BOB36DBS: Database Systems

Lecture

Relational Model

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

Czech Technical University in Prague, Faculty of Electrical Engineering

mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

* Logical database models
= Basic overview
* Model-Driven Development

* Relational model
= Description and features

= Transformation of ER / UML conceptual schemas

Logical Database Models

Layers of Database Modeling

Abstraction

e Conceptual layer

= Models a part of the structured real world relevant for
applications built on top of our database
* Logical layer
= Specifies how conceptual components (i.e. entity
types, relationship types, and their characteristics)

are represented in logical data structures that are
interpretable by machines

e Physical layer

v = Specifies how logical database structures are
implemented in a specific technical environment

Implementation

Logical Layer

* What are these logical structures?

= Formally...
— Tuples, sets, relations, functions, graphs, trees, ...
* l.e. traditional and well-defined mathematical structures
= Orin a more friendly way...
— Tables, rows, columns, ...
— Objects, pointers, ...
— Collections, ...

Logical Models

* Models based on tables

= Structure -
— Rows for entities

. N
— Columns for attributes

* Operations

— Selection, projection, join, ...
= Examples

— Relational model

— ... and various derived table models introduced by:
* SQL (as it is standardized)
* and particular implementations like Oracle, MySQL, ...

Logical Models

* Models based on objects -
= Structure 7/

— Objects with attributes \:\\“ e /
. o]
— Pointers between objects -
* Motivation
— Object-oriented programming (OOP)
— Encapsulation, inheritance, ...
= Operations
— Navigation

Logical Models

* Models based on graphs

= Structure e T /T
— Vertices, edges, attributes L ; E

= Operations
— Traversals, pattern matching, graph algorithms
= Examples
— Network model (one of the very first database models)
— Resource Description Framework (RDF)
— Neodj, InfiniteGraph, OrientDB, FlockDB, ...

Logical Models

* Models based on trees
= Structure

— Vertices with attributes “

'

— Edges between vertices é
* Motivation

— Hierarchies, categorization, semi-structured data
= Examples

— Hierarchical model (one of the very first database models)

— XML documents

— JSON documents

Overview of Logical Models

* There are plenty of (different / similar) models

— The previous overview was intended just as an insight into
some of the basic ideas and models

= Hierarchical, network, relational, object, object-
relational, XML, key-value, document-oriented,
graph, ...
* Why so many of them?
= Different models are suitable in different situations

= Not everything is (yet) standardized,
proprietary approaches or extensions often exist

BOB36DBS: Database Systems | Lecture: Relational Model

10

Logical Modeling

e Step 1: Selection of the right logical model

[Conceptual schema]

— ? —

Relational model RDF model
XML model

* Note that...
= Relational model is not always the best solution

Logical Modeling

e Step 1: Selection of the right logical model

= According to...
— Data characteristics
* True nature of real-world entities and their relationships
— Query possibilities
* Available access patterns, expressive power, ...
— Intended usage
 Storage (JSON data in document-oriented databases, ...)
* Exchange (XML documents sent by Web Service, ...)
* Publication (RDF triples forming the Web of Data, ...)

— Identified requirements

BOB36DBS: Database Systems | Lecture: Relational Model

12

Logical Modeling

» Step 2: Creation of a logical schema

[Conceptual schema]

Relational schema XML schema OWL ontology

Logical Modeling

» Step 2: Creation of a logical schema
= Goal
— Transformation of a conceptual schema to a logical one
= Real-world applications often need multiple schemas
— Focus on different parts of the real world

— Serve different components of the system
— Even expressed in different logical models

= Challenge: can this be achieved automatically?
* Or at least semi-automatically?
— Answer: Model-Driven Development

BOB36DBS: Database Systems | Lecture: Relational Model

14

Model-Driven Development

* MDD

= Software development approach
— Executable schemas instead of executable code

* l.e. schemas that can be automatically (or at least semi-
automatically) converted to executable code

— Unfortunately, just in theory... recent ideas, not yet fully
applicable in practice today (lack of suitable tools)

* CASE tools (Computer-Aided Software Engineering)

e MDD principles can be used for database modeling as well

BOB36DBS: Database Systems | Lecture: Relational Model

15

Terminology

e Levels of abstraction

= Platform-Independent Level ~ Conceptual ™\
— Hides particular platform-specific details -,,,,,,I?Yef,,,,,
= Platform-Specific Level]
— Maps the conceptual schema (or its part) N
to a given logical model / ‘
— Adds platform-specific details | Logical |
B layer

= Code Level

— Expresses the schema in a selected
machine-interpretable logical language

—SQL, XML Schema, OWL, ...

