Examples and solutions
 ARO 2024

Karel Zimmermann

Assignment for solved example

- Robot is unit magenta arrow mounted to the origin of wcf by a swivel joint (i.e. it can only rotate around the point [0,0])
o State $\mathbf{x}_{t} \in \mathbb{R}$ is its (counter-clockwise) angle wrt x-axis
- Control \mathbf{u}_{t} changes the state according to the motion model $\mathbf{x}_{t}=g\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)=\mathbf{x}_{t-1}+\mathbf{u}_{t}$ with zero-mean gaussian noise with covariance $\mathbf{R}_{t}=1$
- Measurement $\mathbf{z}_{t} \in \mathbb{R}^{2}$ is provided by GPS sensor with the measurement function

$$
\mathbf{z}_{t}=h\left(\mathbf{x}_{t}\right)=\left[\begin{array}{c}
\cos \mathbf{x}_{t} \\
\sin \mathbf{x}_{t}
\end{array}\right]
$$

with zero-mean gaussian noise with covariance $\mathbf{Q}_{t}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- Consider two states example, where:

$$
\operatorname{bel}\left(\mathbf{x}_{0}\right)=\mathcal{N}\left(\mathbf{x}_{0} ; \mu_{0}=0, \Sigma_{0}=1\right), \quad \mathbf{z}_{1}=\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right], \quad \mathbf{u}_{1}=\pi / 2
$$

Factorgraph

- Write down measurement probability distribution
- Outline distributions into the sketch
- Draw underlying factorgraph
o Write down MAP state estimation problem

Factorgraph (solution)

Write down state-transition probability distribution

$$
\Omega p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{u}_{t}\right)=\mathscr{N}\left(\mathbf{x}_{t} ; \mathbf{x}_{t-1}+\mathbf{u}_{t}, \mathbf{R}_{t}\right)
$$

- Write down measurement probability distribution
(O) $p\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right)=\mathcal{N}\left(\mathbf{z}_{t} ;, \mathbf{Q}_{t}\right)$
- Outline distributions into the sketch
o Draw underlying factorgraph

- Write down MAP state estimation problem

$$
\arg \min \left\|\mathbf{x}_{0}+\mathbf{u}_{1}-\mathbf{x}_{1}\right\|^{2}+\left\|h\left(\mathbf{x}_{1}\right)-\mathbf{z}_{1}\right\|^{2}+\left\|\mathbf{x}_{0}\right\|^{2}
$$

Extended Kalman Filter

○ Perform prediction step of $(\mathbf{E}) \mathbf{K F}{ }^{\text {* }}$ i.e. $\overline{\operatorname{bel}}\left(\mathbf{x}_{1}\right)=\mathcal{N}\left(\mathbf{x}_{1} ; \bar{\mu}_{1}, \bar{\Sigma}_{1}\right)$

$$
\begin{aligned}
& \bar{\mu}_{1}=? \\
& \overline{\boldsymbol{\Sigma}}_{1}=?
\end{aligned}
$$

- Linearize measurement function around $\bar{\mu}_{1}$ (outline it in sketch) $\leftrightarrow h\left(\mathbf{x}_{1}\right)=\left[\begin{array}{c}\cos \left(\mathbf{x}_{1}\right) \\ \sin \left(\mathbf{x}_{1}\right)\end{array}\right] \approx$?
- Perform measurement step of EKF

$$
\begin{aligned}
& \mathbf{K}_{1}=\overline{\boldsymbol{\Sigma}}_{1} \mathbf{H}_{1}^{\top}\left(\mathbf{H}_{t} \overline{\boldsymbol{\Sigma}}_{1} \mathbf{H}_{t}^{\top}+\mathbf{Q}_{t}\right)^{-1}=? \\
& \mu_{1}=\bar{\mu}_{1}+\mathbf{K}_{1}\left(\mathbf{z}_{1}-h\left(\bar{\mu}_{1}\right)\right)=? \\
& \boldsymbol{\Sigma}_{1}=\left(\mathbf{I}-\mathbf{K}_{1} \mathbf{H}_{1}\right) \overline{\boldsymbol{\Sigma}}_{1}=?
\end{aligned}
$$

* It is strictly prohibited to memorize any EKF equations, however you are allowed to have it on your cheatsheet (and it will be also provided in the test assignment) ;-)

