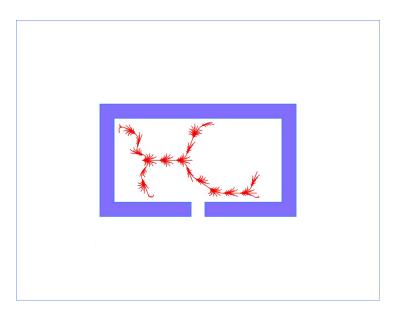
Motion planning: sampling-based planners I

Vojtěch Vonásek

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

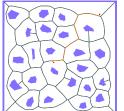
Planning for "car-like" vehicle

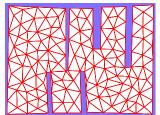


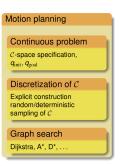
Summary of the last lecture

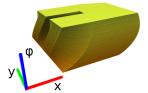
Motion/path planning

- Finding of collision-free trajectory/path for a robot
- Formulation using the configuration space C
- C is continuous \rightarrow conversion to a discrete representation (graph) → graph search
- Combinatorial path planning
 - Require an explicit representation of Cobs
 - For point/disc robots (if C is sames as W)
 - Visibility graphs, Voronoi diagrams, . . .







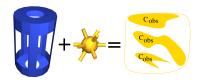


Configuration space

- \bullet Configuration space ${\mathcal C}$ has as many dimensions as DOFs of the robot
- Obstacles C_{obs} are given implicitly!

$$\mathcal{C}_{\mathrm{obs}} = \{ q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O} \neq \emptyset \}$$

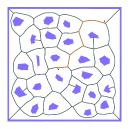
C_{obs} depends both on robot and obstacles!

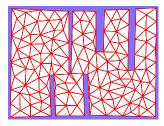


- Generally, explicit geometry/shape of C_{obs} is not available
- Problem of enumerating configurations in C_{obs}
- Problem of enumerating "surface" configurations of \mathcal{C}_{obs}

Configuration space

- We cannot generally/easy/fast say what are surface/boundary configurations of $\mathcal{C}_{\rm obs}$
- This precludes combinatorial path planners (e.g., Visibility Graphs, Voronoi diagrams, Cell-decompositions, . . .) to be used for high-dimensional C-space
 - they require surface/boundary of \mathcal{C}_{obs}

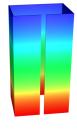


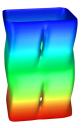


Configuration space: example I

FACULTY
OF ELECTRICAL
ENGINEERING
CTU IN PRAGUE

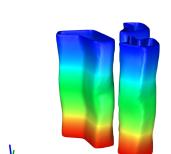
- Map: 1000 × 700 units
- Robot: rectangle 20 × a units
- $q = (x, y, \varphi)$
- \mathcal{C} visualized for $0 \leq \varphi < 2\pi$
- $\varphi = 0 \rightarrow \blacksquare \leftarrow \varphi = 2\pi$



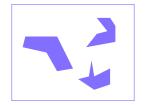


Configuration space: example II

- Map: 2000 × 1600 units
- $q = (x, y, \varphi)$
- \mathcal{C} visualized for $0 \le \varphi < 2\pi$
- $\varphi = 0 \rightarrow \blacksquare \leftarrow \varphi = 2\pi$



 \mathcal{A} : rectangle 20 \times 100 units

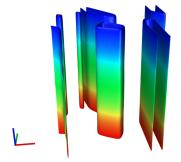


 $\mathcal{A}:$ equilateral triangle, side 100 units (right-bottom "hole" caused by rendering clip)

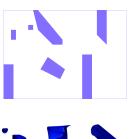
Configuration space: example III

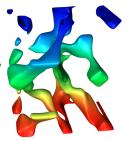
FACULTY
OF ELECTRICAL
ENGINEERING
CTU IN PRAGUE

- Map: 5000 × 3000 units
- $q = (x, y, \varphi)$
- ${\cal C}$ visualized for $0 \le \varphi < 2\pi$
- $\varphi = 0 \rightarrow \blacksquare \leftarrow \varphi = 2\pi$



 $\mathcal{A} \colon \text{rectangle 20} \times \text{100} \text{ units}$





Why is search in C-space challenging

- C-space is usually high-dimensional in practical applications
 - Discretization not reasonable due to memory/time limits
- Non-trivial mapping between the shape of robot A and obstacles O
 - Simple obstacles in ${\mathcal W}$ may be quite complex in ${\mathcal C}$
- Narrow passages (we will discuss later)

Early methods (combinatorial path planners)

- Designed for 2D/3D workspaces for point robots, complete, optimal (some), deterministic
- Limited only to special cases
- In late 1980s, these methods have became impractical

But general path/planning requires search in \mathcal{C} -space!

