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Integer Numbers and Operations

Repetition and Fundamentals from Previous Lecture

The last lecture introduced:

The bit (logical value) representation by voltage level

Byte (logical values vector) representation using parallel bit
signals/wires/conductors

To represent arithmetic unsigned integer values, weights of power two
are assigned to the parallel signals

Positional (place-value) notation / numeral system is introduced

The representation has been used to implement operation of addition
of two non-negative numbers

Logical bit shift has been introduced (it is correspondent to multiply
and divide by power of two for binary number representation)
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Integer Numbers and Operations

The Current Lecture Topics

The ranges which can be represented by integer numbers and their
storage in memory

Multiplication and division of integer non-negative numbers

Signed numbers (range split for negative part) and respective
operation

Arithmetic and unsigned overflow

Real numbers representation and operations
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Integer Numbers and Operations

Quiz 1

How fast can the sum of two n-bit numbers be calculated, and how many
transistors do we need?

A in constant time (O(1)) with linear number of transistors (O(n))

B in constant time (O(1)) with exponential number of transistors
(0(2)

C in logarithmic time (O(log n)) with linear number of transistors (O(n))

D in logarithmic time (O(log n)) with cubic number of transistors
(O(n*))

E in logarithmic time (O(log n)) with exponential number of transistors

(0(2")
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Integer Numbers and Operations

Non-negative Integer Numbers

Non-negative integer numbers representation
C-language standard (ISO/IEC 9899:TC3) defines:

type min max | informative byte:
unsigned char 0 255 1
unsigned short 0 65 535 2
unsigned long 0 4 294 967 295 4
unsigned long long 0 | 18 446 744 073 709 551 615 8

m The standard defines minimal ranges, unsigned int at least 21¢ — 1
(2 bytes), but usually 4 bytes today.

m To find actual size in basic addressable units (C char) use
sizeof (int), for range UINT_MAX

m For exact size use uintX_t and intX_t (where X is 8, 16, 32, or 64),
i.e. uint8_t, int64_t

m Some exact size types can be missing but guaranteed
[ulint_fastX_t and [ulint_leastX_t, i.e. uint_least8_t,

int_fast64_t
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Integer Numbers and Operations

Non-negative Integer Numbers in C-Language

The constant values (integer literal) in C-language source:
m decimal number — has to start by digit '1' to '9" except for '0’
m octal number — starts by digit '0’
m hexadecimal — starts by '0x’, continues by '0' —'9" and 'a’ to 'f’
m binary — starts by '0b’ (GNU compiler extension / C++14 / C23)

Example: 252 == Oxfc == 0374 == 0b11111100

Remark: The hexadecimal digits mapping to bytes is straightforward, each
digit (nibble) represents four bits and two digits expressed number fits into
single byte, i.e. 0x123456 fits into three bytes (24 bits rounded, exact
minimum 21 bits)
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Integer Numbers and Operations

Non-negative Integer Numbers in Memory

m Computer memory works with addressable units/cells (usually bytes)
m There are the two basic options for storing longer numbers in memory.
The number 0x12345678 for fixed sized integer types (unsigned int):

address | Big-endian | Little-endian
400 0x12 0x78
401 0x34 0x56
402 0x56 0x34
403 0x78 0x12

m Motorola and IBM processors started with big-endian, Intel processors
are usually little-endian.

m It's important when you read/receive (Internet) serialized data by
bytes, for example, you have to agree on order between systems

m RISC V - little-endian, MIPS - big-endian but later even little-endian
m Bitcoin - DER signatures big-endian, transaction hash-endian
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Integer Numbers and Operations

Non-negative Integer Numbers — Quiz 2

#include <stdio.h>
int main() {

unsigned char p[] = {0,0,0,0};

*(int*)p=10;

printf ("%02x,%02x,%02x,%02x\n", p[0],pl[1],p[2],p[31);
}

What is the output of the above program on Intel processors?
A nothing, the code cannot be translated
B random result, p (unsigned char *) cannot be casted to *int
C 0a,00,00,00
D 00,00,00,0a
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Integer Numbers and Operations

Non-negative Integer Number Multiplication

The same principle which you have learned at basic school for decimal
numeral system

10011001

¥101101
163 10011001 1
o x5 00000000 0
765 5 10011001 1
612 4 10011001 1
so8E 00000000 0
10011001 1

1101011100101
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Integer Numbers and Operations

Sequential Integer Number Multiplication

The realization of the algorithm form previous slide with shift register and
adder:

