Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the 'in' and 'out' states defined as:

$$
\begin{aligned}
& |i\rangle=\frac{1}{\sqrt{2}}(|u\rangle+i|d\rangle) \\
& |o\rangle=\frac{1}{\sqrt{2}}(|u\rangle-i|d\rangle)
\end{aligned}
$$

are orthogonal.
b) Calculate the expectation values of σ_{y} in the states $|u\rangle$ and $|i\rangle$, and of σ_{z} in the state $|o\rangle$.
2. a) Normalise the state

$$
|\psi\rangle=3 i|u\rangle+(1-2 i)|d\rangle
$$

b) For this (normalised) state, calculate the probability of getting both positive $(+1)$ and negative (-1) spin eigenvalues by measuring σ_{z}.
3. (Nielsen 8 Chuang Ex. 2.11 [Eigendecomposition of a Pauli matrix])

Find the eigenvectors, eigenvalues and diagonal representations of σ_{x}.
4. (Hermitian operators)

For a hermitian matrix \mathbf{A}, that is, a matrix that satisfies $\mathbf{A}=\mathbf{A}^{\dagger}$, show that:
a) Different eigenvalues have orthogonal eigenvectors.
b) All its eigenvalues are real. Does the converse also hold, that is, if the spectrum (the set of all eigenvalues) of a matrix is in \mathbb{R}, is it then a hermitian matrix?
5. (Unitary operators)

Now, consider a unitary matrix, one for which

$$
U U^{\dagger}=\mathbb{I} \Longleftrightarrow U^{\dagger} U=\mathbb{I} \Longleftrightarrow U^{-1}=U^{\dagger}
$$

holds. Prove that its eigenvalues are of the form $e^{i \theta}$ and that eigenvectors of different eigenvalues must be orthogonal as well.

