Motion planning: combinatorial path planning

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

Continuous space

Search

Combinatorial (geometric) path planning

- Assume point/disc robots
- Use geometric (usually polygonal) representation of W
- In these cases, representation of \mathcal{W} is also representation of \mathcal{C}
- The representation is explicit \rightarrow enumeration of obstacles is easy
- Voronoi diagram, Visibility map, Decomposition-based methods

Point robot in 2D or 3D \mathcal{W}

- The map of \mathcal{W} is also representation of \mathcal{C}
- Polygons/polyhedrons are suitable

Disc/sphere robot in 2D or 3D \mathcal{W}

- The obstacles are "enlarged" by the radius of the robot (Minkowski sum)
- Then, representation of \mathcal{W} is also representation of \mathcal{C}

2D \mathcal{W} and a path for the point robot

2D $\mathcal{W}+$ enlargement of obstacles, and a path for the disc robot

www.youtube.com/watch?v=hKVBJMHivA4

Combinatorial (geometric) path planning

\square

Visibility graph (VG)

- Two points v_{i}, v_{j} are visible $\Longleftrightarrow\left(s v_{i}+(1-s) v_{j}\right) \in \mathcal{C}_{\text {free }}, \quad s \in(0,1)$
- Visibility graph (V, E), V are vertices of polygons, E are edges between visible points
- Start/goal are connected in same manner to visible vertices

Visibility graph

After connecting start/goal + path

- No clearance
- Suitable only for 2D

Visibility graph (VG)

- Straightforward, näive implementation $O\left(n^{3}\right)$

Input: polygonal obstacle
Output: visibility graph $G=(V, E)$
$V=$ all vertices of polygonal obstacles
2 foreach $u, v \in V$ do
foreach obstacle edge e do
if segment u, v intersects e then continue;
add edge u, v to E

- n^{2} pairs of vertices
- Complexity of checking one intersection is $O(n)$
\rightarrow Total complexity $O\left(n^{3}\right)$

Fast methods

- Lee's algorithm $O\left(n^{2} \log n\right)$
- Overmars/Welz method $O\left(n^{2}\right)$
- Ghosh/Mount method $O(|E| n \log n)$
- Lee, Der-Tsai, Proximity and reachability in the plane, 1978
- D. Coleman, Lee's O(n2 log n) Visibility Graph Algorithm Implementation and Analysis, 2012.
- M. H. Overmars, E. Welzl, New methods for Computing Visibility Graphs, Proc. of 4th Annual Symposium on Comp. Geometry, 1998
- S. Ghosh and D. M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM Journal on Computing, 1991

Voronoi diagram

- Let $P=v_{1}, \ldots, v_{n}$ are n distinct points ("input sites") in a d-dimensional space
- Voronoi Diagram (VD) divides P into n cells $V\left(p_{i}\right)$

$$
V\left(p_{i}\right)=\left\{x \in \mathbf{R}^{d}:\left\|x-p_{i}\right\| \leq\left\|x-p_{j}\right\| \forall j \leq n\right\}
$$

- Cells are convex
- Used in point location (1-nn search), closest-pair search, spatial analysis
- Construction using Fortune's method in $O(n \log n)$
- S. Fortune. A sweepline algorithm for Voronoi diagrams. Proc. of the 2nd annual composium on Computational geometry. pages 313-322. 1986.

Voronoi diagram

- Let $P=v_{1}, \ldots, v_{n}$ are n distinct points ("input sites") in a d-dimensional space
- Voronoi Diagram (VD) divides P into n cells $V\left(p_{i}\right)$

$$
V\left(p_{i}\right)=\left\{x \in \mathbf{R}^{d}:\left\|x-p_{i}\right\| \leq\left\|x-p_{j}\right\| \forall j \leq n\right\}
$$

- Note, that other metrics can be considered

Voronoi diagrams are everywhere

MRS
-

Voronoi diagram in robotics

- (Basic) Voronoi diagram: computed on points
- Generalized Voronoi Diagram: computed on e.g., points + weights, segments, spheres, ...

Segment Voronoi Diagram (SVD)

- computed on line-segments describing obstacles
- requires polygonal map or line/segment map
\checkmark Maximal clearance
- largest distance between a path and the nearest obstacle
- Is it optimal? Is it complete?

Classic VD

Weighted VD

Segment VD

Segment Voronoi diagram: complexity

Algorithms for computing Segment Voronoi diagram of n segments

- Lee \& Drysdale: $O\left(n \log ^{2} n\right)$, no intersections
- Karavelas: $O\left((n+m) \log ^{2} n\right), m$ intersections between segments

Karavelas 2004

- Karavelas, M. I. "A robust and efficient implementation for the segment Voronoi diagram." International symposium on Voronoi diagrams in science and engineering. 2004
- Lee, D. T, R. L. Drysdale, III. "Generalization of Voronoi diagrams in the plane." SIAM Journal on Computing 10.1 (1981): 73-87.