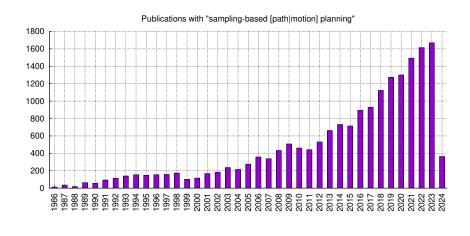
If you are desperate, flip a coin → randomization!

Milestones in motion planning

- Dijkstra's algorithm, 1959
- A*, 1968
- Configuration space, 1983
- Era of combinatorial planning, 1980s–1990s
- First planners using randomization, early 1990s
- Probabilistic roadmaps (PRM), 1995
- Rapidly-exploring Random Tree (RRT), 1998

- Dijkstra, E. W. "A Note on Two Problems in Connexion with Graphs", Numerische Mathematik
 no. 1 (December 1959): 269–71.
- P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968,
- Lozano-Perez, "Spatial Planning: A Configuration Space Approach," in IEEE Transactions on Computers, vol. C-32, no. 2, pp. 108-120, Feb. 1983,

Milestones in motion planning



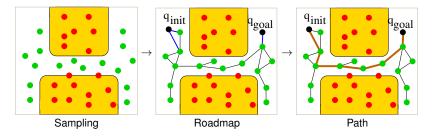
Sampling-based motion planning I

FACULTY
OF ELECTRICAL
ENGINEERING
CTU IN PRAGUE

MRS
MULTI-ROBOT
SYSTEMS
GROUP

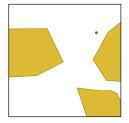
- C is randomly sampled
- Each sample is a configuration $q \in C$
- The samples are classified as free $(q \in \mathcal{C}_{\text{free}})$ or non-free $(q \in \mathcal{C}_{\text{obs}})$ using collision detection

- Free samples are stored and connected, if possible, by a "local planner"
- Result of sampling-based planning is a "roadmap" graph
- The roadmap is the discretized image of $\mathcal{C}_{\text{free}}$
- Graph-search in the roadmap



Sampling-based motion planning II

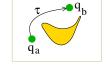
- Sampling-based planning can solve any problem formulated using C-space
- Robots of arbitrary shapes
 - Robot shape is considered in collision detection
 - Collision detection is used as a "black-box"
 - Single-body or multi-body robots allowed
- Robots with many-DOFs
 - Because the search is realized directly in C-space
 - Dimension of $\mathcal C$ is determined by the DOFs
- ✓ Kinematic, dynamic and task constraints can be considered
 - It depends on the employed local planner



Local planner

• Given configurations $q_a \in \mathcal{C}_{\text{free}}$ and $q_b \in \mathcal{C}_{\text{free}}$, the local planner attempts to find a path τ :

$$au: [0,1] o \mathcal{C}_{free}$$



such that
$$\tau(0) = q_a$$
 and $\tau(1) = q_b$

au must be collision free!

Control-theory approach: special cases

- We can assume that q_a and q_b are "near" without obstacles
- Two-point boundary value problem (BVP)
- · Local planner is designed as a controller
- But problems are with obstacles!

Generally:

- The definition of "local planning" is same as motion planning
- → same complexity as motion planning!

