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Assignment for solved example
z1 = [3/2, 1]⊤

x1

1
Robot is unit magenta arrow mounted to the origin of wcf 
by a swivel joint (i.e. it can only rotate around the point [0,0]) 
State  is its (counter-clockwise) angle wrt x-axisxt ∈ ℝ
Control  changes the state according to the motion modelut
xt = g(xt−1, ut) = xt−1 + ut

Measurement  is provided by GPS sensor with  
the measurement function

zt ∈ ℝ2

zt = h(xt) = [cos xt

sin xt]
Consider two states example, where:

bel(x0) = 𝒩(x0; μ0 = 0, Σ0 = 1)

with zero-mean gaussian noise with covariance Rt = 1

with zero-mean gaussian noise with covariance Qt = [1 0
0 1]

z1 = [3/2
1 ], u1 = π/2,

3/2



Factorgraph
z1 = [3/2, 1]⊤

x1

1

3/2

Write down state-transition probability distribution

Write down measurement probability distribution

Outline distributions into the sketch
Draw underlying factorgraph

Write down MAP state estimation problem



Factorgraph (solution)
z1 = [3/2, 1]⊤

x1

1

3/2

Write down state-transition probability distribution
p(xt |xt−1, ut) = 𝒩(xt; xt−1 + ut, Rt)

Write down measurement probability distribution

Outline distributions into the sketch
Draw underlying factorgraph

Write down MAP state estimation problem

p(zt |xt) = 𝒩(zt; , Qt)

∥x0∥2 ∥h(x1) − z1∥2

∥x0 + u1 − x1∥2x0 x1unary factor unary factor
binary factor

arg min
x0,x1

∥x0 + u1 − x1∥2 + ∥h(x1) − z1∥2 + ∥x0∥2



Extended Kalman Filter

h(x1) = [cos(x1)
sin(x1)] ≈ ?

1

Perform prediction step of (E)KF,    i.e.

Linearize measurement function around  (outline it in sketch)μ1

Perform measurement step of EKF

It is strictly prohibited to memorize any EKF equations, however you are allowed to 
have it on your cheatsheet (and it will be also provided in the test assignment) ;-)

bel(x1) = 𝒩(x1; μ1, Σ1)
μ1 = ?

Σ1 = ?

K1 = Σ1H⊤
1 (HtΣ1H⊤

t + Qt)−1 = ?

μ1 = μ1 + K1(z1 − h(μ1)) = ?

Σ1 = (I − K1H1)Σ1 = ?

1

3/2

3/2

z1 = [3/2, 1]⊤

z1 = [3/2, 1]⊤



Extended Kalman Filter (solution)

h(x1) = [cos(x1)
sin(x1)] ≈ [cos(μ1)

sin(μ1)] + [−sin(μ1)
cos(μ1) ] ⋅ (x1 − π/2) = [0

1]
⏟
h(μ1)

+ [−1
0 ]

⏟
H1

⋅ (x1 − π/2)

μ1 = 90∘
1

Perform prediction step of (E)KF,    i.e.

Linearize measurement function around  (outline it in sketch)μ1

Perform measurement step of EKF

It is strictly prohibited to memorize any EKF equations, however you are allowed to 
have it on your cheatsheet (and it will be also provided in the test assignment) ;-)

bel(x1) = 𝒩(x1; μ1, Σ1)
μ1 = μ0 + u1 = 0 +

π
2

=
π
2

Σ1 = G1Σ0G⊤
1 + R1 = 1 ⋅ 1 ⋅ 1 + 1 = 2

K1 = Σ1H⊤
1 (HtΣ1H⊤

t + Qt)−1 = [−2 0] ⋅ [3 0
0 1]

−1

= [−2/3 0]

μ1 = μ1 + K1(z1 − h(μ1)) =
π
2

− 1 ≈ 33∘

Σ1 = (I − K1H1)Σ1 = (1 − 2/3) ⋅ 2 = 2/3

μ1 ≈ 33∘
1

3/2

3/2

z1 = [3/2, 1]⊤

z1 = [3/2, 1]⊤



Partical filter

x1
0 = 0

1

Prediction step of PF:

3/2

x2
0 =

π
4

z1 = [3/2, 1]⊤

x1
1 ∼ ?