Voronoi diagrams in bioinformatics

- Proteins are modeled using hard-sphere model
- Weighted Voronoi diagram of the spheres (weight is the atom radii Van der Waals radii)
- Path in the Voronoi diagram reveals "void space" and "tunnels"
- Tunnel properties (e.g. bottleneck) estimate possibility of interaction between protein and a ligand

Tunnels*

Voronoi diagram *

Tunnels on 1BL8

* A. Pavelka, E. Sebestova, B. Kozlikova, J. Brezovsky, J. Sochor, J. Damborsky, CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE/ACM Trans. on compt. biology and bioinformatics, 13(3), 2016.

Voronoi diagram for collision avoidance

- Change of positions between various formations (e.g. in drone art)
www.youtube.com/watch?v=YH1BD7kKqKw

Voronoi diagram for collision avoidance

- Change of positions between various formations (e.g. in drone art)

- Zhou, Dingjiang, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager. Fast, On-Line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells. IEEE Robotics and Automation Letters, (2), 2017.

Voronoi diagram for spatial analysis

- One of first analysis was Cholera epidemic in London
- Often used in criminology

- Melo, S. N. D., Frank, R., Brantingham, P. (2017). Voronoi diagrams and spatial analysis of crime. The Professional Geographer, 69(4), 579-590.

Voronoi diagram in computer graphics

- Used in many low-level routines (e.g., point location)
- Modeling fractures
- Object is filled with some random points
- VD is computed to provide set of convex cells
- Interaction between cells can be modeled e.g. using rigid body dynamics

Decomposition-based methods

- The free space is partitioned into a finite set of cell
- Determination of cell containing a point should be trivial
- Computing paths inside the cells should be trivial
- The relations between the cells is described by a graph

Vertical cell decomposition

- Make vertical line from each vertex, stop at obstacles
- Determine centroids of the cells, centers of each segments
- Graph connects the neighbor centroids through the centers
- Connect start/goal to centroid of their cells
- Can be built in $O(n \log n)$ time

Decomposition via triangulation I

- Variant of decomposition-based methods
- $\mathcal{C}_{\text {free }}$ is triangulated
- Can be computed in $O(n \log \log n)$ time

- Polygons can be triangulated in many ways
- $\mathcal{C}_{\text {free }}$ is represented by graph $G=(V, E)$
- V are centroids of the triangles
- $E=\left(e_{i, j}\right)$ if Δ_{i} is neighbor of Δ_{j}

Or

- V are vertices of the triangulation
- E are edges of the triangulation
- Planning: start/goal are connected to graph, then graph search

Decomposition via triangulation II

- Finer triangulation via Constrained Delaunay Triangulation (CDT)
- if a triangle does not meet a criteria, it is further triangulated - criteria: triangle area or the largest angle

CDT

Finer CDT (area of Δ)

- Finer triangulation via Constrained Delaunay Triangulation (CDT)
- if a triangle does not meet a criteria, it is further triangulated
- criteria: triangle area or the largest angle

Path on edges

Modification: ignore segments connecting obstacles

CDT in civil engineering

- Structural analysis: modeling behavior of a structure under load, wind, pressure, ...
- Finite element method

CDT in civil engineering

- Structural analysis: modeling behavior of a structure under load, wind, pressure, ...
- Finite element method

- Let's assume a forward motion model

$$
\dot{q}=f(q, u)
$$

where $q \in \mathcal{C}$ and $u \in \mathcal{U} ; \mathcal{U}$ is the action space

- The navigation function $F(q)$ tells which action to take at q to reach the goal
Example: robot moving on grid, actions $\mathcal{U}=\{\rightarrow, \leftarrow, \uparrow, \downarrow, \bullet\}$

Discrete planning problem

- In discrete space, navigation f. is a by-product of graph-search methods

Wavefront planner

- Simple way to compute navigation function on a discrete space X
- Explores X in "waves" starting from goal until all states are explored
$\overline{\text { open }}=\{$ goal $\}$
$2 i=0$
3 while open $\neq \emptyset$ do
wave $=\emptyset \quad / /$ new wave
foreach $x \in$ open do
value $(x)=i$
foreach $y \in N(x)$ do
if y is not explored then
L add y to wave
$i=i+1$
open = wave

goal state

		∞	∞	∞	∞	
		∞	2	2	∞	2
		∞	1	1	1	2
		2	1	0	1	2
		2	1	1	1	2
$i=2$						

7	7	7	6	5	5	5
6	6	6	6	5	4	4
5	5	∞	∞	∞	∞	3
4	4	∞	2	2	∞	2
4	3	∞	1	1	1	2
4	3	2	1	0	1	2
4	3	2	1	1	1	2
$i=7$						