(inputs A,B 32-bit, result 64-bit)

>
shift to right by one bit after addition

m The result will be available after 32 cycles in AC and B

m It is slow, even adder and addition required 32 times (64 times for
64-bit systems).
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Integer Numbers and Operations

Fast Multiplication — Wallace Tree Motivation

Potential for speedup — delayed carry (Carry Save Adder).
The optimization of the sum of four 32-bit integers:

Wil « . WaWaWoWiWg ® r=w-+x and s=y+z can be computed in
+X37+ + « XgX3XX1Xg parallel and then is computed r+s — time
+Y31- - - YaY3YaY1Ye equivalent to two full additions
+231. .. 242325212 = The carry chain can be delayed (carry is not

P31 - - PAPIPIP1Pe < propagated until the last step):

C31C3q- - 'C%CIZCIICIG m step 1 — use unchained full adders and

Z31)- » +|Z423Z31Z1Zg proceed w; + x; + y; = c.p;

C31031- - - 0403020100 < m step 2 — use full adders again for bits
C31C39: + + C3C2C G~ pi+ ci_y + zi = ciq
$33532531- - - $4535,515¢ m step 3 — regular adder (i.e. CLA) for

32-bit numbers (s = qo, ¢52 added to q)
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Integer Numbers and Operations

Fast Multiplication — Wallace Tree

Try to apply the described principle to sum fast 32 or 64 values:

m Actual one bit
multiplication is trivial:
X;-yj = x; and y;

X63+ + + XaX3X2X1Xo * Y63+ + - Ya¥3Y2Y1Ye m The most demanding is
0 0 0 - XeYo - XoYo X1Ye XeYo to sum central column
0 0 0 ' XeY1 - Xiy1 XoY1 O with 64 single bit values
0 0 0 © Xe1Y2 -+ XeY2 O 0 . .
. 61 2o m The adders will be run in
0 0 XesYer * XYer - O O 0 parallel on all bits which
0 XesYez Xea¥s2 *© X1Yez g g g map to their three inputs
X63Y63 Xe62Ye3 Xe1Yes ' XeYes - and carrv will be
Q127 Q126 G125 Q124 Q63 92 Q01 Qo Y

processed in following
steps

m The first phase requires
1323 adders
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Integer Numbers and Operations

Fast Multiplication — Wallace Tree

The longest, central column in more detail:

64 43 29 19 13
X63Ye
X62Y1 Se
X61Y2

Xe0Y3
Xs59Y4

S13
Co
C1

Ci3 Co.. [Cs
XoYe3  XeYes [XeYes *cg
21CSA  14CSA 10CSA 6CSA 4CSA

9 6 3 2

'Sel——~ So So|—>So
S1 S1 S1 Co
52 / s2 (G

'S5 Co

Co C1

1Cq Cy

C2

Csl

Cs

3CSA  2CSA 1CSA

m After 8 counting steps, i.e. 16 gate delays, the two bits are ready for final

adder

m The column on the right of the central one are already partially summed
and 8 the last carry signals have been promoted
m Two 120-bit numbers (sum and carry) remain to add, which can also be

done in 30 gate delays

m Result - we multiply two numbers for the price of time corresponding to

two 64-bit additions
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Integer Numbers and Operations

Sequential Integer Number Division

Division in the binary system can be done the same way as manual
decimal division:

11110000:1011=10101

-1011
240:11=21 1000
-22 10000
20 -1011
-11 1010
9 10100
-1011
1001

The both evaluation of 240 by 11 result in 21 and the remainder is
240%11=9.
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Integer Numbers and Operations

Sequential Integer Number Division

The A/B operation, A is 64-bit, B is 32-bit:

m Result: A register integral ratio, AC
reminder — modulo

m The A register is shifted only in the

The input A is stored into two last step, AC is not shifted — why?
registers AC,A m There exists an even faster
“ algorithm — High Radix Division (it
-0 is complex, above focus of our
32\ /bit subject)
sub
| — ' m It estimates more bits by
| AC | A | approximation and iteration to
I ———— ' enhance precision follows
shift left by one bit after each iteration m 1994 — Pentium FDIV bug —

incorrect implementation of
Sweeney, Robertson, and Tocher
(SRT) algorithm — two bits

o estimated per single cycle 16 /47
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Signed Numbers