BOB36DBS: Database Systems | Lecture: Relational Model

Real-World Example

e Platform-independent schema

+tenderingSupplier
Organization Address
0. 0.1 1
- legalName . - streetName
- officialNumbe +awardedSupplier - streetNumber
0.1 -y
Tender +contractingAuthority |1 - country
- estimatedEndDate T +mainAddress| 1 0.1
- offeredPrice +tenderAddress
+issuedContract |0..*
+tenderedContract +suppliedContract
Contract
0.* 0.+
- referenceNumber
- title
- description 0.1
ItemType - mainObject
- additionalObject [0..*
: gzie 0.* 0.*| . sartDate etBio.1
- endDate
- estimatedPrice +lot 0..*
- agreedPrice
- actualPrice
- numberOfTenders
+parentContract 1

Real-World Example

* Platform-specific schema: relational model

Organization 5 _Omanizaion_ Address
or

columns

* legalName: VARCHARZ(50) ‘

“ janizaign| | officialtumber. NUMBER(S) (addressid ~ addressi)
PK_O9aniZa o organizationia: NUMBER(®) +PK_Organization «] i
= 7| P addressd: NUMBER(E) o

1

(enderingSupplierld = organizationla) = +PK_Address \[/1

o
+ FK_Organization_ Address(NUMBER)

address
Ko
+FK_Tender_Organizaton|0.* + PK_Organization(WUMBER) T
Tender teeane: VARCHARZ60)

sunigves
UQ_Organization o

i s
et it
.PK ender NUMBER‘!) +FK_Contract_Organization| 0. - —

NUMBER(®)
T tondordCammncis; NOMBERG) Contract X Conec_Qpanzaion + Pk
1 ekaddes/\ 1

oK qadresid, NMBERE)

rqanizationid)
ke

ccolumns o.+ *PK_Address

o
HemType. + FK_Tender_ContractNUMBER) === =T (enderaddresdd = agdressia)
der

+ P TenderOrganization(NUMBER) * ie: VARCHARE0)
e e o oo K enderaddressd 5 addressi)
& o

“PK code: NUMBER(S)
" tlle: VARCHARZ(S0)

Ko
+ PK_TendedNUMBER)

endDate: DATE +FK_Contract_Address.

g8
i:
H
£
E

+FK_Tender_Contract | 0.
reedprice: NUMEER() 0.

Ko
+ PK_itemType(NUMBER) ccualPice. NOVBER®) +FK_Contact_Address
+PK_Contrac LIl
PK_ConAG +pk convactid: NUMBER(S)
I 7| K contactingAuthorityid: NUMBER(®)
- 3 U

“FK mainAddressd: NUMBER(S)
[Tonderadarosia Nsne) +PK_Contract
BERGE) =

K
cctinns + FK_Coniract_Adress(NUMBER)
+ F cona

code: NUMBER() 7K tem_Contract wpK_coniaet | e
K contacia NOMBER®) = 1 o OrpamatonoMBER)
o.r e 3|+ P Conrac_Organization(vuBER)|

(contactd = contactid)

ey Pk +FK_Contract_ Contract
© Pk item_llemType(NUMBER) + PK_ContractNUMBER) o

cuniques
+UQ_Contract_referencenumber)

Real-World Example

* Code level: SQL (snippet)

CREATE TABLE Contract (
referenceNumber NUMBER (8) NOT NULL,
title VARCHAR2 (50) NOT NULL,
description CLOB,
startDate DATE NOT NULL,
endDate DATE NOT NULL,
estimatedPrice NUMBER(9) NOT NULL,

):

ALTER TABLE Contract ADD CONSTRAINT PK_Contract
PRIMARY KEY (contractId);

ALTER TABLE Contract ADD CONSTRAINT FK_Contract_ Address
FOREIGN KEY (mainAddressId) REFERENCES Address (addressId);

CREATE TABLE Organization(...);

Real-World Example

<2uml version=ri.0" encoding="UIF-8"2>

P
e R
e XML S
o

name=rscrestiane”/>

neme=rstzesciumber"/>
nane=rcity/>
neme=rcouncry"/>
name=robjectTyper>
<xs:sequence>
<xstelement neme=rcode" typestxsiinen/>
</xs:sequence> :
</xs:complextype>
<xo:complexType name="contractType">
<xs:sequence>
By . </x3:sequence>
+issuedContract [0... penxs:
«dContract +suppliedContract </xa:complextype>
e Contract
0. -
- referenceNumber
- title I
- description 0.1
- mainObject

- additionalObject [0.

