Particle filter
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Drawbacks Advantages

Bayes filter o course of dimensionality o represents arbitrary
bel(x) discrete O spatial discretization prob. distribution
|llllll| X belx) = [py,ps ... Pyl

Kalman filter o represent only gaussians O nicely scales with
bel(x) continuous o gyffers from linearization higher dimensions
| /\_ & exp( — 2(x— T (x— )

bel(x) = V(X3 p, %) =
\/ 2r)rdet(X)

Partical filter

bel(x) = w - §.(X)
- e @ 00000000 - Dirac impulse function



Particle filter

1. Initialize particles: X, = {X(l), . ve

Kidnapped robot problem

Particles = hypothesis about the current state



Particle filter

1. Initialize particles: 2, = {x, ..., X}
2. Prediction step (hew action u; performed):
For all x_,

X

r ™ p(Xt ‘ X;_la llt)




Particle filter

e g : _ o
. Initialize particles: X', = {x;,...,X,}

. Prediction step (hew action u; performed): -

i
For all x;_,

X; ™~ p(Xt ‘ X;_la llt)

. Measurement update (new Zz; received):

For all X!

w; = p(z,|X;

p(z, = 1]x))




Particle filter

e 1 : _ |
Initialize particles: X = {x,, ..., Xy}

Prediction step (new action u; performed): -

i
For all x;_,

X; ™~ p(Xt | X;_p llt)
Measurement update (new z; received):
For all X!

w; = p(z,|X;
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Particle filter p(z, = 1]|x)

. Initialize particles: &, = {x;, ..., X} :
. Prediction step (hew action u; performed): -
For all x_, ‘

X; ™~ p(Xt ‘ X;_la llt)

0.3
. Measurement update (new Zz; received): _ _
E | 5 P ( t ) Do you like how particles
0.2 - - =
or & % B are distributed?
w; = p(z,| X,
0.1 -
bel(x) /J \\ ,—“1 ,/ \
| 0.0 -
X6 ..........................................
—; —0.1
X1 - -
Wl1 -0.2




Particle filter

. Initialize particles: &, = {x;, ..., X}

. Prediction step (hew action u; performed): -

For all x!_|
_l ~ p(X ‘Xt_la t)
. 0.3
. Measurement update (new Zz; received):
For all ii 0.2 -

w; = p(z,|X;

. Resample -

Draw & = {x], ..., x"} « W' bel(.xl)o.o

. Repeat from 2: )i) 0.1
t=t+1 1
X]

p(z, = 1]x))

Increase number of particles
Decrease num. of particles

40 particles !!!
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Particle filter

. Initialize particles: &, = {x;, ..., X}
. Prediction step (new action u; performed):
For all x_,

X~ p(Xt | Xi_la llt)
. Measurement update (new Zz; received):
For all X!
Wi = p(z,| ii
. Resample

Draw & = {x], ..., x"} « W'

. Repeat from 2:
t=1+1

This is 40 particles !!!




Particle filter

. Initialize particles: &, = {x;, ..., X}
. Prediction step (new action u; performed):
For all x_,

X; ™~ p(Xt ‘ X;_la llt)

. Measurement update (new Zz; received):

For all X! " .

l. i . This is 40 particles !!!
w;, = p(z,| X
. Resample

Draw & = {x], ..., x"} « W'

. Repeat from 2: _
t=t+1 ) - -




Particle filter p(z,=0|x)

. Initialize particles: &, = {x;, ..., X} \ /  \ / \ /
. Prediction step (new action u; performed):

i
For all x;_,

X; p(Xt ‘ X;_la llt)

. Measurement update (new Zz; received):

For all X! o .

o This is 40 particles !!!
w;, = p(z,| X
. Resample

Draw & = {x], ..., x"} « W'

Xi .
. Repeat from 2: _1 01 -
t=t+1 %2 [ -
le ~0.2 ——— = =
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Particle filter

. Initialize particles: &, = {x;, ..., X}
. Prediction step (new action u; performed):
For all x_,

X; ™~ p(Xt ‘ X;_la llt)

p(z, = 0]x))

0.3
. Measurement update (hew z; received):
For all ii 0.2 -
w; = p(z,|X;
0.1 -
. Resample
- bel(x,)
[l ) /N /) /\
Draw 2 =[x}, ..., x"} x W ~“o0-
. Repeat from 2: . on
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Particle filter

. Initialize particles: &, = {x;, ..., X}
. Prediction step (new action u; performed):
For all x_,

X; ™~ p(Xt ‘ X;_la llt)

p(z, = 0]x))