- Perform prediction step of $(\mathbf{E}) \mathbf{K F}{ }^{*}$ i.e. $\overline{\operatorname{bel}}\left(\mathbf{x}_{1}\right)=\mathscr{N}\left(\mathbf{x}_{1} ; \bar{\mu}_{1}, \overline{\boldsymbol{\Sigma}}_{1}\right)$

$$
\begin{aligned}
& \bar{\mu}_{1}=\bar{\mu}_{0}+\mathbf{u}_{1}=0+\frac{\pi}{2}=\frac{\pi}{2} \\
& \overline{\boldsymbol{\Sigma}}_{1}=\mathbf{G}_{1} \boldsymbol{\Sigma}_{\mathbf{0}} \mathbf{G}_{1}^{\top}+\mathbf{R}_{1}=1 \cdot 1 \cdot 1+1=2
\end{aligned}
$$

- Linearize measurement function around $\bar{\mu}_{1}$ (outline it in sketch)

$$
\leftrightarrow h\left(\mathbf{x}_{1}\right)=\left[\begin{array}{c}
\cos \left(\mathbf{x}_{1}\right) \\
\sin \left(\mathbf{x}_{1}\right)
\end{array}\right] \approx\left[\begin{array}{c}
\cos \left(\bar{\mu}_{1}\right) \\
\sin \left(\bar{\mu}_{1}\right)
\end{array}\right]+\left[\begin{array}{c}
-\sin \left(\bar{\mu}_{1}\right) \\
\cos \left(\bar{\mu}_{1}\right)
\end{array}\right] \cdot\left(\mathbf{x}_{1}-\pi / 2\right)=\underline{c}_{\left[\begin{array}{c}
0 \\
1
\end{array}\right]}^{\left[\begin{array}{c}
{[-1} \\
0
\end{array}\right]} \cdot\left(\mathbf{x}_{1}-\pi / 2\right)
$$

- Perform measurement step of EKF

$$
\begin{aligned}
& \mathbf{K}_{1}=\overline{\boldsymbol{\Sigma}}_{1} \mathbf{H}_{1}^{\top}\left(\mathbf{H}_{t} \overline{\boldsymbol{\Sigma}}_{1} \mathbf{H}_{t}^{\top}+\mathbf{Q}_{t}\right)^{-1}=\left[\begin{array}{ll}
-2 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
-2 / 3 & 0
\end{array}\right] \\
& \mu_{1}=\bar{\mu}_{1}+\mathbf{K}_{1}\left(\mathbf{z}_{1}-h\left(\bar{\mu}_{1}\right)\right)=\frac{\pi}{2}-1 \approx 33^{\circ} \\
& \boldsymbol{\Sigma}_{1}=\left(\mathbf{I}-\mathbf{K}_{1} \mathbf{H}_{1}\right) \overline{\boldsymbol{\Sigma}}_{1}=(1-2 / 3) \cdot 2=2 / 3
\end{aligned}
$$

* It is strictly prohibited to memorize any EKF equations, however you are allowed to have it on your cheatsheet (and it will be also provided in the test assignment) ;-)

Partical filter

Prediction step of PF:

- Particles representing $\overline{\operatorname{bel}}\left(\mathbf{x}_{1}\right)$ are drawn from this distribution:

$$
\begin{aligned}
& \overline{\mathbf{x}}_{1}^{1} \sim ? \\
& \overline{\mathbf{x}}_{1}^{2} \sim ?
\end{aligned}
$$

o Assume zero noise and generate particles in the mean values $\overline{\mathbf{x}}_{1}^{1}=? \quad \overline{\mathbf{x}}_{1}^{2}=$?

Measurement step of PF:

- Update weights of particles to represent $\operatorname{bel}\left(\mathbf{x}_{1}\right)$

$$
\mathbf{w}_{1}^{1}=?
$$

$$
\mathbf{w}_{1}^{2}=?
$$

Which particle has a higher chance to survive the resampling?