Local planners

Exact local planners

- For certain systems, BVP can be solved analytically
- Example: car-like without backward motions → Dubins car

Approximate local planners

- Path τ connects q_a with q_{new} that is near-enough from q_b
- Computation e.g. using forward motion model and integration over time Δt

Straight-line local planners

- Connects q_a and q_b by line-segment
- Check the collisions of the line-segment
- Connect q_a with the first contact configuration q_{new} or with q_b if no collision occurs
- Suitable for systems without kinematic/dynamic constraints

Exact local planner

Approximate

Straight-line

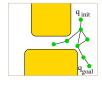
Single query vs. multi-query planning

- Can find paths between multi start/goal gueries
- Requires to build a roadmap covering whole $\mathcal{C}_{\text{free}}$
- Probabilistic Roadmaps (PRM) + many derivates
- good for frequent planning and replanning
- x sometimes slower construction

Single-query methods

- The roadmap is built only to answer a single start/goal query
- The sampling of C terminates if the query can be answered
- Tree-based planners: Rapidly-exploring Random Trees (RRT), Expansive-space Tree (EST) + their variants
- Practically faster for single-query
- Any subsequent planning requires novel search of \mathcal{C}
- Slow for multi-query planning

Multi-query roadmap



Single-query roadmap

Probabilistic Roadmaps (PRM)

Two-phase method: learning phase and query phase

Learning phase

- Random samples are generated in C
- Samples are classified as free/non-free; free samples are stored
- Each sample is connected to its near neighbors by a local planner
- Final roadmap may contain cycles

Query phase:

- Answers path/motion planning from $q_{ ext{init}} \in \mathcal{C}_{ ext{free}}$ to $q_{ ext{goal}} \in \mathcal{C}_{ ext{free}}$
- q_{init} and q_{goal} are connected to their nearest neighbors in the roadmap (using local planner)
- Graph-search of the roadmap
- L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.

Learning phase

Query phase

Original PRM

- Simultaneous sampling + roadmap expansion
- q_{rand} is connected to each graph component only once
- Roadmap is a tree structure

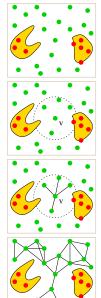
- neighborhood* returns q by increasing distance from $q_{\rm rand}$
- L. E. Kavraki, P. Svestka, et al., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces,". IEEE Trans. on Robotics and Automation, 12(4), 1996.

Simplified PRM (sPRM)

- Separate sampling and roadmap connection
- Each node is connected to its nearest neighbors

```
Roadmap can contains cycles
1 \overline{V=\emptyset}: E=\emptyset
                                         // vertices and edges
2 while |V| < n \, do // generating n collision-free
     samples
        q_{\rm rand} = generate random sample in C
        if q<sub>rand</sub> is collision-free then
         V = V \cup \{q_{\text{rand}}\}
 5
   foreach v \in V do // connecting samples to roadmap
        V_n = V.\text{neighborhood}(v)
        foreach u \in V_n, u \neq v do
             if connect(u, v) then
                                               // local planner
                 E = E \cup \{(u, v)\}
10
11 G = (V, E)
                                                // final roadmap
```

S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.



sPRM: variants and properties

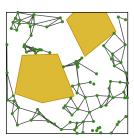
 Behavior of sPRM is mostly influenced by implementation of V.neighborhood

k-nearest sPRM (aka k-sPRM)

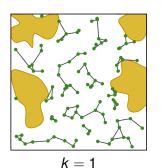
- V.neighborhood provides k nearest neighbors from each node of the roadmap
- Probabilistically complete if $k \neq 1$
- Is not asymptotically optimal
- Usually k = 15

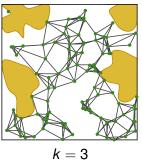
Variable radius sPRM

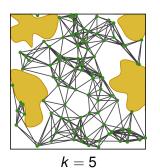
- V.neighborhood returns nearest neighbors of q_{rand} within a radius r
- The choice of r influences completeness and optimality of sPRM
- Most important PRM* planner



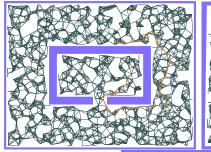
sPRM: influence of nearest neighbors

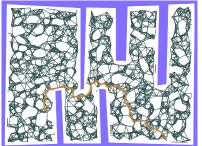


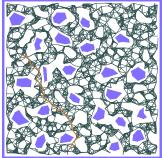




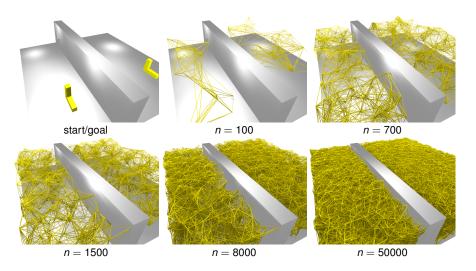
sPRM example 2D ${\mathcal W}$





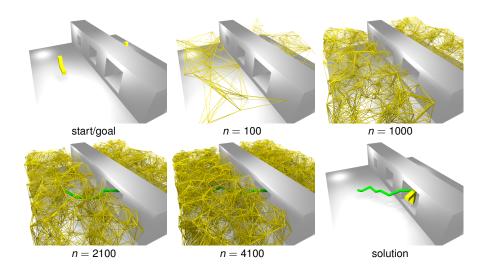


sPRM example 3D ${\cal W}$



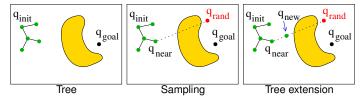
The wall contains one window, but no path found with 50k samples

