
B0B36DBS: Database Systems

Lecture

Relational Model

Martin Svoboda
martin.svoboda@matfyz.cuni.cz

Czech Technical University in Prague, Faculty of Electrical Engineering

mailto:martin.svoboda@matfyz.cuni.cz

B0B36DBS: Database Systems | Lecture: Relational Model 2

Lecture Outline

• Logical database models

▪ Basic overview

• Model-Driven Development

• Relational model

▪ Description and features

▪ Transformation of ER / UML conceptual schemas

Logical Database Models

B0B36DBS: Database Systems | Lecture: Relational Model 4

Layers of Database Modeling

• Conceptual layer
▪ Models a part of the structured real world relevant for

applications built on top of our database

• Logical layer
▪ Specifies how conceptual components (i.e. entity

types, relationship types, and their characteristics)
are represented in logical data structures that are
interpretable by machines

• Physical layer
▪ Specifies how logical database structures are

implemented in a specific technical environment

Abstraction

Implementation

B0B36DBS: Database Systems | Lecture: Relational Model 5

Logical Layer

• What are these logical structures?

▪ Formally…

‒ Tuples, sets, relations, functions, graphs, trees, …

• I.e. traditional and well-defined mathematical structures

▪ Or in a more friendly way…

‒ Tables, rows, columns, …

‒ Objects, pointers, …

‒ Collections, …

‒ …

B0B36DBS: Database Systems | Lecture: Relational Model 6

Logical Models

• Models based on tables

▪ Structure

‒ Rows for entities

‒ Columns for attributes

▪ Operations

‒ Selection, projection, join, …

▪ Examples

‒ Relational model

‒ … and various derived table models introduced by:

• SQL (as it is standardized)

• and particular implementations like Oracle, MySQL, …

B0B36DBS: Database Systems | Lecture: Relational Model 7

Logical Models

• Models based on objects

▪ Structure

‒ Objects with attributes

‒ Pointers between objects

▪ Motivation

‒ Object-oriented programming (OOP)

‒ Encapsulation, inheritance, …

▪ Operations

‒ Navigation

B0B36DBS: Database Systems | Lecture: Relational Model 8

Logical Models

• Models based on graphs

▪ Structure

‒ Vertices, edges, attributes

▪ Operations

‒ Traversals, pattern matching, graph algorithms

▪ Examples

‒ Network model (one of the very first database models)

‒ Resource Description Framework (RDF)

‒ Neo4j, InfiniteGraph, OrientDB, FlockDB, …

B0B36DBS: Database Systems | Lecture: Relational Model 9

Logical Models

• Models based on trees

▪ Structure

‒ Vertices with attributes

‒ Edges between vertices

▪ Motivation

‒ Hierarchies, categorization, semi-structured data

▪ Examples

‒ Hierarchical model (one of the very first database models)

‒ XML documents

‒ JSON documents

B0B36DBS: Database Systems | Lecture: Relational Model 10

Overview of Logical Models

• There are plenty of (different / similar) models
‒ The previous overview was intended just as an insight into

some of the basic ideas and models

▪ Hierarchical, network, relational, object, object-
relational, XML, key-value, document-oriented,
graph, ...

• Why so many of them?

▪ Different models are suitable in different situations

▪ Not everything is (yet) standardized,
proprietary approaches or extensions often exist

B0B36DBS: Database Systems | Lecture: Relational Model 11

Logical Modeling

• Step 1: Selection of the right logical model

• Note that…

▪ Relational model is not always the best solution

Conceptual schema

Relational model
XML model

RDF model

… …?

B0B36DBS: Database Systems | Lecture: Relational Model 12

Logical Modeling

• Step 1: Selection of the right logical model

▪ According to…

‒ Data characteristics

• True nature of real-world entities and their relationships

‒ Query possibilities

• Available access patterns, expressive power, …

‒ Intended usage

• Storage (JSON data in document-oriented databases, …)

• Exchange (XML documents sent by Web Service, …)

• Publication (RDF triples forming the Web of Data, …)

• …

‒ Identified requirements

B0B36DBS: Database Systems | Lecture: Relational Model 13

Logical Modeling

• Step 2: Creation of a logical schema

Conceptual schema

Relational schema XML schema OWL ontology

… …

B0B36DBS: Database Systems | Lecture: Relational Model 14

Logical Modeling

• Step 2: Creation of a logical schema

▪ Goal

‒ Transformation of a conceptual schema to a logical one

▪ Real-world applications often need multiple schemas

‒ Focus on different parts of the real world

‒ Serve different components of the system

‒ Even expressed in different logical models

▪ Challenge: can this be achieved automatically?
• Or at least semi-automatically?

