
ARO Lecture notes - Kalman Filter

Ondřej Franek

Prerequisites

Def: Event A is conditionally independent on C given B iff p(A |B,C) = p(A |B)

Def: State xt−1 is complete iff future xt is conditionally independent on past given xt−1

Consequences:

• State-transition probability:

p(xt|xt−1,ut) = p(xt|xt−1,ut, x0:t−2, z1:t−1, u1:t−1) (1)

• Measurement probability:

p(zt|xt) = p(zt|xt, x0:t−1, z1:t−1, u1:t) (2)

Figure 1: Complete state ilustration.

Bayes Filter

The Bayes filter is an algorithm for probabilistic state estimation in dynamic systems. It
predicts the state of a system over time, given control inputs and sensory measurements.
The filter performs two main steps in a repetitive manner: prediction and measurement
update.
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• Initialization: The belief of the initial state is represented by bel(x0) at time t = 1.

• Prediction Step: Given the control action ut at time t, the prediction step com-
putes a prior belief state:

bel(xt) =

∫
p(xt|xt−1,ut) bel(xt−1) dxt−1 (3)

• Measurement Update: Upon receiving a new measurement zt, the measurement
update refines the predicted belief to produce a posterior belief state:

bel(xt) = η p(zt|xt) bel(xt) (4)

where η is a normalization constant that ensures the posterior belief is a valid
probability distribution by integrating to 1.

Kalman Filter

The Kalman filter is a powerful algorithm used for estimating the state of a system over
time. It operates on a simple yet effective principle: predict the future state, then update
this prediction with new observations. It handles systems with uncertainties and noise
quickly and effectively, making it widely utilized.

Linear System with Gaussian Noise

The Kalman filter assumes a linear system with Gaussian noise.

xt = Atxt−1 +Btut +wt (5)

zt = Ctxt + vt (6)

where At, Bt, Ct are matrices that define the system dynamics, ut is the control in-
put, xt is state vector and w ∼ N (0,Rt) and v ∼ N (0,Qt) are the transition and
measurement noise with covariance matrices Rt and Qt, respectively. This implies that
all probability distributions involved are Gaussian, which simplifies computation. The
state-transition and measurement probabilities are modeled as follows:

p(xt|xt−1,ut) = N (xt;Atxt−1 +Btut,Rt) (7)

p(zt|xt) = N (zt;Ctxt,Qt) (8)

Implementation of Kalman Filter

Combining the principles of the Bayes filter (equations 3 and 4), with prerequisities (equa-
tions 1 and 2) and the properties of linear Gaussian systems (equations 7 and 8), we can
derive the Kalman filter update equations:
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• Prediction step (new action ut):

µt = Atµt−1 +Btut (9)

Σt = AtΣt−1A
⊤
t +Rt (10)

bel(xt) = N (xt;µt,Σt) (11)

• Measurement update (new measurement zt):

Kt = ΣtC
⊤
t (CtΣtC

⊤
t +Qt)

−1 (12)

µt = µt +Kt(zt −Ctµt) (13)

Σt = (I−KtCt)Σt (14)

bel(xt) = N (xt;µt,Σt) (15)

where µt is the estimated mean, Σt is the estimated uncertainty (covariance), and Kt is
the Kalman gain which minimizes the estimated uncertainty.

In the following picture 2, we can see the propagation of the state estimate and
its uncertainty through a linear function in the prediction step. The Green Gaussian
represents the prior belief, and the Red Gaussian represents the posterior belief.

Figure 2: Linear system propagation.

Kalman Filter Example: Squeezes Gaussian

In this example of a Kalman Filter, the state of a system is represented by position and

velocity of the robot. The state can be expressed as a vector x =

[
x
v

]
. In this example

the state-transition probability is defined as

p(xt|xt−1,ut) = N (xt;

[
1 1
0 1

]
︸ ︷︷ ︸

At

xt−1 +

[
1 0
0 1

]
︸ ︷︷ ︸

Bt

ut,

[
0.01 0
0 0.01

]
︸ ︷︷ ︸

Rt

)
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and measurement probability is

p(zt|xt) = N (zt;
[
1 0

]︸ ︷︷ ︸
Ct

xt−1,
[
0.3

]︸ ︷︷ ︸
Qt

).