0.3
. Measurement update (hew z; received):
For all ii 0.2 -
w; = p(z,|X;
0.1 -
. Resample
- bel(x,)
[l 3 /' N\ / \ / \
Draw &' = {x/, ..., x"} « W' 7 o0-
l
. X2 - aaas
. Repeat from 2: e
t=t+1 A3 T - -
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Particle filter

. Initialize particles: &, = {x;, ..., X}
. Prediction step (new action u; performed):
For all x_,

X; ™~ p(Xt ‘ X;_la llt)

p(z, = 0]x))

0.3
. Measurement update (hew z; received):
For all ii 0.2 -
w; = p(z,|X;
0.1
. Resample
- bel(x,) ( \ /[ \ / \
— 1 4
Draw & = {x/,...,X"} «x W' ~ " oo-
l
- X3 - anem o semn
. Repeat from 2:  on
t — t —I— 1 X4 s —now -
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Particle filter

p(z, = 1]x))

. Initialize particles: &, = {x;, ..., X}
. Prediction step (hew action u; performed): -
For all x_, ‘

X~ p(Xt | Xi_la llt)
. Measurement update (new Zz; received):
For all X!
Wi = p(z,| ii
. Resample

Draw & = {x], ..., x"} « W'

. Repeat from 2;

t=t+1 X3




Particle filter

p(z, = 1]x,)
. Initialize particles: &, = {x;, ..., X}
. Prediction step (hew action u; performed): -
For all x_,
it ~ p(Xt ‘ Xi—l’ llt)
. Measurement update (hew z; received):
For all X!
Wi = p(z,| ii
. Resample
Draw 2, = {x},...,X"} « W
Xi e eson -
. Repeat from 2: ) q
—; —0.1
t=t+1 Xs A e -
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Particle filter

e g : _ o
. Initialize particles: X', = {x;,...,X,}

. Prediction step (hew action u; performed): -

i
For all x_,
X, ~ p(X,|X;_;,u,)
0.3
. Measurement update (hew z; received):
For all ii 0.2 -
w; = p(z,|X;
0.1
. Resample
- bel(x
Draw f[t: {X},,X?} cxWi ( 5)o.o.
Xy
. Repeat from 2: _ o1
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Particle filter

. Initialize particles: &, = {x;, ..., X}
. Prediction step (new action u; performed):
For all x_,

X; ™~ p(Xt ‘ X;_la llt)

p(z, = 0]x))

0.3
. Measurement update (hew z; received):
For all i;. 0.2 -
w;, = p(z,| X
0.1
. Resample
- bel(x,)
[l 6
Draw &' = {x/, ..., x"} « W' " o0-
X -
. Repeat from 2: o
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Particle filter

. Initialize particles: &, = {x;, ..., X}
. Prediction step (new action u; performed):
For all x_,

X; ™~ p(Xt ‘ X;_la llt)

p(z, = 0]x))

0.3
. Measurement update (hew z; received):
For all ii 0.2 -
w; = p(z,|X;
0.1
. Resample
- bel(x-)
[l 7
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Particle filter

. Initialize particles: &, = {x;, ..., X}
. Prediction step (new action u; performed):
For all x_,

X; ™~ p(Xt ‘ X;_la llt)

p(z, = 0]x))

0.3
. Measurement update (hew z; received):
For all ii 0.2 -
w; = p(z,|X;
0.1
. Resample
- bel(x;)
[l 8
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l
- X7 c———
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Running the same example multiple times
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Running the same example multiple times

0.3

0.3

‘Resultohea‘vny depends on |n|t|aI|zatLQn

Onlme demo https //tommy&ohn com/Occupancy Gnd—SLAI\/I JS/

0.2 1

0.1 1

-0.1 A

1000 particles

0.2 1

i .

0.0 -

-
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4. Resample




4. Resample

Draw & = {x], ..., x"} « W!

s
e

Roulette wheel




4. Resample

Draw 7. = {x!, ..., x"} <« W

Replace values by cumsum

Rouletlte wheel



4. Resample

Draw & = {x], ..., x"} « W!

Generate random number

Find corresponding slot by binary search
6 (log(N))

Repeat is N times

Rouletlte wheel
o N particles O(N log(N))
O easy to understand



4. Resample

| . Generate only one small random number
Draw & = {x/,...,X"} «x W'

Roulette wheel Stochastic universal resampling

o N particles O(N log(N))
O easy to understand



4. Resample Generate N equally distributed samples

Draw L = {th, X'} W starting at the random number

Roulette wheel Stochastic universal resampling

o N particles O(N log(N))
O easy to understand



4. Resample Go through the wheel and update

Draw &, = {x],..., X"} « W' the slot if arrow is higher than cumsum value

Roulette wheel Stochastic universal resampling

o N particles O(N log(N)) o N particles O(N)
o easy to understand © lower variance



Particle filter example [Dieter Fox]



Particle filter example [Dieter Fox]

4 ::..\.,0-

o A « 0
I : _'.‘.'...{oovo.