sPRM example 3D ${\mathcal W}$



Rapidly-exploring Random Tree (RRT)

- Incremental search of $\mathcal C$
- Collision-free configurations are stored in tree $\ensuremath{\mathcal{T}}$
- T is rooted at q_{init}
- Tree is expanded towards random samples q_{rand}
- The search terminates if tree is close enough to $q_{\rm goal}$, or after I_{max} iterations



◆ LaValle:, S. M. Rapidly-exploring random trees: a new tool for path planning". Technical report, Iowa State University, 1998

Rapidly-exploring Random Tree (RRT)

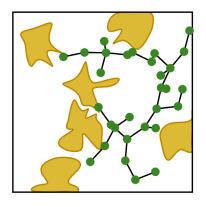
- Incremental search of ${\cal C}$
- Collision-free configurations are stored in tree ${\cal T}$
- T is rooted at q_{init}
- Tree is expanded towards random samples q_{rand}
- The search terminates if tree is close enough to $q_{\rm goal}$, or after I_{max} iterations

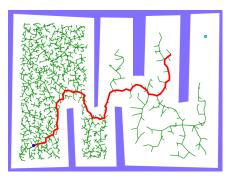
```
\begin{array}{llll} & \text{initialize tree } \mathcal{T} \text{ with } q_{\text{init}} \\ & \text{for } i = 1, \dots, I_{max} \text{ do} \\ & & q_{\text{rand}} = \text{generate randomly in } \mathcal{C} \\ & & q_{\text{near}} = \text{find nearest node in } \mathcal{T} \text{ towards} \\ & & q_{\text{rand}} \\ & & q_{\text{new}} = \text{localPlanner from } q_{\text{near}} \text{ towards} \\ & & q_{\text{rand}} \\ & & & & & q_{\text{rand}} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &
```

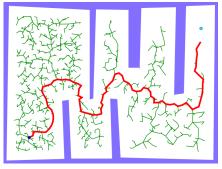

► LaValle:, S. M. Rapidly-exploring random trees: a new tool for path planning". Technical report, Iowa State University, 1998

RRT example in 2D ${\mathcal W}$

• 2D C

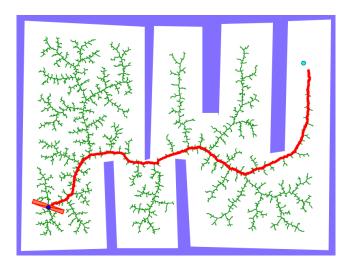




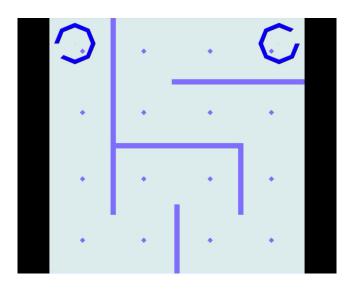


- 2D robot, rotation allowed \rightarrow 3D ${\cal C}$
- Why the tree does not "touch" the obstacles?