When there are no measurements available the probability distribution (modeled as
a Gaussian) tends to become more squeezed and skewed over time. This is due to the
growing uncertainty in predictions as time progresses. Additionally, the skewing of the
distribution is caused by the linear dependence of position on velocity. The sequence
of images (Figure 3) demonstrates how the distribution evolves from x0 to x5, visually
representing the increasing uncertainty at different time steps.

(a) time t = 0 (b) time t = 3 (c) time t = 5

Figure 3: Visualization of state squeezing and skewing at different time steps.

If the robot receives some measurements, the probability distribution undergoes a sig-
nificant correction. Each measurement provides additional information that helps refine
the estimates of the robot’s state, reducing uncertainty and compensating for the pre-
vious skewing and squeezing effects. The corrected probability Gaussian is depicted in
Figure 4.

Figure 4: Probability after the measurement step.
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Conclusion

The Kalman Filter is a fundamental tool in control systems and signal processing, effi-
ciently estimating states in linear systems with Gaussian noise. Its recursive structure
is well-suited for real-time applications in various fields like navigation and tracking.
However, the effectiveness of the Kalman Filter is constrained by its assumption that
both system dynamics and measurement functions are linear. This limitation restricts
its applicability to linear systems, as it struggles to accurately address deviations arising
from non-linear behaviors in real-world scenarios. To manage non-linearities, adaptations
such as the Extended Kalman Filter or alternative approaches like the Particle Filter are
commonly employed.

Extended Kalman Filter

The Extended Kalman Filter (EKF) is an adaptation of the Kalman Filter for non-linear
systems. While the Kalman Filter is restricted to linear models, the EKF allows for a
broader range of applications by linearizing about the current estimate.

Non-Linear System with Gaussian Noise

The state and measurement models for a non-linear system can be expressed as:

xt = g(xt−1,ut) +w (16)

zt = h(xt) + v (17)

where g and h are non-linear functions of the state and control inputs, and w ∼ N (0,Rt)
and v ∼ N (0,Qt) represent the transition and measurement noise with covariance ma-
trices Rt and Qt, respectively.

In the following picture we can see p

Linearization

The EKF approximates these non-linear functions using the first-order Taylor expansion
around the current estimate:

g(ut,xt−1) ≈ g(ut,µt−1) +Gt(xt−1 − µt−1) (18)

h(xt) ≈ h(µt) +Ht(xt − µt), (19)

where Gt and Ht are defined as follows:

Gt =
∂g(x = µt−1,u = ut)

∂x
(20)

Ht =
∂h(x = µt)

∂x
(21)

The state-transition and measurement probabilities are modeled as follows:

p(xt|xt−1,ut) ≈ N
(
xt;g(µt−1,ut) +Gt(xt−1 − µt−1),Rt

)
(22)
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p(zt|xt) ≈ N (zt;h(µt) +Ht(xt − µt),Qt) (23)

In the following figures, 5 and 6, we can observe the propagation of the prior be-
lief, represented by the Green Gaussian, through a non-linear system (Figure 5) and a
linearized system (Figure 6).

Figure 5: Non-linear system propagation. Figure 6: Linearized system propagation.

Implementation of Extended Kalman Filter

Combining the principles of the Bayes filter (equations 3 and 4), with prerequisities (equa-
tions 1 and 2) and the properties of linearized Gaussian systems (equations 22 and 23),
we can derive the Kalman filter update equations:

• Prediction step (new action ut):

µt = g(µt−1,ut) (24)

Σt = GtΣt−1G
⊤
t +Rt (25)

bel(xt) = N (xt;µt,Σt) (26)

• Measurement update (new measurement zt):

Kt = ΣtH
⊤
t (HtΣtH

⊤
t +Qt)

−1 (27)

µt = µt +Kt(zt − h(µt)) (28)

Σt = (I−KtHt)Σt (29)

bel(xt) = N (xt;µt,Σt) (30)

Conclusion

The Extended Kalman Filter extends the Kalman Filter to non-linear systems by lin-
earizing about the current state estimate. However, this approach introduces errors due
to approximation, particularly when the system dynamics or measurements are highly
non-linear. These errors can lead to inaccuracies and potential divergence of the filter,
especially with poor initial estimates or significant non-linear deviations. Thus, for sys-
tems with strong non-linearities, more robust methods like the Unscented Kalman Filter
or Particle Filter may provide better performance
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