‒ Answer: Model-Driven Development

B0B36DBS: Database Systems | Lecture: Relational Model 15

Model-Driven Development

• MDD

▪ Software development approach

‒ Executable schemas instead of executable code

• I.e. schemas that can be automatically (or at least semi-
automatically) converted to executable code

‒ Unfortunately, just in theory… recent ideas, not yet fully
applicable in practice today (lack of suitable tools)

• CASE tools (Computer-Aided Software Engineering)

• MDD principles can be used for database modeling as well

B0B36DBS: Database Systems | Lecture: Relational Model 16

Terminology

• Levels of abstraction

▪ Platform-Independent Level

‒ Hides particular platform-specific details

▪ Platform-Specific Level

‒ Maps the conceptual schema (or its part)
to a given logical model

‒ Adds platform-specific details

▪ Code Level

‒ Expresses the schema in a selected
machine-interpretable logical language

‒ SQL, XML Schema, OWL, …

Conceptual
layer

Logical
layer

B0B36DBS: Database Systems | Lecture: Relational Model 17

Real-World Example

• Platform-independent schema
 class P...

Contract

- referenceNumber

- title

- description

- mainObject

- additionalObject [0..*]

- startDate

- endDate

- estimatedPrice

- agreedPrice

- actualPrice

- numberOfTenders

Organization

- legalName

- officialNumber

ItemType

- code

- title

Address

- streetName

- streetNumber

- city

- countryTender

- estimatedEndDate

- offeredPrice

+issuedContract 0..*

+contractingAuthority 1

+parentContract 1

+lot 0..*

+tenderingSupplier

0..*

+tenderedContract

0..*

+suppliedContract

0..*

+awardedSupplier

0..1

0..*0..*

0..1 1

0..1

+mainAddress 1

0..1

+tenderAddress

0..1

B0B36DBS: Database Systems | Lecture: Relational Model 18

Real-World Example

• Platform-specific schema: relational model
 class PSM_RELATIONAL

Contract

«column»

* referenceNumber: NUMBER(8)

* title: VARCHAR2(50)

 description: CLOB

* startDate: DATE

* endDate: DATE

* estimatedPrice: NUMBER(9)

 agreedPrice: NUMBER(9)

 actualPrice: NUMBER(9)

 numberOfTenders: NUMBER(2)

*PK contractId: NUMBER(8)

*FK contractingAuthorityId: NUMBER(8)

 FK awardedSupplierId: NUMBER(8)

*FK mainAddressId: NUMBER(8)

 FK tenderAddressId: NUMBER(8)

 FK parentContractId: NUMBER(8)

«FK»

+ FK_Contract_Address(NUMBER)

+ FK_Contract_Address(NUMBER)

+ FK_Contract_Contract(NUMBER)

+ FK_Contract_Organization(NUMBER)

+ FK_Contract_Organization(NUMBER)

«PK»

+ PK_Contract(NUMBER)

«unique»

+ UQ_Contract_referenceNumber()

Organization

«column»

* legalName: VARCHAR2(50)

* officialNumber: NUMBER(9)

*PK organizationId: NUMBER(8)

*FK addressId: NUMBER(8)

«FK»

+ FK_Organization_Address(NUMBER)

«PK»

+ PK_Organization(NUMBER)

«unique»

+ UQ_Organization_officialNumbe(NUMBER)
Tender

«column»

* estimatedEndDate: DATE

* offeredPrice: NUMBER(9)

*PK tenderId: NUMBER(8)

*FK tenderingSupplierId: NUMBER(8)

*FK tenderedContractId: NUMBER(8)

«FK»

+ FK_Tender_Contract(NUMBER)

+ FK_Tender_Organization(NUMBER)

«PK»

+ PK_Tender(NUMBER)

Address

«column»

 streetName: VARCHAR2(50)

 streetNumber: VARCHAR2(50)

 city: VARCHAR2(50)

 country: VARCHAR2(50)

*PK addressId: NUMBER(8)

«PK»

+ PK_Address(NUMBER)

ItemType

«column»

*PK code: NUMBER(8)

* title: VARCHAR2(50)

«PK»

+ PK_ItemType(NUMBER)

Item

«column»

* code: NUMBER(8)

 FK contractId: NUMBER(8)

