Robust regression: from ICP to RANSAC

Karel Zimmermann

L2 loss only inliers

Ground truth position [7,2]

L2 loss with outlier

Result deviated by 1m

Shape of robust regression functions [Barron CVPR 2019]

$$ho\left(x,lpha,c
ight)=rac{|lpha-2|}{lpha}\left(\left(rac{\left(x/c
ight)^2}{|lpha-2|}+1
ight)^{lpha/2}-1
ight)$$

Robust loss with outlier

Is it a free lunch?

Correct result achieved

Robust loss with outlier

Let's push the loss into extreme

The prize we pay are local optima corresponding to outliers

1. sample one tuple of corresponding points at random

Is there any way to optimize it?

- 1. sample one tuple of corresponding points at random
- 2. align it by minimizing L2-norm

- 1. sample one tuple of corresponding points at random
- 2. align it by minimizing L2-norm
- 3. compute number of inliers for this hypothesis (inliers=1)

- 1. sample one tuple of corresponding points at random
- 2. align it by minimizing L2-norm
- 3. compute number of inliers for this hypothesis (inliers=1)

- 1. sample one tuple of corresponding points at random
- 2. align it by minimizing L2-norm
- 3. compute number of inliers for this hypothesis (inliers=1)

- 1. sample one tuple of corresponding points at random
- 2. align it by minimizing L2-norm
- 3. compute number of inliers for this hypothesis (inliers=8)

ICP SLAM - outlier detection procedure

ICP SLAM - gradient optimisation of robust loss

- Convex in translation space
- Non-convex but smooth in SO3

- Non-convex+Large narrow plateaus with zero gradient
- Any gradient optimization requires good initialization

- Zero gradients
- Combinatorial optimization

- 1. Sample hypothesis (R,t) at random
- 2. Evaluate value of the box-loss function (at this point R,t)

- 1. Sample hypothesis (R,t) at random
- 2. Evaluate value of the box-loss function (at this point R,t)
- 3. Remember the lowest value so far
- 4. repeat K times

- 1. Sample hypothesis (R,t) at random
- 2. Evaluate value of the box-loss function (at this point R,t)
- 3. Remember the lowest value so far
- 4. repeat K times

- 1. Sample hypothesis (R,t) at random
- 2. Evaluate value of the box-loss function (at this point R,t)
- 3. Remember the lowest value so far
- 4. repeat K times

- 1. Sample hypothesis (R,t) at random
- 2. Evaluate value of the box-loss function (at this point R,t)
- 3. Remember the lowest value so far
- 4. repeat K times

- 1. Sample hypothesis (R,t) at random
- 2. Evaluate value of the box-loss function (at this point R,t)
- 3. Remember the lowest value so far
- 4. repeat K times

Naive optimization algorithm:

- 1. Sample hypothesis (R,t) at random
- 2. Evaluate value of the box-loss function (at this point R,t)
- 3. Remember the lowest value so far
- 4. repeat K times

if K is huge and you are lucky

N

... total number of correspondences (N=6)

N ... total number of correspondences (N=6)

s ... size of |S| (s=2)

N ... total number of correspondences (N=6)

RANSAC

N ... total number of correspondences (N=6)

N ... total number of correspondences (N=6)

w

N ... total number of correspondences (N=6)

N ... total number of correspondences (N=6)

w ... fraction of inliers (w = 2/6 = 0.33)

s ... size of |S| (s=2)

p ... probability, that we have selected a clean sample at least once out of K trials (prob. of success). (p=0.99)

K ... number of trials/iterations

$$K = \frac{\log(1-p)}{\log(1-w^s)} = \frac{\log(1-0.99)}{\log(1-0.33^2)} \approx 39.94$$

Summary

- Minimizing **L2-loss** on unclean correspondences (with **outliers**) yields **biased pose** estimate (and pointcloud alignment).
- Minimizing robust norms (Welsch) yields complicated optimization due to large plateaus with almost zero gradients.
- When **motion** between successive frames is sufficiently **small** (self-driving cars), odom-initialized **gradient minimization** of a robust loss is quite **OK**.
- When motion is large and correspondences unclean inlier detection method RANSAC, which randomly sample reasonable hypothesis (R,t).
- RANSAC is often used for 2D-2D correspondences and large motions (e.g. reconstruction of 3D world from collection of unordered RGB images).
- Takehome message: When designing the loss function always think about:
 - A. Underlying probability distribution
 - B. Optimization of the resulting landscape

Useful references

- SLAM implementations:
 - Nvidia Issac SLAM: https://github.com/NVIDIA-ISAAC-ROS/isaac_ros_visual_slam
 - ORB SLAM (RGBD SLAM): https://github.com/alsora/ros2-ORB_SLAM2
 - GTSAM (modular factorgraph SLAM implementation in C++) https://gtsam.org/
 - PyPose (modular factorgraph SLAM implementation in Python/Pytorch) https://pypose.org/
- Datasets, benchmarks and challenges:
 - Waymo https://waymo.com/intl/en_us/dataset-download-terms/
 - Kitti
 http://www.cvlibs.net/datasets/kitti/