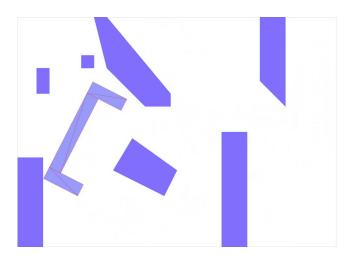
RRT example in 2D ${\mathcal W}$



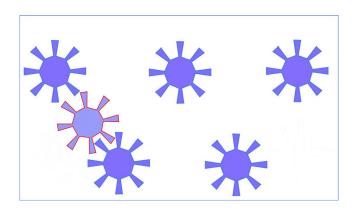
RRT example in 2D ${\cal W}$



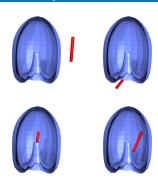
RRT example in 2D ${\cal W}$



RRT example in 2D ${\mathcal W}$

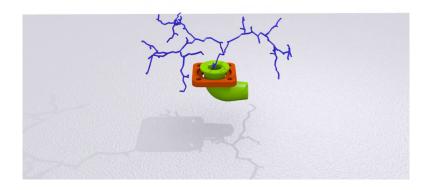


RRT example in 3D \mathcal{W}



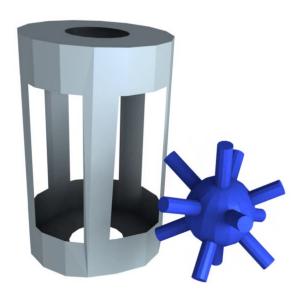
- 3D Bugtrap benchmark
 parasol.tamu.edu/groups/amatogroup/benchmarks/
- 3D robot in 3D space \rightarrow 6D ${\cal C}$

RRT example in 3D ${\cal W}$



- 3D Flange benchmark parasol.tamu.edu/groups/amatogroup/benchmarks/
- 3D robot in 3D space ightarrow 6D $\mathcal C$

RRT example in 3D ${\cal W}$



RRT example in 3D ${\cal W}$

RRT: tree expansion types

 q_{near} to q_{rand}

Straight-line expansion: make the line-segment S from

Variants:

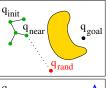
A If S is collision-free, expand the tree only by

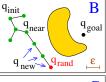
 $q_{\text{new}} = q_{\text{rand}}$

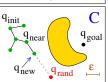
- Creates long segments, fast exploration of C
 - point-segment distance
- Requires connection in the middle of line-segment
- B If S is collision-free, discretize S and expand the tree by all points on S
 - Most used, enables fast nearest-neighbor search

Requires nearest-neighbor search to consider

- C Find configuration $q_{\text{new}} \in S$ at the distance ε from q_{near} . Expand tree by q_{new} if it's collision-free
 - Basic RRT, slower growth than B
 - Enables fast nearest-neighbor search





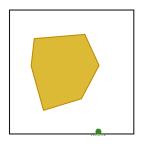


RRT: tree expansion types

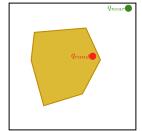
FACULTY
OF ELECTRICAL
ENGINEERING
CTU IN PRAGUE

FACULTY
MRS
SYSTEMS
GROUP

- ullet Examples for point robot in 2D ${\mathcal C}$
- Variant A

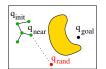


Variant C



RRT: properties

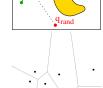
- RRT builds a tree $\mathcal T$ of collision-free configurations
- T is rooted at q_{init}
- T is without cycles
- Path from q_{init} to q_{goal} :
 - ullet Find nearest node $q_{ ext{goal}}' \in \mathcal{T}$ towards $q_{ ext{goal}}$
 - Start at $q_{
 m goal}'$ and follow predecessors to $q_{
 m init}$
 - Existing ${\mathcal T}$ can answer queries starting at $q_{ ext{init}}$
 - if goal is not in/near current \mathcal{T} , \mathcal{T} is further grown
 - Non-optimal
 - Probabilistically complete
- Why the tree does not grow to itself?
- Why does it "rapidly" explore the C-space?
 - ... because of Voronoi bias!



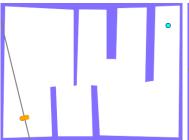
RRT: Voronoi bias I

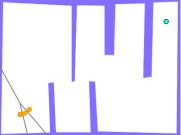
- FACULTY
 OF ELECTRICAL
 ENGINEERING
 CTU IN PRAGUE
- MRS MULTI-ROBOT SYSTEMS GROUP

- RRT prefers to expand $\mathcal T$ towards unexplored areas of $\mathcal C$
- This is caused by Voronoi bias:
 - $q_{
 m rand}$ is generated **uniformly** in ${\cal C}$
 - \mathcal{T} is expanded from **nearest** node in \mathcal{T} **towards** q_{rand}
 - The probability that a node $q \in \mathcal{T}$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell



Voronoi bias is implicit (caused by the nearest-rule selection)