«FK»

+ FK_Item_Contract(NUMBER)

+ FK_Item_ItemType(NUMBER)

+FK_Contract_Organization 0..*

(awardedSupplierId = organizationId)

«FK»

+PK_Organization 1

+FK_Tender_Organization 0..*

(tenderingSupplierId = organizationId)

«FK»

+PK_Organization

1

+FK_Tender_Contract 0..*

(tenderedContractId = contractId)
«FK»

+PK_Contract

1

+FK_Contract_Organization

0..*

(awardedSupplierId = organizationId)

«FK»

+PK_Organization

1

+FK_Contract_Address

0..*

(tenderAddressId = addressId)

«FK»

+PK_Address
1

+FK_Contract_Address

0..*

(tenderAddressId = addressId)

«FK»

+PK_Address 1

+FK_Organization_Address

0..*

(addressId = addressId)

«FK»

+PK_Address 1

+FK_Item_Contract

0..*
(contractId = contractId)

«FK»

+PK_Contract

1

+FK_Item_ItemType
0..*

(contractId = code)

«FK»

+PK_ItemType 1

+FK_Contract_Contract

0..*

(parentContractId = contractId)

«FK»

+PK_Contract

1

B0B36DBS: Database Systems | Lecture: Relational Model 19

Real-World Example

• Code level: SQL (snippet)

CREATE TABLE Contract (

referenceNumber NUMBER(8) NOT NULL,

title VARCHAR2(50) NOT NULL,

description CLOB,

startDate DATE NOT NULL,

endDate DATE NOT NULL,

estimatedPrice NUMBER(9) NOT NULL,

...

);

ALTER TABLE Contract ADD CONSTRAINT PK_Contract

PRIMARY KEY (contractId);

ALTER TABLE Contract ADD CONSTRAINT FK_Contract_Address

FOREIGN KEY (mainAddressId) REFERENCES Address (addressId);

...

CREATE TABLE Organization(...);

...

B0B36DBS: Database Systems | Lecture: Relational Model 20

Real-World Example

• XML

Relational Model

B0B36DBS: Database Systems | Lecture: Relational Model 22

Relational Model

• Relational model

▪ Allows to store entities,
relationships, and their
attributes in relations

▪ Founded by E. F. Codd in 1970

• Informally…

▪ Table = collection of rows, each row represents one
entity, values of attributes are stored in columns

▪ Tables are more intuitive,
but conceal important mathematical background

B0B36DBS: Database Systems | Lecture: Relational Model 23

Relational Model

• Definitions and terminology

▪ Schema of a relation

‒ Description of a relational structure (everything except data)

‒ S(A1:T1, A2:T2, ..., An:Tn)

• S is a schema name

• Ai are attribute names and Ti their types (attribute domains)

• Specification of types is often omitted

‒ Example:

• Person(personalId, firstName, lastName)

▪ Schema of a relational database

‒ Set of relation schemas (+ integrity constraints, …)

B0B36DBS: Database Systems | Lecture: Relational Model 24

Relational Model

• Definitions and terminology for data

▪ Relation

‒ Subset of the Cartesian product of attribute domains Ti

• I.e. relation is a set

‒ Items are called tuples

▪ Relational database

‒ Set of relations

B0B36DBS: Database Systems | Lecture: Relational Model 25

Relational Model

• Basic requirements (or consequences?)

▪ Atomicity of attributes

‒ Only simple types can be used for domains of attributes

▪ Uniqueness of tuples

‒ Relation is a set, and so two identical tuples cannot exist

▪ Undefined order

‒ Relation is a set, and so tuples are not mutually ordered

▪ Completeness of values

‒ There are no holes in tuples, i.e. all values are specified

• However, special NULL values (well-known from relational
databases) can be added to attribute domains

B0B36DBS: Database Systems | Lecture: Relational Model 26

Integrity Constraints

• Identification
‒ Every tuple is identified by one or more attributes

▪ Superkey = set of such attributes

‒ Trivial and special example: all the relation attributes

▪ Key = superkey with a minimal number of attributes

‒ I.e. no attribute can be removed so that the identification
ability would still be preserved

‒ Multiple keys may exist in one relation

• They even do not need to have the same number of attributes

‒ Notation: keys are underlined

• Relation(Key, CompositeKeyPart1, CompositeKeyPart2, …)

• Note the difference between simple and composite keys

B0B36DBS: Database Systems | Lecture: Relational Model 27

Integrity Constraints

• Referential integrity

▪ Foreign key = set of attributes of the referencing
relation which corresponds to a (super)key of the
referenced relation