0.71 - startDate

endDate

estimatedPrice +ot 0.
dPri

0.1

ag
53
3

85

numberOfTenders.

+parentContract 1

Relational Model

Relational Model

¢ Relational model

. 1 | | |
= Allows to store entities, ————
relationships, and their
attributes in relations =
* Founded by E. F. Codd in 1970
e Informally...

= Table = collection of rows, each row represents one
entity, values of attributes are stored in columns

= Tables are more intuitive,
but conceal important mathematical background

BOB36DBS: Database Systems | Lecture: Relational Model 22

Relational Model

» Definitions and terminology

= Schema of a relation
— Description of a relational structure (everything except data)
-S(A,:Ty, A,:T,, ..., A:T))
* Sisaschemaname
A, are attribute names and T, their types (attribute domains)
* Specification of types is often omitted
— Example:
* Person (personalld, firstName, lastName)
= Schema of a relational database
— Set of relation schemas (+ integrity constraints, ...)

Relational Model

* Definitions and terminology for data

= Relation
— Subset of the Cartesian product of attribute domains T,
° lLe.relation is a set
— Items are called tuples

= Relational database
— Set of relations

Relational Model

* Basic requirements (or consequences?)

= Atomicity of attributes

— Only simple types can be used for domains of attributes
= Uniqueness of tuples

— Relation is a set, and so two identical tuples cannot exist
* Undefined order

— Relation is a set, and so tuples are not mutually ordered
= Completeness of values

— There are no holes in tuples, i.e. all values are specified

* However, special NULL values (well-known from relational
databases) can be added to attribute domains

BOB36DBS: Database Systems | Lecture: Relational Model

25

Integrity Constraints

¢ Identification
— Every tuple is identified by one or more attributes

= Superkey = set of such attributes

— Trivial and special example: all the relation attributes

= Key = superkey with a minimal number of attributes

- |.e. no attribute can be removed so that the identification
ability would still be preserved

— Multiple keys may exist in one relation

* They even do not need to have the same number of attributes
— Notation: keys are underlined

* Relation(Key, CompositeKeyPartl, CompositeKeyPart2, ...)

* Note the difference between simple and composite keys

BOB36DBS: Database Systems | Lecture: Relational Model 26

Integrity Constraints

* Referential integrity

= Foreign key = set of attributes of the referencing
relation which corresponds to a (super)key of the
referenced relation
— It is usually not a (super)key in the referencing relation
— Notation
» ReferencingTable.foreignKey C ReferencedTable.Key

* foreignKey C ReferencedTable.Key

Sample Relational Database

* Schema
Course(Code, Name, ...)

Schedule(ld, Event, Day, Time, ...), Event € Course.Code

e Data

ﬂm-!

A7B36DBS | THU 11:00

2 A7B36DBS | THU 12:45 mu
3 A7B36DBS | THU 14:30

A7B36DBS | Database systems
4 A7B36XML| FRI 09:15

A7B36XML| XML technologies
A7B36PSI | Computer networks

Relations vs. Tables

* Tables
= Table header ~ relation schema
* Row ~ tuple
= Column ~ attribute

* However...

= Tables are not sets, and so...
— there can be duplicate rows in tables

— rows in tables can be ordered

= |.e. SQL and existing RDBMS do not (always) follow the
formal relational model strictly

Object vs. (Object-)Relational Model

* Relational model

= Data stored in flat tables

= Suitable for data-intensive batch operations
* Object model

= Data stored as graphs of objects

= Suitable for individual navigational access to entities
* Object-Relational model

= Relational model enriched by object elements
— Attributes may be of complex data types
— Methods can be defined on data types as well

BOB36DBS: Database Systems | Lecture: Relational Model

30

Transformation of UML / ER to RM

Conceptual Schema Transformation

* Basicidea

= What we have

— ER: entity types, attributes, identifiers, relationship types,
ISA hierarchies

— UML: classes, attributes, associations
= What we need

— Schemas of relations with attributes, keys, and foreign keys
= How to do it

— Classes with attributes — relation schemas

— Associations — separate relation schemas or together with
classes (depending on cardinalities...)