Signed Numbers — Way to Include Negative Ones

The sign has to be encoded into numeral representation:
m simple way - the most significant bit represents sign
m The absolute value the rest but 0 and -0 even that represents the same
value
m The addition complicated and unsigned adder is hard to reuse
m two's complement (complement to module) — most frequent in use

m the X arithmetic value representation by k-bit binary evaluates to X
mod 2k

m if X > 0, the representation is the same X
m if X <0, the value is represented by 2 — | X|

m advantages: the exactly same adder can be used for signed and
unsigned types.

m -1 represented by 8-bit two's complement binary 11111111
m 54(-1) is 101+11111111=100000100, the bit 8 (9-th) does not fit into
representation, so the results is 101+11111111=100, i.e. 4 in decimal
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Signed Numbers

Two's Complement (Complement to Module)

m the k bits can represent the range < —2k=1 2k-1 _1 >
m let X is arithmetic value, A(X) is unsigned binary value in the two's
complement:

8-bit A(X) | Arithmetic value
2k 00000001 (10
01111110 126(10)
01111111 127(10)
2 10000000 —12819)
10000001 —12719)
10000010 —126(10)
; X 11111101 ~3(10)
-2k 0 %17 11111110 —2(10)
11111111 —1(10)
0
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Signed Numbers

Additive Inverse (Opposite Number)

m The addition of the numbers represented by the two’s complement is
same as for non-negative ones and subtraction A-B can be realized as
addition where inverse of B is added, i.e. A+(-B)

m The idea how to compute inverse (often neg instruction) -B from B
comes from

m two's complement negative values are encoded as X = 2¢ — | X

m if we negate (complement) each bit individually we get (2--1 — 1) — X,
because 2k~ — 1 is represented by k ones, no borrow from more
significant bits are required

m Final algorithm is:

negate, complement all bits of the input X

add one to the result
Example:
53=0b00110101 bit complement gives -54=0b11001010 and result after
addition of one is -53=0b11001011
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Signed Numbers

Integer Subtraction

It can be solved:
m by a special circuit similar to an
addition with all acceleration
possibilities as for addition

m or from the two's complement
and inverse number we can
convert it to addition and same
hardware

bit com-
plement

+1

N

add
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Signed Numbers

Single Unit for Addition and Subtraction

A + B
] (
bit com-
plement
\i %
|_O— 1 sub
Y Y /

N/ Z Cin|add
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Signed Numbers

Multiplication and Division in Two's Complement

m rule for adjustment of the result of multiplication based on unsigned
M- N, (A(M) - A(N)) multiplication of two M, N two's complement
k-bit numbers :

A(M- N) = A(M) - A(N)
—A(M) - 2k when M <0
—A(N) - 2k when N <0

m because two's complement representation of A(M) = 2k + M, then
result of multiplication for for two negative numbers is
(2k4+ M) - (2k4+ N) =22k 42k . M2k - N+ M- N

m today’s fast multipliers and divisors compute usually with absolute
values and for the sign

m it is stored in the most significant bit
m inverse number computation is fast
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Signed Numbers

Signed Numbers in C-language

Integer numbers representation in C
Next types are defined by standard with minimal ranges:

type min max | byte count
char -128 127 1
short -32 768 32 767 2
long -2 147 483 648 | 2 147 483 647 4
long long | -9 223 372 036 | 9 223 372 036 8

854 775 808 854 775 807

m The C standard defines required minimum by one higher than two's
complement to not eliminate processor computing in one's
complement — but that is not practically used today

m To be sure about actual range of int use INT_MIN and INT_MAX
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Signed Numbers

Signed Numbers — Quiz 3

Consider the following program:

#include <stdio.h>

int main() {
unsigned char a=150u, b=120u, c;
char sa=-100, sb=-80, sc;

c=atb;

sc=sa+sb;

printf ("c=fu sc=%d\n", c, sc);
}
What will be printed:

c=270 sc=-180
c=14 sc=-76
c=14 sc=76
c=-14 sc=-76
Numeric error

mO N w>

25 /47


https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture02-numbers-en, slide 25 (Signed Numbers -- Quiz 3)&issue[description]=You can report the issue or sugestion there.