Summary

Drawbacks Advantages
Bayes filter O course of dimensionality O represents arbitrary
bel(x) O spatial discretization prob. distribution
HEEEEEE X
Particle filter O course of dimensionality O represents arbitrary
1bel(X) C o partical quantization prob. distribution
X
c o @ o0 @000 -
Kalman filter O represent only gaussians O nicely scales with
bel(x) o suffers from linearization higher dimensions
X
Factorgraph O represents gaussians O does not suffer
o grows to infinity from linearizations

o allows for arbitrary
conditional independences




............... ).(
X1 |
3/2

O

Assignment for solved example

Robot is unit magenta arrow mounted to the origin of wcf
by a swivel joint (i.e. it can only rotate around the point [0,0])

State x, € R is its (counter-clockwise) angle wrt x-axis
Control u, changes the state according to the motion model
X, = 8(X,_,u) =X, + 1,

with zero-mean gaussian noise with covariance R, =1

Measurement z, € R“ is provided by GPS sensor with
the measurement function

COS X,
Z, = h(X,) =

. . . . . 1
with zero-mean gaussian noise with covariance Q;= [O (1)]
Consider two states example, where:

bel(xg) = N(X;; pg=0,Zp=1). 2z, = ﬁ 2], u, = 7/2

SIn X,




............... ).(
X1 | ©
3/2
O
O
O

Factorgraph
Write down state-transition probability distribution

Write down measurement probability distribution

Outline distributions into the sketch
Draw underlying factorgraph

Write down MAP state estimation problem



Factorgraph (solution)
Write down state-transition probability distribution
/\ pX X, u) = V(X5 X, +u, R
Write down measurement probability distribution

p(Zt‘Xt) — /V(Zt; ) Qz)

Outline distributions into the sketch
Draw underlying factorgraph

unary factor
|A(x;) — Z1H2

. 2
unary factor X0 +uy — x|

1X0]* binary factor

Write down MAP state estimation problem

- 2 2 2
arg min |[Xy + w; — X |7 + ||~h(X)) — z||* + [|X]]
X0-X1



Extended Kalman Filter
z, =[3/2,1]" © Perform prediction step of (E)KF,Q"(E i.e. bel(x)) = N (Xy; i, X¢)

3/2 © Linearize measurement function around j¢; (outline it in sketch)

COS(X

s1in(Xx)

O Perform measurement step of EKF
Z1:[3/231]T Sy aT/mas ol -1 _ 9
............... X K,=XHMHIH +Q)"=":

w =1+ K (2, — h(my)) =2

* |t is strictly prohibited to memorize any EKF equations, however you are allowed to
have it on your cheatsheet (and it will be also provided in the test assignment) ;-)




Extended Kalman Filter (solution)
'z, =[3/2, 11" © Perform prediction step of (E)KF,Q"(E i.e. bel(x)) = N (Xy; i, X¢)

‘. - A R " ---------- x 72: 7!:
N -.o",,"
1

‘ E /7 | = /70 + U, = 0+ 5 — 5
1y = 90 Y, =G G/ +R=1-1-1+1=2
3/2 © Linearize measurement function around j¢; (outline it in sketch)
. cos(x;) COS(ft1) —sin(i;) 0 —1
(X)) [sin(xl)] [sin(ﬁl) Teosay | T il Tlo| T
O Perform measurement step of EKF h(iT,) H,
_ T -1
N ):( Kl — ZIHI (HtZIHt + Qt) — [—2 O] ) 0 1 — [—2/3 O]
5 T
Yy~ 33 =+ K (2 - h(m)) == = 1~ 33
3/2 Y =0-KH)X, =(1-2/3)-2=2/3

* |t is strictly prohibited to memorize any EKF equations, however you are allowed to
have it on your cheatsheet (and it will be also provided in the test assignment) ;-)



Partical filter

z, =[3/2,1]" Prediction step of PF:

) o Particles representing bel(x,) are drawn from this distribution:

XO —! =

4 _
3/2 X2 ~ ?

1

O Assume zero noise and generate particles in the mean values

Measurement step of PF:
o Update weights of particles to represent bel(x,)

1 _ _
W1—? W1—?

Which particle has a higher chance to survive the resampling?



