
B0B36DBS: Database Systems | Class 9: Query EvaluaƟon

Exercise 1

2((connec�on = 101) (connec�on = 102)
 (connec�on = 103) (connec�on = 104))

5 (passenger = pid)

4

3

1Ticket

Passenger

EvaluaƟon plan

1. Table Ticket

• Heap file
• r1 = rT = 900000 records, b1 = bT = 40, p1 = r1/b1 = 900000/40 = 22500 pages

2. SelecƟon ((connection = 101) ∨ (connection = 102) ∨ (connection = 103) ∨ (connection = 104))

• ReducƟon factor for four selected connecƟons fconnections = 4/VT.connection = 4/20000 = 0.0002

• r2 = r1 · fconnections = 900000 · 0.0002 = 180 records
• b2 = b1 = 40

• p2 = ⌈r2/b2⌉ = 180/40 = 5 pages
• Read cost (sequenƟal scan) cr2 = p1 = 22500

• Write cost cw2 = p2 = 5

3. Table Passenger

• Sorted file using pid
• r3 = rP = 30000 records, b3 = bP = 15, p3 = r3/b3 = 30000/15 = 2000 pages

4. Cross join×

• r4 = r2 · r3 = 180 · 30000 = 5400000 records
• b4 = ⌊(b2 · b3)/(b2 + b3)⌋ = ⌊(40 · 15)/(40 + 15)⌋ = ⌊600/55⌋ = 10

• p4 = r4/b4 = 5400000/10 = 540000 pages
• Nested loops with zig-zag improvement
• Memory configuraƟon: M4 = [M2

4 = 3 as input buffer for sequenƟal read of smaller table T2] + [M3
4 = 1 as input

buffer for zig-zag reading of bigger table T3] + [1 for join output buffer] = 5 pages
• Read cost (join execuƟon) cr4 = p2+⌈p2/M2

4 ⌉·(p3−M3
4)+M3

4 = 5+⌈5/3⌉·(2000−1)+1 = 5+2·1999+1 = 4004

• Write cost cw4 = p4 = 540000

5. SelecƟon (passenger = pid)

• Original foreign key: Ticket (passenger)⊆ Passenger (pid)
• ReducƟon factor ftheta = 1/rP = 1/30000

• I.e., only one appropriate passenger actually exists for a given Ɵcket
• ReducƟon factor for non-anonymous Ɵckets fregistered = 1− hT.passenger.NULL = 1− 1/3 = 2/3

• r5 = r4 · ftheta · fregistered = 5400000 · 1/30000 · 2/3 = 120 records
• b5 = b4 = 10

• p5 = r5/b5 = 120/10 = 12 pages
• Read cost cr5 = p4 = 540000

• Write cost cw5 = p5 = 12 (if not directly forwarded to the user)

EvaluaƟon without pipelining

• EvaluaƟon cost

– c = [cr2 + cw2] + [cr4 + cw4] + [cr5]

– c = [p1 + p2] + [p2 + ⌈p2/M2
4 ⌉ · (p3 −M3

4) +M3
4 + p4] + [p4]

– c = [22500 + 5] + [5 + ⌈5/3⌉ · (2000− 1) + 1 + 540000] + [540000]

– c = [22505] + [544004] + [540000]

– c = 1106509

EvaluaƟon with pipelining

• Memory configuraƟon

– Step 1: reading and filtering Ɵckets
2

1
Memory

Hard disk

2.write

Ticket Temp.2

– Step 2: reading passengers and joining them with filtered Ɵckets

Memory

Hard disk

4.read.2

4 5

4.read.3

Temp.2 Passenger

• EvaluaƟon cost

– c = [cr2 + cw2] + [cr4 +��@@c
w
4] + [��SSc

r
5]

– c = [p1 + p2] + [p2 + ⌈p2/M2
4 ⌉ · (p3 −M3

4) +M3
4]

– c = [22500 + 5] + [5 + ⌈5/3⌉ · (2000− 1) + 1]

– c = [22505] + [4004]

– c = 26509

Exercise 2

2 ((date '2021-02-01') (date '2021-02-20'))

1

3(amount 1000)

6 (category = 'Student')