Signed Numbers

Overflow for Unsigned Numbers

Unsigned char is 8-bit represented number typically which is reason that
next operation overflows:

150 = 1001 0110
+120 = 0111 1000
14 = 0000 1110
270 =1 0000 1110

The result does not fit in 8-bit representation, the most significant bit is
lost, and the result is only 14.
If we want to signal overflow in addition we can use:
m C23 bool ckd_add(typel *result, type2 a, type3 b) — addition of two
numbers with overflow signalling
m GNU GCC 5+, Clang 3.8+ ___builtin_add_overflow(a, b, result) —
both versions even for sub and mul
m Can be detected on conventional C by check if the result is smaller
than both inputs
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Signed Numbers

Arithmetic Overflow for Signed Numbers

The overflow in operations with signed numbers is more complex.
Examples what results in overflow:

-112 = 10010000 -12 = 11110100 -90 = 10100110

+ 45 = 00101101 + -20 = 11101100 + -42 = 11010110

-67 = 10111101 -32 =111100000 124 =101111100
CORRECT CORRECT OVERFLOW

m The arithmetic overflow for operation with signed numbers is present
if auxiliary carry to the most significant result bit differs from the
carry out from this bit:

m overflow = ¢, xor ¢c,_1; ¢, carry from most significant result bit, ¢,_1
is carry into the most significant bit

m The second option i to check that addition result of the two positive
numbers is positive and for two negative numbers stay negative:

m overflow = (a, and b, and (not s,)) or ((not a,) and (not b,) and s,);
an, b, are the most significant bits of addends; s, is MSB of result
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Signed Numbers

Arithmetic Overflow — Quiz 4

a+n_1 I
0 DL_ 0
ST >°

]

When two numbers with opposite signs are added:
A can only overflow in two's complement representation

B can only overflow in representation other two's complement
representation

C cannot only occur in representation in two's complement
representation

D cannot occur in any representation of signed numbers
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Signed Numbers
Other Representations of Signed Numbers

Excess-K (offset binary):
for k=8 and K=127

A(X) Value

m for k-bit representation, offset K 700000000 —127(19)
s usually K = 2% or 00000001 | —126(30)
K: 2 - 1 . DY

m representation/code for number 01111110 | —1(1)
Xis A(X) = X+ K 01111111 | 0y,

m arithmetic value is obtained 10000000 L(10)
from D(A)=A— K 10000001 2(10)

m the range of the represented
arithmetic values is 11111110 | 1274
<—K2k—K-1> 11111111 | 12849
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Signed Numbers
Excess-K — Arithmetic Operations

the addition and subtraction operations processed directly
representation:

AX+Y)=(X+Y)+K=(X+K +(Y+K) —K=AX)+A(Y)-K
AX=YV)=(X=-YV+K=X+K) —(Y+K)+ K=AX)—A(Y)+ K
multiplication is even more complex:

AX-Y) = (X-YV)+K = (X+K)-(Y+K) = (X+K+Y+K)- K+ K2+ K =
A(X) - A(Y) = (A(X) + A(Y) - K+ K2 + K

m Overflow:
m for addition, same sign inputs and opposite sign on output
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Signed Numbers

Other Representations of Signed Numbers

One's complement:
m negative number is represented by bit complement of its absolute
value. For k-bit representation:
m for X > 0, representation is A(X) = X
m for X < 0, representation is A(X) = 2K — 1 — |X]
m disadvantages: two representations of the value zero (-0, +0)
complicate addition (hot one correction)

Binary coded decimal (BCD) representation

m another representation of integer numbers, each decimal digit maps
to nibble

m the number 1234 representation printed in hexadecimal form gives
0x1234

® advantages: simple conversion to and from decimal input/output

m disadvantages: ineffective storage — space waste, complex
computation
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Real Numbers

Outline

Real Numbers
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Real Numbers

Real Numbers

m Integer number X in k-bit binary representation can be split into bits
where each b; is multiplied by corresponding power of two (weight),
that is X = >~ b2’

m Real number Xis again similar sum of k+ j bits b; which are
multiplied by powers of two (2), but we add negative powers of two:

X=Yk b2
m Remember grammar school math lessons 27/ = %
11
4 2 1 2 4

1 mn
212M1 212 22 21 20 2122 29+ 21
bi bi-1 bi-2 coe b2 b1 bo.b_1 b_z... b_j+1 b-J
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Real Numbers

Fixed Point Real Numbers

Fixed point numbers:

m similar as signed excess-K representation

m real number is represented by k-bit signed integer number, the fixed
number of fractional bits is chosen, where 0 < s < k
representation for arithmetic value X is A(X) = [X- 27|
decoding of the representation to arithmetic value D(A) = %
the range of represented numbers (—2;1,%>
m absolute precision of the representation is :I:%.