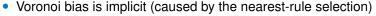


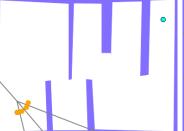


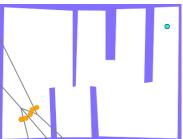
RRT: Voronoi bias I

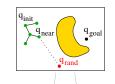
- FACULTY
 OF ELECTRICAL
 ENGINEERING
 CTU IN PRAGUE
- MRS MULTI-ROBOT SYSTEMS GROUP

- RRT prefers to expand $\mathcal T$ towards unexplored areas of $\mathcal C$
- This is caused by Voronoi bias:
 - $q_{
 m rand}$ is generated **uniformly** in ${\cal C}$
 - \mathcal{T} is expanded from **nearest** node in \mathcal{T} **towards** q_{rand}
 - The probability that a node $q \in \mathcal{T}$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell



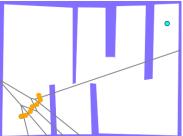


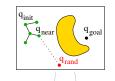




RRT: Voronoi bias I

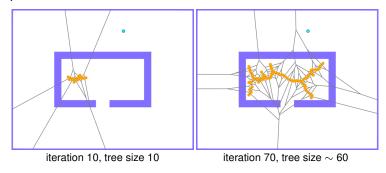
- RRT prefers to expand \mathcal{T} towards unexplored areas of \mathcal{C}
- This is caused by Voronoi bias:
 - $q_{\rm rand}$ is generated **uniformly** in C
 - \mathcal{T} is expanded from **nearest** node in \mathcal{T} **towards** q_{rand}
 - The probability that a node $q \in \mathcal{T}$ is selected for the expansion is proportional to the area/volume of it's Voronoi cell





RRT: Voronoi bias II

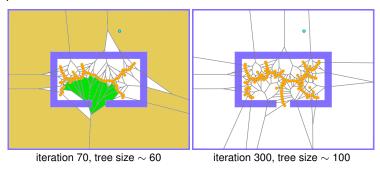
- Nearest-neighbors/Voronoi bias do not respect obstacles!
- If a node having large Voronoi cells is near an obstacle \rightarrow tree expansion is blocked at this node



- Tree grows well until iteration 70
- Yellow: areas with high prob. of being selected for expansion
- Green: areas that show be selected for expansion so the tree can escape the obstacle
- The tree does not expand much until iteration 300!

RRT: Voronoi bias II

- Nearest-neighbors/Voronoi bias do not respect obstacles!
- If a node having large Voronoi cells is near an obstacle \rightarrow tree expansion is blocked at this node



- Tree grows well until iteration 70
- Yellow: areas with high prob. of being selected for expansion
- Green: areas that show be selected for expansion so the tree can escape the obstacle
- The tree does not expand much until iteration 300!

Expansive-space tree (EST)

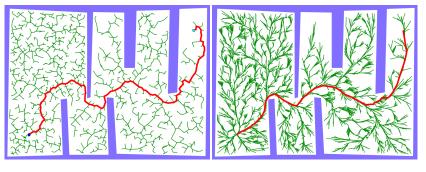
- Builds two trees \mathcal{T}_i and \mathcal{T}_q (from q_{init} and q_{goal})
- Weight w(q) is computed for each configuration q
- Nodes are selected for expansion with probability $w(q)^{-1}$
- Expansion of one tree \mathcal{T} :
- 1 q' = select node from T with probability $w(q)^{-1}$ Q = k random points around
 - $q': Q = \{q \in \mathcal{C}_{\text{free}} \mid \varrho(q, q') < d\}$
- g foreach g ∈ Q do
 - w(q) = compute weight of the sample q
- if $rand() < w(q)^{-1}$ and connect(q, q') then \mathcal{T} .addNode(q) \mathcal{T} .addEdge(q', q) 7
- w(q) is the number of nodes in \mathcal{T} around q
 - Both \mathcal{T}_i and \mathcal{T}_a grow until they approach each other
- Trees are connected using local planner between their nearest nodes
- D. Hsu, J.-C. Latomber et al. Path planning in expansive configuration spaces. Int. Journal of Comp. Geometry and Applications, 9(4-5), 1999

 \mathcal{T}_i and \mathcal{T}_a

pairs for tree connection

Asymptotically optimal RRT*and PRM*

- PRM/RRT/EST do not consider any optimality criteria
- Only sPRM is asymptotically optimal
- PRM* and RRT* are new planners for which asymptotic optimality was proven