Prediction step of PF:

- Particles representing $\overline{\operatorname{bel}}\left(\mathbf{x}_{1}\right)$ are drawn from this distribution:

$$
\begin{aligned}
& \overline{\mathbf{x}}_{1}^{1} \sim p\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}^{1}, \mathbf{u}_{1}\right)=\mathcal{N}\left(\mathbf{x}_{1} ; \mathbf{x}_{0}^{1}+\mathbf{u}_{1}, \mathbf{R}_{1}\right)=\mathscr{N}\left(\mathbf{x}_{1} ; \frac{\pi}{2}, 1\right) \\
& \overline{\mathbf{x}}_{1}^{2} \sim p\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}^{2}, \mathbf{u}_{1}\right)=\mathcal{N}\left(\mathbf{x}_{1} ; \mathbf{x}_{0}^{2}+\mathbf{u}_{1}, \mathbf{R}_{1}\right)=\mathcal{N}\left(\mathbf{x}_{1} ; \frac{3 \pi}{4}, 1\right)
\end{aligned}
$$

- Assume zero noise and generate particles in the mean values

$$
\overline{\mathbf{x}}_{1}^{1}=\frac{\pi}{2}, \quad \overline{\mathbf{x}}_{1}^{2}=\frac{3 \pi}{4}
$$

Measurement step of PF:

- Update weights of particles to represent $\operatorname{bel}\left(\mathbf{x}_{1}\right)$

$$
\mathbf{w}_{1}^{1}=\mathscr{N}(\underbrace{\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right]}_{\mathbf{z}_{1}} ; \underbrace{\left[\begin{array}{c}
\cos \frac{\pi}{2} \\
\sin \frac{\pi}{2}
\end{array}\right]}_{h\left(\mathbf{x}_{1}^{1}\right)}, \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}_{\mathbf{Q}_{1}}) \quad \mathbf{w}_{1}^{2}=\mathscr{N}(\underbrace{\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right]}_{\mathbf{z}_{1}} ; \underbrace{\left[\begin{array}{c}
\cos \frac{3 \pi}{4} \\
\sin \frac{3 \pi}{4}
\end{array}\right]}_{h\left(\mathbf{x}_{1}^{2}\right)}, \underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]}_{\mathbf{Q}_{1}})
$$

Which particle has a higher chance to survive the resampling? \mathbf{w}_{1}^{1}

Discrete Bayes filter

Prediction step of BF:

Measurement step of BF:

$$
\operatorname{bel}\left(\mathbf{x}_{t}\right)=\eta \cdot p\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right) \overline{\operatorname{bel}}\left(\mathbf{x}_{t}\right)
$$

Discrete Bayes filter (solution)

Prediction step of BF:

$$
\overline{\operatorname{bel}}\left(\mathbf{x}_{t}\right)=\sum_{\mathbf{x}_{t-1}} p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{u}_{t}\right) \cdot \operatorname{bel}\left(\mathbf{x}_{t-1}\right)
$$

Measurement step of BF:

$$
\left.\operatorname{bel}\left(\mathbf{x}_{t}\right)=\eta \cdot p\left(\mathbf{z}_{t}\right) \mathbf{x}_{t}\right) \overline{\operatorname{bel}}\left(\mathbf{x}_{t}\right)
$$

RANSAC

- Assume that
- no motion model is applied, - no prior probability distribution
- GPS position is measured three-times:

$$
\mathbf{z}_{1}=2 \quad \mathbf{z}_{2}=3 \quad \mathbf{z}_{3}=7
$$

- What is MLE of state \mathbf{x} under the gaussian noise?

$$
p\left(\mathbf{z}_{i} \mid \mathbf{x}\right)=\mathscr{N}\left(\mathbf{z}_{i} ; \mathbf{x}, 1\right) \quad \mathbf{x}^{\star}=?
$$

- What is MLE of state \mathbf{x} under the gaussian noise?

$$
p\left(\mathbf{z}_{i} \mid \mathbf{x}\right)=\mathcal{N}\left(\mathbf{z}_{i} ; \mathbf{x}, 100\right) \quad \mathbf{x}^{\star}=?
$$

- What is MLE of state \mathbf{x} under the gaussian noise?

$$
\mathbf{x}^{\star}=?
$$

$$
\begin{aligned}
& p\left(\mathbf{z}_{1} \mid \mathbf{x}\right)=\mathscr{N}\left(\mathbf{z}_{1} ; \mathbf{x}, 4\right) \\
& p\left(\mathbf{z}_{2} \mid \mathbf{x}\right)=\mathscr{N}\left(\mathbf{z}_{2} ; \mathbf{x}, 1\right) \\
& p\left(\mathbf{z}_{3} \mid \mathbf{x}\right)=\mathscr{N}\left(\mathbf{z}_{3} ; \mathbf{x}, 1\right)
\end{aligned}
$$

- How can you get MLE of the state under the heavy-tail-gaussian noise?