‒ It is usually not a (super)key in the referencing relation

‒ Notation

• ReferencingTable.foreignKey⊆ ReferencedTable.Key

• foreignKey⊆ ReferencedTable.Key

B0B36DBS: Database Systems | Lecture: Relational Model 28

Sample Relational Database

• Schema
Course(Code, Name, …)

Schedule(Id, Event, Day, Time, …), Event ⊆ Course.Code

• Data

Id Event Day Time …

1 A7B36DBS THU 11:00

2 A7B36DBS THU 12:45

3 A7B36DBS THU 14:30

4 A7B36XML FRI 09:15

Code Name …

A7B36DBS Database systems

A7B36XML XML technologies

A7B36PSI Computer networks

B0B36DBS: Database Systems | Lecture: Relational Model 29

Relations vs. Tables

• Tables

▪ Table header ∼ relation schema

▪ Row ∼ tuple

▪ Column ∼ attribute

• However…

▪ Tables are not sets, and so…

‒ there can be duplicate rows in tables

‒ rows in tables can be ordered

▪ I.e. SQL and existing RDBMS do not (always) follow the
formal relational model strictly

B0B36DBS: Database Systems | Lecture: Relational Model 30

Object vs. (Object-)Relational Model

• Relational model

▪ Data stored in flat tables

▪ Suitable for data-intensive batch operations

• Object model

▪ Data stored as graphs of objects

▪ Suitable for individual navigational access to entities

• Object-Relational model

▪ Relational model enriched by object elements

‒ Attributes may be of complex data types

‒ Methods can be defined on data types as well

Transformation of UML / ER to RM

B0B36DBS: Database Systems | Lecture: Relational Model 32

Conceptual Schema Transformation

• Basic idea

▪ What we have

‒ ER: entity types, attributes, identifiers, relationship types,
ISA hierarchies

‒ UML: classes, attributes, associations

▪ What we need

‒ Schemas of relations with attributes, keys, and foreign keys

▪ How to do it

‒ Classes with attributes → relation schemas

‒ Associations → separate relation schemas or together with
classes (depending on cardinalities…)

B0B36DBS: Database Systems | Lecture: Relational Model 33

Classes

• Class→

▪ Separate table

‒ Person(personalNumber, address, age)

▪ Artificial keys

‒ Artificially added integer identifiers

• with no correspondence in the real world

• but with several efficiency and also design advantages

• usually automatically generated and assigned

‒ Person(personId, personNumber, address, age)

 class Class

Person

- personalNumber

- address

- age

B0B36DBS: Database Systems | Lecture: Relational Model 34

Attributes

• Multivalued attribute→

▪ Separate table

‒ Person(personalNumber)
Phone(personalNumber, phone)
Phone.personalNumber ⊆ Person.personalNumber

 class Class

Person

- personalNumber

- phone: String [1..*]

B0B36DBS: Database Systems | Lecture: Relational Model 35

Attributes

• Composite attribute→

▪ Separate table

‒ Person(personalNumber)
Address(personalNumber, street, city, country)
Address.personalNumber ⊆ Person.personalNumber

▪ Sub-attributes can also be inlined

‒ But only in case of (1,1) cardinality

‒ Person(personNumber, street, city, country)

B0B36DBS: Database Systems | Lecture: Relational Model 36

Binary Associations

• Multiplicity (1,1):(1,1) →

▪ Three tables (basic approach)

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber ⊆ Person.personalNumber
Ownership.serialNumber ⊆Mobile.serialNumber

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color1 1

B0B36DBS: Database Systems | Lecture: Relational Model 37

Binary Associations

• Multiplicity (1,1):(1,1) →

▪ Single table

‒ Person(personalNumber, address, age, serialNumber, color)

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color1 1

B0B36DBS: Database Systems | Lecture: Relational Model 38

Binary Associations

• Multiplicity (1,1):(0,1) →

▪ Two tables

‒ Person(personalNumber, address, age, serialNumber)
Person.serialNumber ⊆Mobile.serialNumber
Mobile(serialNumber, color)

‒ Why not just 1 table?