[passenger = pid] 5

4

7 [pid, name, email]

Deposit

Passenger

EvaluaƟon plan

1. Table Deposit

• Sorted file using date and time
• r1 = rD = 300000 records, b1 = bD = 60, p1 = r1/b1 = 300000/60 = 5000 pages

2. SelecƟon ((date ≥ '2021-02-01') ∧ (date ≤ '2021-02-20'))

• AcƟve domain for dates: minD.date ='2021-01-01' andmaxD.date ='2021-04-10'
• I.e., VC.date

.
= (maxD.date −minD.date + 1) = 100 different dates

• ReducƟon factor for permiƩed dates fdates = ('2021-02-20'− '2021-02-01'+ 1) / VC.date = 20/100 = 0.2

• r2 = r1 · fdates = 300000 · 0.2 = 60000 records
• b2 = b1 = 60

• p2 = r2/b2 = 60000/60 = 1000 pages
• Read cost (binary search) cr2 = log2(p1) + p1 · fdates = log2(5000) + 5000 · 0.2 = 13 + 1000 = 1013

• Write cost cw2 = p2 = 1000

3. SelecƟon (amount ≥ 1000)

• ReducƟon factor for amounts famounts = hD.amount.[1000..) = 0.05

• r3 = r2 · famounts = 60000 · 0.05 = 3000 records
• b3 = b2 = 60

• p3 = r3/b3 = 3000/60 = 50 pages
• Read cost cr3 = p2 = 1000

• Write cost cw3 = p3 = 50

4. Table Passenger

• Sorted file using pid
• r4 = rP = 30000 records, b4 = bP = 15, p4 = r4/b4 = 30000/15 = 2000 pages

5. Theta join [passenger = pid]

• Original foreign key: Deposit (passenger)⊆ Passenger (pid)
• Currently represented as T3 (passenger)⊆ T4 (pid)
• r5 = r3 = 3000 records
• b5 = (b3 · b4)/(b3 + b4) = (60 · 15)/(60 + 15) = 900/75 = 12

• p5 = r5/b5 = 3000/12 = 250 pages
• Nested loops, direct passenger look-up using clustered index over the Passenger table
• Memory configuraƟon: M5 = [1 as input buffer for T3 sequenƟal read] + [IP.pid = 2 for index nodes] + [1 as input

buffer for T4 retrieval] + [1 for join output buffer] = 5 pages
• Root index node remains loaded in the memory all the Ɵme, leaf nodes are fetched iteraƟvely on demand
• Individual read costs (nested loops with index look-up) cr.35 = p3 = 50 and cr.45 = r3 · (IP.pid − 1 + 1) + 1 =
3000 · (2− 1 + 1) + 1 = 6001

• Overall read cost cr5 = cr.35 + cr.45 = 50 + 6001 = 6051

• Write cost cw5 = p5 = 250

6. SelecƟon (category = 'Student')

• ReducƟon factor for student passengers fcategory = hP.category.Student = 0.3

• r6 = r5 · fcategory = 3000 · 0.3 = 900 records
• b6 = b5 = 12

• p6 = r6/b6 = 900/12 = 75 pages
• Read cost cr6 = p5 = 250

• Write cost cw6 = p6 = 75

7. ProjecƟon [pid, name, email]

• ResulƟng table contains a key for passengers (pid) and no deposit aƩributes
• Each passenger is expected to have ndeposits.all = rD/VD.passenger = 300000/30000 = 10 deposit transacƟons

during the whole period, and so just ndeposits = ndeposits.all · fdates = 10 · 0.2 = 2 during the selected period
• ReducƟon factor for removal of duplicates fdistinct = 1/ndeposits = 1/2 = 0.5

• r7 = r6 · fdistinct = 900 · 0.5 = 450 records
• b7 = 30

• p7 = r7/b7 = 450/30 = 15 pages
• Read cost cr7 = p6 = 75

• Write cost cw7 = p7 = 15 (if not directly forwarded to the user)

EvaluaƟon without pipelining

• EvaluaƟon cost

– c = [cr2 + cw2] + [cr3 + cw3] + [cr5 + cw5] + [cr6 + cw6] + [cr7]