RANSAC (solution)

- Assume that
- no motion model is applied,
- no prior probability distribution
- GPS position is measured three-times:

$$
\mathbf{z}_{1}=2 \quad \mathbf{z}_{2}=3 \quad \mathbf{z}_{3}=7
$$

- What is MLE of state \mathbf{x} under the gaussian noise?

$$
p\left(\mathbf{z}_{i} \mid \mathbf{x}\right)=\mathcal{N}\left(\mathbf{z}_{i} ; \mathbf{x}, 1\right) \quad \mathbf{x}^{\star}=4
$$

- What is MLE of state \mathbf{x} under the gaussian noise?

$$
p\left(\mathbf{z}_{i} \mid \mathbf{x}\right)=\mathscr{N}\left(\mathbf{z}_{i} ; \mathbf{x}, 100\right) \quad \mathbf{x}^{\star}=4
$$

- What is MLE of state \mathbf{x} under the gayssian noise?

$$
p\left(\mathbf{z}_{1} \mid \mathbf{x}\right)=\mathscr{N}\left(\mathbf{z}_{1} ; \mathbf{x}, 4\right)
$$

$$
\mathbf{x}^{*}=\arg \max _{\mathbf{x}} p\left(\mathbf{x} \mid \mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}\right)=\arg \max _{\mathbf{x}}\left(\prod_{\Gamma} p\left(\mathbf{z}_{i} \mid \mathbf{x}\right)\right) \begin{aligned}
& p\left(\mathbf{z}_{1} \mid \mathbf{x}\right)=\mathcal{N}\left(\mathbf{z}_{1} ; \mathbf{x}, 4\right) \\
& p\left(\mathbf{z}_{2} \mid \mathbf{x}\right)=\mathcal{N}\left(\mathbf{z}_{2} ; \mathbf{x}, 1\right) \\
& p\left(\mathbf{z}_{3} \mid \mathbf{x}\right)=\mathcal{N}\left(\mathbf{z}_{3} ; \mathbf{x}, 1\right)
\end{aligned}
$$

$$
=\arg \min _{\mathbf{x}} \sum_{i} 1 / \sigma_{i}^{2} \cdot\left(\mathbf{x}-\mathbf{z}_{i}\right)^{2}=\frac{\sum_{i} \mathbf{z}_{i} / \sigma_{i}^{j}}{\sum_{i} 1 / \sigma_{i}^{2}}=\frac{0.25 \cdot 2+1 \cdot 3+1 \cdot 7}{2.25}=4.66
$$

- How can you get MLE of the state under the heavy-tail-gaussian noise?

RANSAC (result depends on tolerance margin and implementation) $\mathbf{x}^{\star} \in<2,3>$

You should be able to use all measurement and transition models in all discussed concepts (EKF, PF, FG,...) including their first order approximations Examples of measurement probabilities
$p(\left.\underbrace{\left[\begin{array}{c}z_{t}^{\mathrm{GPS}, x} \\ z_{t}^{\mathrm{GPS}, y}\end{array}\right]}_{\mathbf{z}_{t}^{\mathrm{GPS}}} \right\rvert\, \underbrace{\left[\begin{array}{c}x_{t} \\ y_{t} \\ \theta_{t}\end{array}\right]}_{\mathbf{x}_{t}})=\mathscr{N}(\mathbf{z}_{t}^{\mathrm{GPS}} ; \underbrace{\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \cdot\left[\begin{array}{c}x_{t} \\ y_{t} \\ \theta_{t}\end{array}\right]}_{h^{\mathrm{GPS}}\left(\mathbf{x}_{t}\right)}, \mathbf{Q}_{t}^{\mathrm{GPS}})$
$p(\left.\underbrace{\left[\begin{array}{c}z_{t}^{x} \\ z_{t}^{y} \\ z_{t}^{\theta}\end{array}\right]} \right\rvert\, \underbrace{\left[\begin{array}{c}x_{t} \\ y_{t} \\ \theta_{t}\end{array}\right]}, \underbrace{\left[\begin{array}{c}x_{t+1} \\ y_{t+1} \\ \theta_{t+1}\end{array}\right]}_{h^{\text {odom }}\left(\mathbf{x}_{t}\right)})=\mathcal{N}(\mathbf{z}_{t}^{\text {odom }} ; \underbrace{\mathrm{w} 2 \mathrm{r}\left(\mathbf{x}_{t+1}, \mathbf{x}_{\mathbf{t}}\right)}_{\mathbf{x}_{t}}, \mathbf{Q}_{t}^{\text {odom }})$

