1 Axis of Motion

We will study motion and show that every motion in three dimensional
space has an axis of motion. Axis of motion is a line of points that remain
in the line after the motion. The existence of such an axis will allow us
to decompose every motion into a sequence of a rotation around the axis
followed by a translation along the axis as shown in Figure [L1a).

§1 Algebraic characterization of the axis of motion. Consider Equa-
tion ?? and denote the motion so defined as m(xg) = R + 0, w.r.t. a fixed

coordinate system (O, $). Now let us study the sets of points that remain

fixed by the motion, i.e. sets F such that for all X3 € F motion m leaves the

set are fixed sets. How do look other, non-trivial, fixed sets?

A nonempty F contains at least one 5. Then, both 7 = m(¥) and
zg = m(yp) must be in F, see Figure[1.1[b). Let us investigate such fixed
points xg for which -

%—%zﬁ—fl (1.1)
holds true. We do not yet know whether such equality has to necessary
hold true for points of all fixed sets F but we see that it holds true for the

m(xg) in the set, i.e. m(a?ﬁ) =3 Obviously, complete space and the empty Tz &}_)q,ol_

identity motion id that leaves all points unchanged, i.e. id(x) = X3. We
will find later that it holds true for all motions and all their fixed sets.

§2_Alibi representation of motion.
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Consider the following sequence of equalities

™ Yy = YN —
R(R¥Xp +0y) +0; —R¥p —0; = Rig+05—p

R’%; + R0y —R¥p =

R@+%%§

22 - = - -

- R —2RXp + %3 = —Roﬁ’+oﬁ’ ¢ .
(R* —2R+1I) % = —(R—I)d; & M J )
R—I)(R—1I)xp — I)o_)ﬁf (1.2) e

= =
Equation[T.3]always has a solution. Let us see why. L 09 R=-T 20 (0'%)' % )= )”/’,
Recall that rank (R — I) is either two or zero. If it is zero, thenR —I =0 ram (KFI ) = <
and (i) Equation[L.3]holds for every ;. %
Let rank (R — I) be two. Vector 0, either is zero or it is not zero. If it . _— \ —02’ =T o (1.8)
is zero, then Equation[I.3] becomes (R — I)*X3 = 0, which has (ii) a one- %/fk 0 r . 3
dimensional space of solutions because the null space and the range of , (»-1) ( (x-T) JZ/Q =
R—-1 1£1tersect only in the zerg V?ctor fOI" R # 1. N ’_03 e ot ( -1 L:I_l) "jl‘D/; e
Let 0, be non-zero. Vector oﬁ’ either is in the span of R — I or it is not. If r Sy p_\/_’_’_)’
1 - —
0 is in the span of R — I, then (R — I) X3 + Jﬁ' = 0 has (iii) one-dimensional 2 (K’I)‘V;; v, =0 |( ALY = =0
affine space of solutions. 1. ns e von (R
- > > > 1 A . aCl — ¥
If 0, is not in the span of R — I, then (R — I) xg + 0, for xﬁ//]R?’ generates o “{‘i\"i *r > or =3
. _J; . 3 '] . ’? / _ /5‘
afvector in all one d1rpens10nal subspaces of R® wh E:}: g_e not in thf spai} 9 (?\_1\ ((K-J) %’ +“§"—7)- o & r e
of R — I. Therefore, it generates a non-zero vector Zg = (R — I)yg + Og p (1) ( ?) -
. T . . ‘-ﬁ ~ _ ol (R-X)n V- r-l)c 0o
in the one-dimensional null space of R — I, becau ¥ 5/’\7 éw ( 73 I) ’:wy

the span of (R — I) intersect only in the zero vector for R # I. Equation A

2

/
R — I)Zg = O is satisfied by (iv) a one-dimensional affine set of vectors. ’ -11'3'«%/ \& & 3 —
We can conclude that every motion has a fixed line of points for which Equa- . =
tion [L.1] holds. Therefore, every motion has a fixed line of points, every ey p~T = 4 _
motion has an axis. 3 \ p ?l\ : (v-T) ((g -1) J’é _,_%/_ ) =0
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§2 Geometrical characterization of the axis of motion We now un-
derstand the algebraic description of motion. Can we also understand the
situation geometrically? Figure[I.2]gives the answer. We shall concentrate
on the general situation withR # I and 7, ﬁ/ # 0. The main idea of the figure
is that the axis of motion a consists of points that are first rotated away
from a by the pure rotation R around r and then returned back to a by the
pure translation 0.

Figure[1.2]shows axis a of motion, which is parallel to the axis of rotation
r and intersects the perpendicular plane ¢ passing through the origin O at
a point P, which is first rotated in ¢ away from a to P’ and then returned

back to P” on a by translation 5;8’. Point P is determined by the component

oy of 55// which is in the plane 0. Notice that every vector ¢, can be

B
written as a sum of its component 0’z parallel to r and component o
P rp P P o

perpendicular to 7.

Figure 1.2: Axisa of motion is parallel to the axis of rotation » and intersects

§3 Motion axis is parallel to rotation axis. Let us verify algebraically the perpendicular plane ¢ passing through the origin O at a
h h . . . llel to th ti . C ider E point P, which is first rotated in ¢ away from a to P’ and then
that the rotation axis r 1s parallel to the motion axis 2. Consider Equa- returned back to P” ona by translation ¢”. Point P is determined
tion[1.2] which we can rewrite as X Eer by the component G, of 6", which is in the plane o.

A —~—> R-I?’% = —(R-I)J (1.4)

(1) (-I) (G-DV%, +7,) =3

Define axis r of motion a
rotation R, i.e.

—_—————
e set of points that are left fixed by the pure

5 - —2
- R-DT)% = 0 (1.5) (2 -7,
l Rfﬁ = 3?[3 ’ QQ,I’; L (1.6) / /7 -
-—w’——"
i 5 X i . T —2 -
;hesie are; elgenYector of R and the zero vector. Take any two solutions Sl ance (K 2 ar =3 (/(,:1 )
1, X2p of Equation[1.4/and evaluate , Vas
R—I?Xg—4p) = —R-I)d+R—-1)d, =0 1.7 - _ A R
5'—-\)\ (W) (__(\,___)_,ﬁ__(’————li (1.7) ) ( R I) ~w o
Y - . . —
and thus a non-zero X5 — Xz is an eigenvector of R. We see that the 0-T —_*'0'7
direction vectors of a lie in the subspace of direction vectors of r. as v A - nonlh .
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