EvaluaƟon with pipelining

• Memory configuraƟon

– Step 1: joining deposits and passengers

2 3

1
Memory

Hard disk

Deposit

5 6 7

Index Passenger

4 4

• EvaluaƟon cost

– c = [cr2 +��@@c
w
2] + [��SSc

r
3 +��@@c

w
3] + [��ZZc

r.3
5 + cr.45 +��@@c

w
5] + [��SSc

r
6 +��@@c

w
6] + [��SSc

r
7]

– c = [log2(p1) + p1 · fdates] + [r3 · (IP.pid − 1 + 1) + 1]

– c = [log2(5000) + 5000 · 0.2] + [3000 · (2− 1 + 1) + 1]

– c = [1013] + [6001]

– c = 7014

Exercise 3

(passenger)10

pid passenger96

(category = 'Adult')8

[date, �me, des�na�on, �d, passenger]

5[cid = connec�on]

743[cid, date, �me, des�na�on]

2 ((date = '2021-04-01' date = '2021-04-02') (origin = 'Prague'))

1

4

5

Passenger

Connec�on

Ticket

EvaluaƟon plan

1. Table Connection

• Hashed file using date,KC = 80 buckets
• r1 = rC = 20000 records, b1 = bC = 50, p1 = r1/b1 = 20000/50 = 400 pages
• C1 = p1/KC = 5 pages per bucket

2. SelecƟon ((date = '2021-04-01' ∨ date = '2021-04-02') ∧ (origin = 'Prague'))

• AcƟve domain for dates: minC.date ='2021-01-01' andmaxC.date ='2021-04-10'
• I.e., VC.date = 100 different dates
• ReducƟon factor for two permiƩed dates fdates = 2 · 1/VC.date = 2 · 1/100 = 1/50

• AssumpƟon that s = 2 buckets are needed to be scanned
• ReducƟon factor for the city of origin forigin = hC.origin.Prague = 1/2

• r2 = r1 · fdates · forigin = 20000 · 1/50 · 1/2 = 200 records
• b2 = b1 = 50

• p2 = r2/b2 = 200/50 = 4 pages
• Read cost (bucket retrieval) cr2 = 2 · C1 = 2 · 5 = 10

• Write cost cw2 = p2 = 4

3. ProjecƟon [cid, date, time, destination]

• r3 = r2 = 200 records, b3 = 60, p3 = r3/b3 = 200/60
.
= 4 pages

• Read cost cr3 = p2 = 4

• Write cost cw3 = p3 = 4

4. Table Ticket

• Heap file
• r4 = rT = 900000 records, b4 = bT = 40, p4 = r4/b4 = 900000/40 = 22500 pages

5. Theta join [cid = connection]

• Original foreign key: Ticket (connection)⊆ Connection (cid)
• Currently represented as T4 (connection)⊆ T3 (cid)
• AssumpƟon of n5 = r4/VT.connection = r4/r1 = 900000/20000 = 45 sold Ɵckets per connecƟon
• r5 = r3 · n5 = 200 · 45 = 9000 records
• b5 = (b3 · b4)/(b3 + b4) = (60 · 40)/(60 + 40) = 2400/100 = 24

• p5 = r5/b5 = 9000/24 = 375 pages
• Nested loops, smaller leŌ table T3 enƟrely fits the available system memory
• Memory configuraƟon: M5 = [p3 = 4 for whole T3] + [1 for T4 input buffer] + [1 for join output buffer] = 6 pages
• Individual read costs (nested loops execuƟon) cr.35 = p3 = 4 and cr.45 = p4 = 22500

• Overall read cost cr5 = cr.35 + cr.45 = p3 + p4 = 4 + 22500 = 22504

• Write cost cw5 = p5 = 375

6. ProjecƟon [date, time, destination, tid, passenger]

• r6 = r5 = 9000 records, b6 = 30, p6 = r6/b6 = 9000/30 = 300 pages
• Read cost cr6 = p5 = 375

• Write cost cw6 = p6 = 300

7. Table Passenger

• Sorted file using pid
• r7 = rP = 30000 records, b7 = bP = 15, p7 = r7/b7 = 30000/15 = 2000 pages