Partical filter (solution)

z, =[3/2,1]" Prediction step of PF:

2 v
XO_

4
1
D, X, =0

O Particles representing @(xl) are drawn from this distribution:

T

2
3
X ~ p(xy |xgup) = A3 X5+, R = H(xg; =, D
O Assume zero noise and generate particles in the mean values
Xl /4 §2 RY/1
| 2 ) 1 4

Measurement step of PF:

o Update weights of particles to represent bel(x,) 3

B 3/2,‘305% 10) 5 (3/2,"037 10)
(5 B P IR O e A

2 4

Zl h(;(l) Ql Zl ) h(X ) i Ql

N N N

Which particle has a higher chance to survive the resampllng’? W



Discrete Bayes filter
JT
p(Zz = [3/2, I]T | Xt)

Prediction step of BF:

bel(x) = ) p(x,|x,_;.u) - bel(x,_))

—1

Measurement step of BF:

bel(x,) =7 - p(z, | Xt)@(Xt)




Discrete Bayes filter (solution)
JT
p(Zt = [3/2, I]T | Xt)

Prediction step of BF:

bel(x) = ) p(x,|x,_;.u) - bel(x,_))

—1

Measurement step of BF:

bel(x,) =7 - p(z, | Xt)@(Xt)




RANSAC

o Assume that -\ PZi]%)
© no motion model is applied,
o no prior probability distribution robot

o GPS position is measured three-times: i | 4 ¢

2, =2 1,=3 1= x Z, Z, Z;
O What is MLE of state X under the gaussian noise? p(z;|x) = #(z; x,1) x*=7?
O What is MLE of state X under the gaussian noise? p(z;|x) = 4 (z; x,100) X =1
© What is MLE of state X under the gaussian noise? p(z,|x) = /(z;; x,4)

x* = 7 p(zy|X) = N (zZy; X,1)
p(z5|x) = N (z3;, Xx,1)

o How can you get MLE of the state under the heavy-tail-gaussian noise?



RANSAC (solution) |
o Assume that p(z;|X)

© no motion model is applied, 5
o no prior probability distribution robot
o GPS position is measured three-times: o @

Z1:2 Z2:3 Z3:7 X Z1Z2 Z3

O What is MLE of state X under the gaussian noise? p(z;|x) = #(z; x,1) x*=4
O What is MLE of state X under the gaussian noise? p(z;|x) = #(z;; x,100) X =4

© What is MLE of state X under the ga(ssian nois;’? p(z,|x) = N(z; x,4)

| P2y |X) = N (2y; X,1)
Hp(Z,‘X) P(Zi‘x) — ﬂ/(zi; X,1)

Z,-Zi/ffii - 025-2+1-34+1-7

- afgminZ 1o} - (x —z;)* = Y /62 2.25 = .00

o How can you get MLE of the state under the heavy-tail-gaussian noise?
RANSAC (result depends on tolerance margin and implementation) x* € < 2, 3 >

X* = arg maXp(X ‘ Zla Z29 Z3) = dig max
X




You should be able to use all measurement and transition models in all discussed
concepts (EKF, PF, FG,...) including their first order approximations
Examples of measurement probabillities

X X
GPS. x [ t
e
(] [zt 0 8 o] e
e Y Ht Qt
Z§PS ;t ) hGPg(Xt) ]
z At At MU
p( z2 || | Yel, | Ve ) =N (Z?dom; wW2r(X, +1,Xt) Q"dom)
Zte ‘?t Ht+1 ) 7o dom(Xt)
Z;)dom X, X:|—1
th X m*
Marker
Z7 Y Y ) — ( m. m)
F ( y ‘ 6,t i A\ szr(m Xt) Q detector
Z, t m o)




Examples of state-transition probabilities

Differential-drive model

X,_j +—( + sin(6,_, + @,A1) — sin(6,_)))

o

Vi
’ [wr] ) - ‘/V<Xt3 V.1 + %( — cos(0,_; + w,Af) + cos(@t_l)) » Rr)
—_— J‘ ; J 6’t_1+a)tAt
X; X1 | ~
8(X,_1,uy)

Balistic trajectory

x,_1 + v,Atcos(w,)
)= [ s | ®)
J V-1 + v Arsin(w,) — —gAl

g(x,_;,u,)




You should also understand reasoning behind this table

Drawbacks Advantages
Bayes filter O course of dimensionality O represents arbitrary
bel(x) O spatial discretization prob. distribution
HEEEEEN X
Particle filter O course of dimensionality O represents arbitrary
1b€1(X) C o partical quantization prob. distribution
X
c o @ o0 @000 -
Kalman filter O represent only gaussians O nicely scales with
bel(x) o suffers from linearization higher dimensions
X
Factorgraph O represents gaussians O does not suffer
o grows to infinity from linearizations

o allows for arbitrary
conditional independences




