

frequency up to 800 MHz, 1.6 GT/s
● DDR4 SDRAM –  1.05 – 1.2V,  I/O bus clock 1.2 GHz, 2.4 GT/s
● DDR5 SDRAM –  expected 2019-2020,  ~6 GT/s
● All these innovations are focused mainly on throughput, not on 

the random access latency which for large capacities is still 20 
to 35 ns.
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Other Main Memory Types

● QDRx SDRAM (Quad Data Rate) – not twice as fast, 
allows only simultaneous read and write thanks to 
separated clocks for RD and WR, DDR are more effective 
than QDR for single access type only.

● GDDR SDRAM – today up to GDDR6, designed for 
graphics cards/GPUs

- based on DDR memories.

- data rate accelerated by wider output bus 
● High Bandwidth Memory (HBM) is a high-performance 

RAM interface for 3D-stacked SDRAM from Samsung, 
AMD and SK Hynix. 

● Another concept RDRAM (RAMBUS DRAM), which use 
completely different interface. Due to patent litigationare 
not in use in personal computers from 2003 year. 
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Notes for Today SDRAMs and Slides

● Use of the banked architecture that enables throughput to 
be increased by hiding latency of the opening and closing 
rows. These operations can proceed in parallel on 
different banks (sequential and interleaved banks 
mapping). The change result in a minimal pin count 
increase that is critical for price and density.

● Ulrich Drepper, Red Hat, Inc., What Every Programmer 
Should Know About Memory
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*Multi-byte Numbers
and their store in computer memory
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How to Store Multi-byte Number in Memory

Little-Endien comes from a book by Gulliver's 
Travels, Jonathan Swift 1726, in which he 
referred to one of the two opposing factions of 
the Lilliput. Ones ate eggs from the narrow end 
to the broader while
Big Endien proceeded the other way around. And 
the war did not wait long ...

Little-Endien comes from a book by Gulliver's 
Travels, Jonathan Swift 1726, in which he 
referred to one of the two opposing factions of 
the Lilliput. Ones ate eggs from the narrow end 
to the broader while
Big Endien proceeded the other way around. And 
the war did not wait long ...

Do you remember how war ended?Do you remember how war ended?

Hexadecimal number: 0x1234567

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian   - downto

Little Endian - to

01 23 45 67

67 45 23 01
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Memory Alignment (cz:zarovnání paměti?)

.align n directive

    - next space allocated for data or text starts at 2n divisible address

    Example .align 2

- two least significant bits (LSB) are equal to 00

Memory is addressed as 
byte array us usually (in C more 
precisely as array of chars)

The word  of 32-bit processor is 
formed of 4-bytes in such case 0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory
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0 1 2 3 4 5 6 7 8 9 A B C D E F

0x2000 3 5 41 50 4F 12 34 56 78

0x2010 10 00

.data

.align  2  // or .align 4 on x86, use .p2align and .baling
    var1:  .byte   3, 5,'A','P','O'
.align  2  // or .align 4 on x86, use .p2align and .baling
    var2:  .word   0x12345678 // or .long on x86
.align  3  // or .align 8 on x86, use .p2align and .baling
    var3:  .2byte   1000 // or .word on x86

Align in Data Segment Filled by Assembler

var1 var2

var3

BIG ENDIAN

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x2000 3 5 41 50 4F 78 56 34 12

0x2010 00 10

var1 var2

var3

LITTLE ENDIAN
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C Language: Pointer

& (address operator)

Returns the lowest address in memory address space where 
space/cells allocated to store variable starts.

Example

  int y = 5;
int *yPtr;
yPtr = &y;    // yPtr is signed to y address

yPtr “points to” y

yPtr

y
5

yptr

500000 600000

y

600000 5

y 
addressbecom
es value of 
yptr
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C Language: Pointer Operations

& (address operator)
returns address of operand

* dereference address
returns value stored on address interpreted according to pointer type

*  and  &  are inverse
(but are not applicable in each case)

*&myVar == myVar
              and
&*yPtr == yPtr
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C Language:  Size of Element Pointed by C Pointer

int * ptri;

char * ptrc;

double * ptrd;

-

+

ptri

ptri+1

ptrc

ptrc+1

ptrd

ptrd+1

*ptrx  ≡ ptrx[0] 
*(ptrx+1) ≡ ptrx[1]
*(ptrx+n) ≡ ptrx[n]
*(ptrx-n) ≡ ptrx[-n]

nr1 = sizeof (double);
nr2 = sizeof (double*);

nr1 != nr2
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int x, y;

int * lpio = &y; 
*lpio = 1;x=*lpio; lpio++;

const int * lpCio = &y;
*lpCio = 1; x=*lpCio; lpCio++;

int * const lpioC = &y;
*lpioC = 1; x=*lpioC; lpioC++;

const int * const lpCioC = &y;
*lpCioC = 1; x=*lpCioC; lpCioC++;

C Language: Pointer with const Qualifier
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C Language and Pointers

int i;
int *p;
p=&i;

i=i+1;
*p=*p+1;
i++;
(*p)++;
p[0]++;

int pole[30];
p=pole;
p=&pole[0];

for(i=0;i<30;i++)
  pole[i]++;

p=pole;
for(i=0;i<30;i++){
  (*(p++))++;
}

p++;
p=(int*) ((char*)p + sizeof(int));
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The Lecture and Real Programming Question

              A:
int matrix[M][N];

int i, j, sum = 0;

…

for(i=0; i<M; i++)

  for(j=0; j<N; j++)

    sum += matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

               B:
int matrix[M][N];

int i, j, sum = 0;

…

for(j=0; j<N; j++)

  for(i=0; i<M; i++)

    sum += matrix[i][j];

Is there a rule how to iterate over matrix element efficiently? 
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