- Potential field U : the robot is repelled by obstacles and attracted by $q_{\text {goal }}$
- Attractive potential $U_{\text {att }}$, repulsive potential $U_{\text {rep }}$
- Weights $K_{\text {att }}$ and $K_{\text {rep }}$, d is the distance to the nearest obstacle, ϱ is radius of influence

$$
U_{\text {att }}(q)=\frac{1}{2} K_{\text {att }} \operatorname{dist}\left(q, q_{\text {goal }}\right)^{2} \quad U_{\text {rep }}(q)=\left\{\begin{array}{cl}
\frac{1}{2} K_{\text {rep }}(1 / d-1 / \varrho)^{2} & \text { if } d \leq \varrho \\
0 & \text { otherwise }
\end{array}\right.
$$

- Combined attractive/repulsive potential

$$
U(q)=U_{\text {att }}(q)+U_{\text {rep }}(q)
$$

- Goal is reached by following negative gradient $-\nabla U(q)$
- Gradient-descent method
- Y. K. Hwang and N. Ahuja, A potential field approach to path planning, IEEE Transaction on Robotics and Automation, 8(1), 1992.

$K_{\text {att }}=0$ ，no attraction

$K_{\text {att }} \sim K_{\text {rep }}$

$K_{\text {att }} \gg K_{\text {rep }}$ ，no repulsion

optimal settings

Potential field: local minima problem

- Potential field may have more local minima/maxima
- Gradient-descent stucks there

potential field

gradient-descent to minimum
- Escape using random walks
- Use a better potential function without multiple local minima - harmonic field
- Harmonic field is an ideal potential function: only one extreme

Harmonic field

Paths from various $q_{\text {init }}$

Images by J. Mačák, Multi-robotic cooperative inspection, Master thesis, 2009

- Usually computed using grid or a triangulation of the \mathcal{W}
- Suitable for 2D/3D \mathcal{C}-space
- memory requirements (in case of grid-based computation)
- requires to compute distance d to the nearest obstacle in \mathcal{C} !
- Parameters $K_{\text {att }}, K_{\text {rep }}$ and ϱ need to be tuned
- Problem with local minima \rightarrow harmonic fields

But how to really find the path?

Discretization

Search

- Breath-first search
- Dijkstra
- $\mathrm{A}^{*}, \mathrm{D}^{*}$ (and their variants)

Graph search: Dijkstra's algorithm

- Finds shortest path from $s \in V$ (source) to all nodes
- dist (v) is the distance traveled from the source to the node $s ; \operatorname{prev}(\mathrm{v})$ denotes the predecessor of node v
$1 \overline{Q=\emptyset}$
2 for $v \in V$ do

```
3
4 \(\quad \begin{aligned} & \operatorname{prev}[v]=-1 \\ & \operatorname{dist}[v]=\infty\end{aligned}\)
// predecessor of \(v\)
\(\operatorname{dist}[\mathrm{v}]=\infty \quad / /\) distance to v
```


dist[s] $=0$
6 add all $v \in V$ to Q
7 while Q is not empty do
$u=$ vertex from Q with min $\operatorname{dist}[u]$
remove u from Q
foreach neighbor v of u do
$d v=\operatorname{dist}[u]+d_{u, v}$
if $d v<\operatorname{dist}[v]$ then
$\operatorname{dist}[v]=d v$
$\operatorname{prev}[v]=u$

- Path from $v \rightarrow s: \quad v, \operatorname{pred}[v], \operatorname{pred}[\operatorname{pred}[v]], \ldots s$
- Dijkstra, E. W. "A note on two problems in connection with graphs." Numerische mathematik 1.1 (1959): 269-271.

Completeness and optimality

Visibility graph

- Complete and optimal

Voronoi diagram, decomposition-based method

- Complete, non-optimal

Navigation function

- Complete
- Optimal for Wavefront/Dijkstra/-based navigation functions

Potential field

- Complete only if harmonic field is used (one local minima!)

Consider the limits of these methods!

- Point/Disc robots, low-dimensional \mathcal{C}-space
- E. Rimon and D. Koditschek. "Exact robot navigation using artificial potential functions." IEEE Transactions on Robotics and Automation, 1992.

Optimality of planning methods

Do we always need optimal solution?

- No! in many cases, non-optimal solution is fine
- e.g. for assembly/disassembly studies, computational biology
- generally: if the existence of a solution is enough for subsequent decisions
- in industry:
- scenarios, where robot waits due to mandatory technological breaks
- e.g., in robotic welding and painting

Optimality of planning methods

When to prefer optimal one?

- Repetitive executing of the same plan
- Benchmarking of algorithms

It is necessary to carefully design the criteria!

Shortest path vs. fastest path vs. path for good spraying

- Motion planning: how to move objects and avoid obstacles
- Configuration space \mathcal{C}
- Generally, planning leads to search in continuous \mathcal{C}
- But we (generally) don't have explicit representation of \mathcal{C}
- We have to first create a discrete representation of \mathcal{C}
- and search it by graph-search methods
- Special cases: point robot and 2D/3D worlds
- Explicit representation of \mathcal{W} is also rep. of \mathcal{C}
- Geometric planning methods: Visibility graph, Voronoi diagram, decomposition-based
- Also navigation functions + potential field