$$
p(\underbrace{\begin{array}{c}
\mathbf{z}_{t}^{\text {odom }} \\
{\left[\begin{array}{c}
z_{t}^{x} \\
z_{t}^{y} \\
z_{t}^{\theta}
\end{array}\right]}
\end{array}{ }^{\mathbf{x}_{t}} \quad \begin{array}{c}
\mathbf{x}_{t+1} \\
{\left[\begin{array}{c}
x_{t} \\
y_{t} \\
\theta_{t}
\end{array}\right]}
\end{array}, \underbrace{\left[\begin{array}{c}
m^{x} \\
m^{y} \\
m^{\theta}
\end{array}\right]})=\mathcal{N}(\mathbf{z}_{t}^{\mathbf{m}} ; \underbrace{\mathrm{w} 2 \mathbf{r}\left(\mathbf{m}, \mathbf{x}_{\mathbf{t}}\right)}_{h^{\mathbf{m}}\left(\mathbf{x}_{t}\right)}, \mathbf{Q}_{t}^{\mathbf{m}})}
$$

Marker detector

Examples of state-transition probabilities

Differential-drive model

$$
p(\underbrace{\left[\begin{array}{c}
x_{t} \\
y_{t} \\
\theta_{t}
\end{array}\right]}_{\mathbf{x}_{t}} \left\lvert\, \underbrace{\left[\begin{array}{c}
x_{t-1} \\
y_{t-1} \\
\theta_{t-1}
\end{array}\right]}_{\mathbf{x}_{t-1}}\right., \underbrace{\left[\begin{array}{c}
v_{t} \\
\omega_{t}
\end{array}\right]}_{\mathbf{u}_{t}})=\mathcal{N}(\mathbf{x}_{t} ; \underbrace{\left[\begin{array}{c}
x_{t-1}+\frac{v_{t}}{\omega_{t}}\left(+\sin \left(\theta_{t-1}+\omega_{t} \Delta t\right)-\sin \left(\theta_{t-1}\right)\right) \\
y_{t-1}+\frac{v_{t}}{\omega_{t}}\left(-\cos \left(\theta_{t-1}+\omega_{t} \Delta t\right)+\cos \left(\theta_{t-1}\right)\right) \\
\theta_{t-1}+\omega_{t} \Delta t
\end{array}\right]}_{g\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)}, \mathbf{R}_{t})
$$

Balistic trajectory

$$
p(\underbrace{\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]}_{\mathbf{x}_{t}} \left\lvert\, \underbrace{\left[\begin{array}{l}
x_{t-1} \\
y_{t-1}
\end{array}\right]}_{\mathbf{x}_{t-1}}\right., \underbrace{\left[\begin{array}{c}
v_{t} \\
\omega_{t}
\end{array}\right]}_{\mathbf{u}_{t}})=\mathcal{N}(\mathbf{x}_{t} ; \underbrace{\left[\begin{array}{l}
x_{t-1}+v_{t} \Delta t \cos \left(\omega_{t}\right) \\
y_{t-1}+v_{t} \Delta t \sin \left(\omega_{t}\right)-\frac{1}{2} g \Delta t^{2}
\end{array}\right]}_{g\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)}, \mathbf{R}_{t})
$$

You should also understand reasoning behind this table

Drawbacks

- course of dimensionality
o spatial discretization
- course of dimensionality
o partical quantization
o represent only gaussians
o suffers from linearization
- represents gaussians
- grows to infinity

Advantages
o represents arbitrary prob. distribution
o represents arbitrary prob. distribution
o nicely scales with higher dimensions
o does not suffer from linearizations
o allows for arbitrary conditional independences