Special case for fractional numbers:
m if numbers from range (0, 1) should be represented (usually control
systems)
m ten s = k and we can directly use unsigned integer numbers
representation
m the better precision can be achieved than for the same bit size float,
or double representation
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Real Numbers

Fixed Point Real Numbers — Operations

m addition and subtraction is equivalent to the same operation on the
number representation
= multiplication requires fix-up (normalization) step:
B AKX Y) = (X V)28 = X2UZ) _ ACQA)
m division is similar:
= AR)=(3)-2 =003 = 457
m |t is not so significant complication because multiplication by 2° is
shift by s bits to the left and division by 2% is (arithmetic) shift by s to
the right.

Some SIMD instructions set extensions provide implementation of
operations for computation in fixed point numbers representation.
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Real Numbers
Floating Point Real Numbers

It is equivalent to scientific notation format for decimal real numbers
writing: —123000000000000.0 = —1.23 - 10** = —1.23E14
—0.000000000000123 = —1.23-10713 = —1.23E — 13

Significand (mantissa) € (1;10) for normalized form

Binary representation only changes base for exponent to 2:
110110000000000.0, = 1.1011, - 21 = 1.1011,E14 = 2969619
—0.00000000000000011101 = —1.1101, - 2716 = —1.1101,E — 16 ~
~ 0.0000276519
Significand (mantissa) € (1;107) that is € (1;2;9) for normalized form

As in scientific notation the number has to start by single non-zero digit
before decimal point, the binary representation has to start by single one
(exception is zero) before binary point
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Real Numbers

IEEE-754 Floating Point Standard

Standard |IEEE-754 defines how to encode real numbers into 32 (C float),

64 bits (C double)
32-bit representation of the real number composes of:

m 1 bit for the sign (both +0 and -0 are defined)
m 8 bits two based exponent in excess-k representation (K=127)

m 23 bits to represent significand fractions (plus implicit MSB one)

64-bit representation of the real number composes of:
m 1 bit sign (both 40 and -0 are defined)
m 11 bits two based exponent in excess-k representation (K=1023)
m 52 bits to represent significand fractions (plus implicit MSB one)

37/47


https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture02-numbers-en, slide 37 (IEEE-754 Floating Point Standard)&issue[description]=You can report the issue or sugestion there.

Real Numbers

|EEE-754

Example: Real number 0.828125(;0) = 0.5 + 0.25 + 0.0625 + 0.015625 =
2714272 4+27% 4279 = 0.110101y).

The number is converted into scientific like binary format:

0.110101 = 1.10101E — 1.

Exponent is e = —1, its excess-k representation (K = 127) is

A(—1) = -1+ 127 = 126.

The space for leading MSB of significand (hidden one) is not reserved
because it is guaranteed by format definition (except for zero and some
corner cases):

hidden one in significand

(1)1010100...000]

(0]01111110][1010100...000]

+ e=-1 significand=1.10101
A(e)=126

You can experiment with
JMttps://www.h-schmidt.net/FloatConverter/IEEE754.html
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Real Numbers

IEEE-754 — Normalized Range

Normalized number is each number which can be written as 1.XXXXX E
exp and power exponent fits in range -126 till 127 for 32-bit
representation. That is exponent in excess-k format is in range 1 to 254.

Denormalized numbers are used to cover range near zero and can be
written as 0.XXXXX E -126, for example, even 0.0, the interval is defined

for 32-bit representation as (—1.17549E — 38, 1.17549E — 38), that is
(—2-126 -126),

When exponent is encoded as all ones 1, that is 255, i.e. exponent
arithmetic value is 128, then special value is represented
m if all significand bits are 0, then infinite (value to big to represent) is
stored, it can be -inf, or inf according to sign.
m if significand is non-zero, then nothing about arithmetic value can be
considered NaN — not a number, some error in the computation, for
example square root of a negative real number.
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Real Numbers

I[EEE-754 — Overview

Encoding table:

Exponent | Significand | Value

00000000 0 0.0 — zero

00000000 | non-zero | denormalized numbers around 0

00000001 0 the smallest normalized number (with hidden one)
1to 254 | any value | normalized numbers (with hidden one in significand)
11111111 0 infinity

11111111 | non-zero | NaN - error value

The smallest normalized number not equal to zero is:

m exponent = 0 (-126), significand=000...0001, value = 2723+(~126) ~ 1 4F — 45
Normalized number with the smallest absolute value:

m exponent = 1 (-126), significand=000...0000, value = 27126 ~ 1.17E — 38
Normalized number with the biggest absolute value:

m exponent = 255 (127), significand=111...1111, value = (2 — 2723)2127 ~ 3.4E38
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Real Numbers