8. SelecƟon (category = 'Adult')

• ReducƟon factor for adult passengers fcategory = hP.category.Adult = 0.5

• r8 = r7 · fcategory = 30000 · 0.5 = 15000 records
• b8 = b7 = 15

• p8 = r8/b8 = 15000/15 = 1000 pages
• Note that the original sorƟng is maintained
• Read cost (sequenƟal scan) cr8 = p7 = 2000

• Write cost cw8 = p8 = 1000

9. AƩribute renaming ⟨pid → passenger⟩

• r9 = r8 = 15000 records, b9 = b8 = 15, p9 = p8 = 1000 pages

10. Natural join (passenger)

• Original foreign key: Ticket (passenger)⊆ Passenger (pid)
• Currently represented as T6 (passenger)⊆ T9 (passenger)
• ReducƟon factor for non-anonymous Ɵckets fregistered = 1− hT.passenger.NULL = 1− 1/3 = 2/3

• ReducƟon factor for adult passengers fcategory = hP.category.Adult = 0.5

• r10 = r6 · fregistered · fcategory = 9000 · 2/3 · 0.5 = 3000 records
• b10

.
= (b6 · b9)/(b6 + b9) = (30 · 15)/(30 + 15) = 450/45 = 10

• p10 = r10/b10 = 300

• Sort-merge join algorithm, leŌ table T6 needs to be sorted, right table T9 is already sorted using passenger
• 2-passes only, integrated priority queue, extension allowing duplicates in one table (T6)
• M1.container

6 =
√

p6/2 =
√
300/2 =

√
150

.
= 13 pages are needed for priority queue container to ensure 2-passes

• SorƟng phase (pass 1) is likely to produce≈ 13 runs with length of≈ 2 · 13 = 26 pages each
• Memory configuraƟon (sorƟng phase for T6): M1

6 = [M1.container
6 = 13 for priority queue container] + [1 for T6

input buffer] + [1 for sorƟng output buffer] = 15 pages
• Read cost cr.sort.610 = p6 = 300

• Write cost cw.sort.6
10

.
= p6 = 300

• Memory configuraƟon (joining phase): M2
6 = [M1.container

6 = 13 as input buffer for individual runs of presorted
T6] + [1 as input buffer for the only run of already sorted T9] + [1 for join output buffer] = 15 pages

• Individual read costs cr.join.610 = cw.sort.6
10

.
= p6 = 300 and cr.join.910 = p9 = 1000

• Overall read cost cr.join10 = cr.join.610 + cr.join.910
.
= p6 + p9 = 300 + 1000 = 1300

• Write cost cw.join
10 = p10 = 300 (if not directly forwarded to the user)

EvaluaƟon without pipelining

• EvaluaƟon cost

– c = [cr2 + cw2] + [cr3 + cw3] + [cr5 + cw5] + [cr6 + cw6] + [cr8 + cw8] + [cr.sort.610 + cw.sort.6
10 + cr.join10]

EvaluaƟon with pipelining

• Memory configuraƟon

– Step 1: reading, filtering and projecƟng connecƟons
2 3

1
Memory

Hard disk

Connec�on

– Step 2: reading Ɵckets and joining them with connecƟons, projecƟng extended Ɵckets, and creaƟng sorted runs

Memory

Hard disk

4

5 6

10.sort.6.container

10.sort.6.runs

10.sort.6.write

Ticket Temp.6

– Step 3: joining extended Ɵckets with passengers

Memory

Hard disk

Temp.6

10.join.6.read

Passenger

7

8 9 10.join.9.read

10

• EvaluaƟon cost

– c = [cr2+��@@c
w
2]+ [��SSc

r
3+��@@c

w
3]+ [��ZZc

r.3
5 + cr.45 +��@@c

w
5]+ [��SSc

r
6+��@@c

w
6]+ [cr8+��@@c

w
8]+ [����XXXXcr.sort.610 + cw.sort.6

10 + cr.join.610 +����XXXXcr.join.910]

– c = [2 · C1] + [p4] + [p7] + [p6 + p6]

– c = [2 · 5] + [22500] + [2000] + [300 + 300]

– c = [10] + [22500] + [2000] + [600]

– c = 25110