RRT RRT*

• S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

PRM*: overview

- PRM* is an improved version of sPRM
- PRM* uses "optimal" radius r(n) for searching the nearest neighbors depending on the actual number of nodes n:

$$egin{split} r(n) &= \gamma_{PRM} igg(rac{\log(n)}{n}igg)^{rac{1}{d}} \ & \gamma_{PRM} &> \gamma_{PRM}^* = 2igg(1+rac{1}{d}igg)^{rac{1}{d}} igg(rac{\mu(\mathcal{C}_{ ext{free}})}{\zeta_d}igg)^{rac{1}{d}} \end{split}$$

- d is the dimension of C
- ullet $\mu(\mathcal{C}_{\mathrm{free}})$ is the volume of $\mathcal{C}_{\mathrm{free}}$
- ζ_d is the volume of the unit ball in the d-dimensional Euclidean space
- r decays with n
- r depends also on the problem instance! why?

PRM* algorithm

Same as for sPRM, just the line 7 is changed to:

$$V_n = V.neighborhood(v, r(n))$$
, where $n = |V|$

• Variant of PRM* that uses k-nearest neighbors definitions

$$k = k_{PRM} \log(n)$$

$$k_{PRM} > k_{PRM}^* = e\left(1 + \frac{1}{d}\right)$$

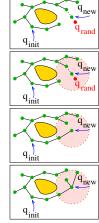
- The constant k_{PRM}^* depends only on d and not on the problem instance (compare it to γ_{PRM}^*)
- $k_{PRM} = 2e$ is a valid choice for all problem instances

k-nearest PRM* algorithm (aka *k*-PRM*)

• Same as for sPRM, just the line 7 is changed to: $V_n = k$ -nearest neighbors from V, $k = k_{PRM} \log(n)$

RRT*: overview

- For each node, a cost of the path from q_{init} to that node is established
- RRT* has improved tree expansion and nearest-neighbor search
- Tree expansion by node q_{new}
 - Parent of q_{new} is optimized to minimize cost at q_{new}
 - After q_{new} is connected to tree, node it its vicinity are "rewired" via q_{new} if it improves their cost
- Nearest-neighbor search
 - Number of nearest-neighbors varies similarly to PRM*



S. Karaman, and E. Frazzoli. "Sampling-based algorithms for optimal motion planning." The international journal of robotics research 30.7 (2011): 846-894.

RRT*: algorithm


```
1 initialize tree \mathcal{T} with q_{init}
   for i = 1, \ldots, I_{max} do
          q_{\rm rand} = generate randomly in C
          q_{\text{near}} = find nearest node in \mathcal{T} towards q_{\text{rand}}
          q_{\text{new}} = \text{localPlanner from } q_{\text{near}} \text{ towards } q_{\text{rand}}
          if q<sub>new</sub> is collision-free then
                Q_{near} = \mathcal{T}.neighborhood(q_{new}, r)
                \mathcal{T}.\mathsf{addNode}(q_{\mathsf{new}}) // new node to tree
8
                q_{\text{best}} = q_{\text{near}} // best parent of q_{\text{new}} so far
                c_{best} = cost(q_{near}) + cost(line(q_{near}, q_{new}))
10
                foreach q \in Q_{near} do
11
                      c = cost(q) + cost(line(q, q_{new}))
12
                      if canConnect(q, q_{new}) and c < c_{best} then
13
14
                            q_{best} = q // new parent of q_{new} is q
                            c_{best} = c
                                                                     // its cost
15
                \mathcal{T}.\mathsf{addEdge}(q_{best}, q_{\text{new}}) // tree connected to
16
                  q_{\text{new}}
                foreach q \in Q_{near} do
                                                                     // rewiring
17
                      c = cost(q_{new}) + cost(line(q_{new}, q))
18
                      if canConnect(q_{new}, q) and c < cost(q) then
19
                            change parent of q to q_{new}
20
```


lines 17-20

RRT* with variable neighborhood

- $cost(line(q_1, q_2))$ is cost of path from q_1 to q_2 (path by the local planner)
- $cost(q), q \in \mathcal{T}$ is cost of the path from q_{init} to q (path in \mathcal{T})
- nearest neighbors Q_{near} are searched within radius r depending on the number of nodes n in the tree:

$$r = min \left\{ \gamma_{RRT}^* \left(rac{\log(n)}{n}
ight)^{rac{1}{d}}, \eta
ight\}$$
 $\gamma_{RRT}^* = 2 \left(1 + rac{1}{d}
ight)^{rac{1}{d}} \left(rac{\mu(\mathcal{C}_{ ext{free}})}{\zeta_d}
ight)^{rac{1}{d}}$