• Because a mobile phone can exist independently of a person

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color0..1 1

B0B36DBS: Database Systems | Lecture: Relational Model 39

• Multiplicity (0,1):(0,1) →

▪ Three tables

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber ⊆ Person.personalNumber
Ownership.serialNumber ⊆Mobile.serialNumber

‒ Note that a personal number and serial number are both
independent keys in the Ownership table

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color0..1 0..1

Binary Associations

B0B36DBS: Database Systems | Lecture: Relational Model 40

• Multiplicity (1,n)/(0,n):(1,1) →

▪ Two tables

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color, personalNumber)
Mobile.personalNumber ⊆ Person.personalNumber

‒ Why a personal number is not a key in the Mobile table?

• Because a person can own more mobile phones

Binary Associations

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color1..1 1..*

B0B36DBS: Database Systems | Lecture: Relational Model 41

• Multiplicity (1,n)/(0,n):(0,1) →

▪ Three tables

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber ⊆ Person.personalNumber
Ownership.serialNumber ⊆Mobile.serialNumber

‒ Why a personal number is not a key in the Ownership table?

• Because a person can own more mobile phones

Binary Associations

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color0..1 1..*

B0B36DBS: Database Systems | Lecture: Relational Model 42

• Multiplicity (1,n)/(0,n):(1,n)/(0,n) →

▪ Three tables

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber ⊆ Person.personalNumber
Ownership.serialNumber ⊆Mobile.serialNumber

‒ Note that there is a composite key in the Ownership table

Binary Associations

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color1..* 1..*

B0B36DBS: Database Systems | Lecture: Relational Model 43

• Attribute of an association →

▪ Stored together with
a given association table

‒ Person(personNumber, name)
Team(name, url)
Member(personNumber, name, from, to)
Member.personNumber ⊆ Person.personNumber
Member.name ⊆ Team.name

▪ Multivalued and composite attributes are transformed
analogously to attributes of ordinary classes

Attributes of Associations
 class How to model characteristics o...

Person

- personNumber

- name

Team

- name

- url

Member

- from

- to

+has_member 1..*

+is_member_of 0..*

B0B36DBS: Database Systems | Lecture: Relational Model 44

• N-ary association →

▪ Universal solution:
N tables for classes +
1 association table

‒ Person(personNumber)
Project(projectNumber)
Team(name)
Worker(personNumber, projectNumber, name)
Worker.personNumber ⊆ Person.personNumber
Worker.projectNumber ⊆ Project.projectNumber
Worker.name ⊆ Team.name

▪ Less tables? Yes, in case of nice (1,1) cardinalities…

General Associations
 class Nary associations

Team

- name

Person

- personNumber

Project

- projectNumber

worker

0..*

0..1

1..*

0..*

0..*

0..*

B0B36DBS: Database Systems | Lecture: Relational Model 45

• ISA hierarchy →

▪ Universal solution:
separate table for each type
with specific attributes only

‒ Person(personalNumber, name)
Professor(personalNumber, phone)
Student(personalNumber, studiesFrom)
Professor.personalNumber ⊆ Person.personalNumber
Student.personalNumber ⊆ Person.personalNumber

‒ Applicable in any case (w.r.t. covering / overlap constraints)

‒ Pros: flexibility (when attributes are altered)

‒ Cons: joins (when full data is reconstructed)

Hierarchies
 class ISA

Person

- personalNumber

- name

Professor

- phone

Student

- studiesFrom

B0B36DBS: Database Systems | Lecture: Relational Model 46

• ISA hierarchy →

▪ Only one table for a hierarchy source

‒ Person(personalNumber, name, phone, studiesFrom, type)

‒ Universal once again, but not always suitable

• Types of instances are distinguished by an artificial attribute

» Enumeration or event a set
depending on the overlap constraint

‒ Pros: no joins

‒ Cons: NULL values required (and so it is not a nice solution)

Hierarchies

B0B36DBS: Database Systems | Lecture: Relational Model 47

• ISA hierarchy →

▪ Separate table for each leaf type

‒ Professor(personalNumber, name, phone)
Student(personalNumber, name, studiesFrom)

‒ This solution is not always applicable

• In particular when the covering constraint is false

‒ Pros: no joins

‒ Cons:

• Redundancies (when the overlap constraint is false)

• Integrity considerations (uniqueness of a personal number)

Hierarchies

B0B36DBS: Database Systems | Lecture: Relational Model 48

• Weak entity type →

▪ Separate table

‒ Institution(name)
Team(code, name)
Team.name ⊆ Institution.name

‒ Recall that the cardinality must always be (1,1)

‒ Key of the weak entity type involves also a key (any when
more available) from the entity type it depends on

Weak Entity Types

code