Classes

e Class —
= Separate table ~ personalNumber

- address
- age

Person

— Person(personalNumber, address, age)

= Artificial keys
— Artificially added integer identifiers
* with no correspondence in the real world
* but with several efficiency and also design advantages
* usually automatically generated and assigned
— Person(personld, personNumber, address, age)

Attributes
e Multivalued attribute —

= Separate table

— Person(personalNumber)
Phone(personalNumber, phone)

Person

- personalNumber
- phone: String [1..*]

Phone.personalNumber € Person.personalNumber

Attributes

* Composite attribute —

= Separate table B

— Person(personalNumber)
Address(personalNumber, street, city, country)
Address.personalNumber € Person.personalNumber

= Sub-attributes can also be inlined
— But only in case of (1,1) cardinality
— Person(personNumber, street, city, country)

Binary Associations

e Multiplicity (1,1):(1,1) —

Person Mobile
- personalNumber - serialNumber
- address 1 1. color
- age

= Three tables (basic approach)

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

Binary Associations

e Multiplicity (1,1):(1,1) —

Person Mobile
- personalNumber - serialNumber
- address 1 1. color
- age
= Single table

— Person(personalNumber, address, age, serialNumber, color)

Binary Associations

e Multiplicity (1,1):(0,1) —

Person Mobile
- personalNumber - serialNumber
- address 1. color
- age
= Two tables

— Person(personalNumber, address, age, serialNumber)
Person.serialNumber € Mobile.serialNumber
Mobile(serialNumber, color)

— Why not just 1 table?

* Because a mobile phone can exist independently of a person

Binary Associations

e Multiplicity (0,1):(0,1) —

Person Mobile

: gztrfroer:INumber : z:ioarlNumber

- age

= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Note that a personal number and serial number are both
independent keys in the Ownership table

Binary Associations

e Multiplicity (1,n)/(0,n):(1,1) —

Person Mobile
- personalNumber - serialNumber
- address @ L.51- color
- age
= Two tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color, personalNumber)
Mobile.personalNumber € Person.personalNumber

— Why a personal number is not a key in the Mobile table?
* Because a person can own more mobile phones

Binary Associations

e Multiplicity (1,n)/(0,n):(0,1) —

Person Mobile

- personalNumber - serialNumber
*
- address L color

- age

= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Why a personal number is not a key in the Ownership table?
* Because a person can own more mobile phones

Binary Associations

* Multiplicity (1,n)/(0,n):(1,n)/(0,n) —

Person Mobile

- personalNumber - serialNumber
- address @ @ - color
- age

= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Note that there is a composite key in the Ownership table

Attributes of Associations

e Attribute of an association —

Person

- personNumber
- name

= Stored together with has member) 1.

a given association table o

- to
+is_member_of[0..*

Member

— Person(personNumber, name)
Team(name, url)

Member(personNumber, name, from, to)

Member.personNumber S Person.personNumber
Member.name € Team.name

Team

- name
- urd

= Multivalued and composite attributes are transformed
analogously to attributes of ordinary classes

General Associations

Person

* N-ary association — peromimber

0.*

0.*

= Universal solution: woier o [
N tables for classes + el e
1 association table
— Person(personNumber) i
Project(projectNumber)
Team(name)
Worker(personNumber, projectNumber, name)
Worker.personNumber € Person.personNumber
Worker.projectNumber € Project.projectNumber
Worker.name S Team.name

= Less tables? Yes, in case of nice (1,1) cardinalities...

Team

Hierarchies

* ISA hierarchy —
= Universal solution: /d b\
separate table for each type —
with specific attributes only s =

— Person(personalNumber, name)
Professor(personalNumber, phone)
Student(personalNumber, studiesFrom)
Professor.personalNumber € Person.personalNumber
Student.personalNumber € Person.personalNumber

— Applicable in any case (w.r.t. covering / overlap constraints)
— Pros: flexibility (when attributes are altered)
— Cons: joins (when full data is reconstructed)

Hierarchies

* ISA hierarchy —
= Only one table for a hierarchy source

— Person(personalNumber, name, phone, studiesFrom, type)

— Universal once again, but not always suitable
* Types of instances are distinguished by an artificial attribute

» Enumeration or event a set
depending on the overlap constraint

— Pros: no joins
— Cons: NULL values required (and so it is not a nice solution)

Hierarchies

* ISA hierarchy —
= Separate table for each leaf type

— Professor(personalNumber, name, phone)
Student(personalNumber, name, studiesFrom)

— This solution is not always applicable
* In particular when the covering constraint is false
— Pros: no joins
— Cons:
* Redundancies (when the overlap constraint is false)
* Integrity considerations (uniqueness of a personal number)

Weak Entity Types

* Weak entity type — cote

= Separate table

- Institution(name)

Team(code, name) reme
Team.name <€ Institution.name

— Recall that the cardinality must always be (1,1)

— Key of the weak entity type involves also a key (any when
more available) from the entity type it depends on