I[EEE-754 2008 Revision

The 2008 revision defines 16-bit real numbers encoding (half precision)
and 128-bit encoding (quad precision).
16-bit real number IEEE-754 representation:

m 1 bit sign (the both +0 and -0 are defined)
m 5 bits two based exponent in excess-k representation (K=15)

m 10 bits significand fractions (plus implicit MSB one)

128-bit real number IEEE-754 representation:
m 1 bit sign (the both +0 and -0 are defined)
m 15 bits two based exponent in excess-k representation (K=16383)
m 112 bits significand fractions (plus implicit MSB one)
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Real Numbers

IEEE-754 - Comparison

Comparison of the real numbers (equal, greater than):

m A positive number is greater than the negative one, check sign the
first if different positive is greater than negative except for zero,
where +0 and -0 are equal

m When signs are removed, then absolute numbers values can be
compared in the representation format (as they are in memory) same
as unsigned numbers of the same size and endianness

m This is possible thanks to exponent excess-K (offset binary)
representation

m Greater exponent than the represented number is greater, when
exponents are equal greater significand value represents greater
number.

Remark: the offset in exponent k.-bits representation is chosen as
2(ke=1)/2 _ 1 which ensures that reciprocal value to the smallest
normalized number fits into representation (does not overflow to Inf, co)
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Real Numbers

|IEEE-754 — Addition / Subtraction

The number with bigger exponent value is selected, significands
extracted and for normalized numbers extended by implicit MSB one
Significand of the number with smaller exponent is shifted right by
exponent difference — the significands are then expressed at same scale
The signs are analyzed and significands are added (same sign) or
subtracted (smaller number from bigger)

The resulting significand is shifted right (max by one) if addition
overflows or shifted left after subtraction until all leading zeros are
eliminated (result can be even zero, then encode zero directly)

The resulting exponent is adjusted according to the shift (increment
exponent by one for each right shift by bit, decrement exponent by
one for each left shift by bit)

Result is normalized after these steps and sign is copied from larger
source

The special cases and processing when inputs are not normalized

numbers or result does not fit into normalized representation
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Real Numbers

IEEE-754 — Addition Example

Example: add two real numbers 31.54-0.75 in their binary floating point
representations
31.5(10) = 11111.1(5y = 1.11111E4 0.75(10) = 0.11(3) = 1.1IE -1

Both numbers have to be converted to the same binary exponent 4 and
then significands are added:

1.11111

0.000011

10.000001

The result has to be normalized (significand € (1;2)) by incrementing
exponent to 5 which corresponds to binary fraction point by one position
left (rounding can be required to fit in defined bits for significand):
10.000001E4 = 1.0000001E5

The binary floating point number represents 32.25 decimal.
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Real Numbers

IEEE-754 — Multiplication

Exponents are added and signs xor-ed

Significands are multiplied

Result can require normalization, max 1 bit right shift and increment
exponent by one for normalized input numbers

The result is rounded

Special care has to be taken for normalized inputs and or result in out
of normalized range

Hardware for multiplier is of the same or even lower complexity as the
adder hardware — only the adder part is replaced by unsigned multiplier
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Real Numbers

IEEE-754 — Multiplication Example

Example: multiply two real numbers 0.375 - 1.5 in their binary
representations

0.375(10) = 0.011(5) = 1.1E -2 1.5(10) = 1.1(2) = 1.1EQ
The significands multiplication:

11 = 1.1 375 = 0.375
*11 = 1.1 *15 = 1.5
11 1875
11 375
1001 5625
result with two binary fractional result with four decimal
digits 10.01 fractional digits 0.5625

Exponent addition —2 + 0 = —2, but result of significands multiplication
requires normalization, that is exponent is incremented to —1.

The correct result is obtained 10.01E —2 =1.001E —1 = 0.5625(;¢,
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Real Numbers

IEEE-754 — Summary

Real numbers:

m the floating point real numbers allows to represent values in large
dynamic range with almost constant relative precision when exponent
allows normalized form:

m float — absolute represented value from 1.175494351E — 38 to
3.402823466E + 38

m double — absolute represented value from 2.2250738585072014E — 308
to 1.7976931348623158E + 308

m the relative precision by number of valid decimal digits:
m float — 6-7 valid decimal digits (increment 2(—23=24) . 1)
m double — 15-16 valid decimal digits (increment 2¢~=5%-53) : 1)
WARNING: next while loop is infinite, never ends:

float a=1.0, step=5e-8;

while (a*a<1.01) {
at+=step;

3
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