Particles representing   are drawn from this distribution:bel(x1)

x2
1 ∼ ?

Assume zero noise and generate particles in the mean values
x1

1 = ? x2
1 = ?

Measurement step of PF:
Update weights of particles to represent  bel(x1)

w1
1 = ? w2

1 = ?

Which particle has a higher chance to survive the resampling?



Partical filter (solution)

x1
0 = 0

1

Prediction step of PF:

3/2

x2
0 =

π
4

z1 = [3/2, 1]⊤

x1
1 ∼ p(x1 |x1

0, u1) = 𝒩(x1; x1
0 + u1, R1) = 𝒩(x1;

π
2

, 1)
Particles representing   are drawn from this distribution:bel(x1)

x2
1 ∼ p(x1 |x2

0, u1) = 𝒩(x1; x2
0 + u1, R1) = 𝒩(x1;

3π
4

, 1)

Assume zero noise and generate particles in the mean values
x1

1 =
π
2 x2

1 =
3π
4

Measurement step of PF:
Update weights of particles to represent  bel(x1)

,

w1
1 = 𝒩([3/2

1 ]
z1

; [
cos π

2

sin π
2

]
h(x1

1)

, [1 0
0 1]

Q1

) w2
1 = 𝒩([3/2

1 ]
z1

;
cos 3π

4

sin 3π
4

h(x2
1)

, [1 0
0 1]

Q1

)

Which particle has a higher chance to survive the resampling? w1
1



Discrete Bayes filter

Prediction step of BF:

Measurement step of BF:

bel(x0)0.5

=x0

x0 +
π
2

x0 + π

0.8
0.2

0.5
0.25

π
2

π 3π
2

0π
2

π 3π
2

0

bel(x1)

π
2

π 3π
2

0

p(xt |xt−1, ut =
π
2

)

x0 x1 x1

p(zt = [3/2, 1]⊤ |xt)

bel(xt) = ∑
xt−1

p(xt |xt−1, ut) ⋅ bel(xt−1)

π
2

π 3π
2

0
x1

bel(xt) = η ⋅ p(zt |xt)bel(xt)
bel(x1)



Discrete Bayes filter (solution)

Prediction step of BF:

Measurement step of BF:

bel(x0)0.5

=x0

x0 +
π
2

x0 + π

0.8
0.2

0.5
0.25

π
2

π 3π
2

0π
2

π 3π
2

0

bel(x1)0.375

π
2

π 3π
2

0

0.125

p(xt |xt−1, ut =
π
2

)

x0 x1 x1

p(zt = [3/2, 1]⊤ |xt)

bel(xt) = ∑
xt−1

p(xt |xt−1, ut) ⋅ bel(xt−1)

0.92
0.08

π
2

π 3π
2

0
x1

bel(xt) = η ⋅ p(zt |xt)bel(xt)
bel(x1)



p(zi |x) = 𝒩(zi; x,1)

x x x
robot

RANSAC
Assume that 


no motion model is applied, 

no prior probability distribution


GPS position is measured three-times:
z1 = 2 z2 = 3 z3 = 7

What is MLE of state  under the gaussian noise?x
p(zi |x) = 𝒩(zi; x,100)

p(z1 |x) = 𝒩(z1; x,4)
p(z2 |x) = 𝒩(z2; x,1)
p(z3 |x) = 𝒩(z3; x,1)

z1 z2 z3

x
x

What is MLE of state  under the gaussian noise?x
What is MLE of state  under the gaussian noise?x

How can you get MLE of the state under the heavy-tail-gaussian noise?

p(zi |x)

x⋆ = ?
x⋆ = ?