- d is the dimension of C
- $\mu(\mathcal{C}_{\text{free}})$ is the volume of $\mathcal{C}_{\text{free}}$
- ζ_d is the volume unit ball in the d-dimensional Euclidean space
- η is constant given by the used local planner
- r decays with n
- r depends also on the problem instance

RRT*with variable *k*-nearest neighbors

Alternative *k*-nearest RRT* (aka *k*-RRT*)

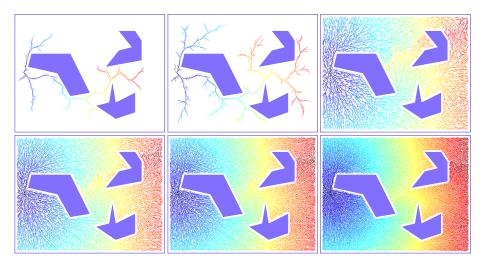
• k-nearest neighbors are selected for parent search and rewiring

$$k = k_{RRT} \log(n)$$

$$k_{RRT} > k_{RRT}^* = e\left(1 + \frac{1}{d}\right)$$

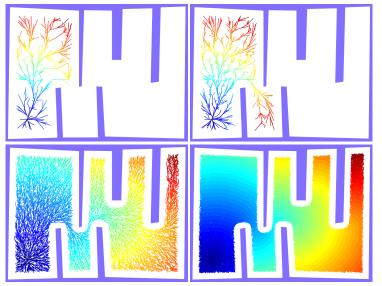
- n is the number of nodes in ${\mathcal T}$
- k-RRT* has same implementation as RRT* just line 7 is changed to Q_{near} = find k nearest neighbors in \mathcal{T} towards q_{new}

RRT*: example in 2D ${\mathcal W}$



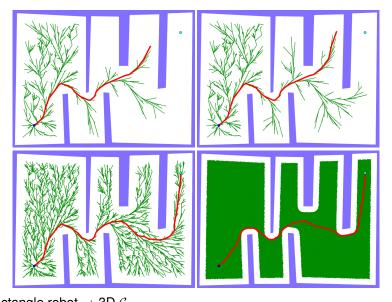
Rectangle robot, rotation allowed \rightarrow 3D $\mathcal C$

RRT*: example in 2D ${\mathcal W}$



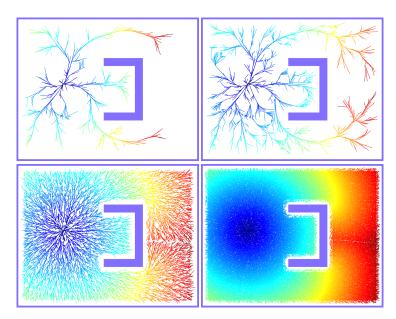
2D rectangle robot \to 3D \mathcal{C} . The colormap shows the path length from q_{init} . But is it really good?

RRT*: example in 2D ${\cal W}$



2D rectangle robot \to 3D ${\cal C}$ Depicted path demonstrates the slow convergence of the path quality

RRT*: example in 2D ${\mathcal W}$



Overview of sampling-based planners

Algorithm	Probabilistic completeness	Asymptotic optimality
RRT	Yes	No
PRM	Yes	No
sPRM	Yes	Yes
k-sPRM	No if $k=1$	No
PRM* / k-PRM*	Yes	Yes
RRT* / k-RRT*	Yes	Yes

- If you don't need optimal solution, stay with RRT/PRM
- RRT is faster than RRT*
- RRT is way easier for implementation than RRT* (if we need an efficient implementation)
- Path quality of RRT can be improved by fast post-processing
- Asymptotic optimality is just asymptotic!
- → slow convergence of path quality

Lecture summary

- Sampling-based planning randomly samples C
- Samples are classified as free/non-free, free samples are stored
- Multi-query vs. single-query planners
- PRM/RRT/EST and their optimal variants PRM* and RRT*