x⋆ = ?



p(zi |x) = 𝒩(zi; x,1)

x x x
robot

x* = arg max
x

p(x |z1, z2, z3) = arg max
x (∏

i

p(zi |x))

RANSAC (solution)
Assume that 


no motion model is applied, 

no prior probability distribution


GPS position is measured three-times:
z1 = 2 z2 = 3 z3 = 7

What is MLE of state  under the gaussian noise?x
p(zi |x) = 𝒩(zi; x,100)

p(z1 |x) = 𝒩(z1; x,4)
p(z2 |x) = 𝒩(z2; x,1)
p(z3 |x) = 𝒩(z3; x,1)

z1 z2 z3

x
x

What is MLE of state  under the gaussian noise?x
What is MLE of state  under the gaussian noise?x

= arg min
x ∑

i

1/σ2
i ⋅ (x − zi)2 =

∑i zi/σ2
i

∑i 1/σ2
i

=
0.25 ⋅ 2 + 1 ⋅ 3 + 1 ⋅ 7

2.25
= 4.66

How can you get MLE of the state under the heavy-tail-gaussian noise?

p(zi |x)

RANSAC (result depends on tolerance margin and implementation) x⋆ ∈ < 2, 3 >

x⋆ = 4
x⋆ = 4



p([zGPS,x
t

zGPS,y
t ]
zGPS

t

|
xt
yt

θt
⏟

xt

) = 𝒩(zGPS
t ; [1 0 0

0 1 0] ⋅
xt
yt

θt

hGPS(xt)

, QGPS
t )

p(
zx
t

zy
t

zθ
t

⏟
zodom

t

|
xt
yt

θt
⏟

xt

,
xt+1
yt+1

θt+1

xt+1

) = 𝒩(zodom
t ; w2r(xt+1, xt)

hodom(xt)

, Qodom
t )

GPS

IMUIMU

Examples of measurement probabilities

p(
zx
t

zy
t

zθ
t

⏟
zm

t

|
xt
yt

θt
⏟

xt

,
mx

my

mθ

m

) = 𝒩(zm
t ; w2r(m, xt)

hm(xt)

, Qm
t ) Marker 

detector

You should be able to use all measurement and transition models in all discussed 
concepts (EKF, PF, FG,…) including their first order approximations



p([xt
yt]⏟
xt

[xt−1
yt−1]
xt−1

, [vt
ωt]

⏟
ut

) = 𝒩(xt; [
xt−1 + vtΔt cos(ωt)

yt−1 + vtΔt sin(ωt) − 1
2 gΔt2 ]

g(xt−1,ut)

, Rt)

Balistic trajectory

Examples of state-transition probabilities

p(
xt
yt

θt
⏟

xt

xt−1
yt−1

θt−1

xt−1

, [vt
ωt]

⏟
ut

) = 𝒩(xt;

xt−1 +
vt

ωt
( + sin(θt−1 + ωtΔt) − sin(θt−1))

yt−1 +
vt

ωt
( − cos(θt−1 + ωtΔt) + cos(θt−1))

θt−1 + ωtΔt

g(xt−1,ut)

, Rt)

Differential-drive model



Bayes filter

Kalman filter

Drawbacks Advantages

represent only gaussians

suffers from linearization

course of dimensionality represents arbitrary  
prob. distributionspatial discretization

nicely scales with  
higher dimensions

Particle filter course of dimensionality   represents arbitrary  
prob. distribution

Factorgraph represents gaussians 

grows to infinity

does not suffer  
from linearizations

You should also understand reasoning behind this table

x
bel(x)

x
bel(x)

x
bel(x)

allows for arbitrary 
conditional independences

Φ6(x1, x2)

Φ3(x3)

Φ4(x1, x2) Φ5(x2, x3)

Φ1(x1)
Φ2(x2)

Φ7(x2, x3)

Φ8(x1, x2, x3)

x1

x2

x3

partical quantization


