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Abstract

This thesis presents inverse kinematics �IK� solutions speci�cally for the human

articulated structure� The main area of research is in robotics where the algebraic

and iterative methods for solving IK are investigated in detail� Extensive closed�

form solutions �algebraic� for the human arm are derived which can be directly

used for solving the IK of the human arm� For the iterative method� various

minimization and root �nding algorithms have been investigated for solving IK�

Results and analysis showed that the Broyden�Fletcher�Goldfarb�Shanno �BFGS�

minimization algorithm is ideal in that it has a reasonable overall rate of conver�

gence and function evaluations� Therefore it is used in the resulting generalized

IK engine which can be used to solve the IK of an articulated structure having N

degrees of freedom �DOF�� Further� this thesis provides implementation details

�high�level interface� which demonstrates the application of the IK solutions pre�

sented for animating human motion� This is demonstrated in the Human Arm

Animator applet which demonstrates the use of the work herein for animating

the human arm� The signi�cance of this work is that this thesis provides a gener�

alized IK solution for articulated structure having N DOF� Thus other forms of

�gures �e�g� animals� can be animated successfully� Furthermore this thesis has

extended the work of �Goldenberg and Lawrence� ��
�� Goldenberg et al�� ��
��

Sasaki� ���	� where other minimization algorithms �such as modi�ed Powell�s�

modi�ed Fletcher�s and Brent�s method� have been thoroughly investigated for

solving IK�
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Chapter �

INTRODUCTION

Successful human animation incorporates research in modeling and animation of

the human body� facial animation� hand animation and mechanical aspects of

articulated body segments �Magnenat�Thalmann and Thalmann� ��

�� Early

research involved using a script �labanotation� which described the position and

orientation of every joint� This script was fed into a program which choreographed

a synthetic actor through time� Another method uses rotoscopy �image�based

keyframe animation� �Magnenat�Thalmann and Thalmann� ��

�� Zeltzer ���
��

used high�level control where users only have to specify commands such as �walk

to the door�� As motions produced by humans are extremely subtle� the task

of animating humans is made much more di�cult� For example� when humans

walk� the shoulders and hips do not move dramatically but if the movement is

not there� the motion is not right �Coco� ������

The possibility of animating humans has been made possible by more powerful

computers and the advent of better algorithms� This can be seen in the movie

�Toy Story� �Robertson� ������ Also� the simulation of humans in a dynamic

environment has been realized� e�g� the simulation of humans in a car crash�

Other areas include biomedical visualization �modeling of internal organs� skele�

ton and muscles which include their deformations�� medical simulations �train�

ing medical sta� in emergency situations�� and virtual reality �virtual humans

interacting with the simulated environment�� Interested readers are referred to

http���www�cis�upenn�edu��hms for papers concerning human animation and the

Jack system

�



In the �eld of robotics� the basis for controlling highly articulated structures �more

than � DOF� has been heavily researched for more than two decades� Most in�

dustrial robots have a simple design so that the mathematical formulation needed

to control their trajectory is simple� There are various problems associated with

manipulating articulated structures but most of these problems are concerned

with formulating and solving equations for controlling manipulators� Manipula�

tors having DOF higher than seven or eight are di�cult to formulate� Even if

the formulation is possible� it would be susceptible to errors and ine�cient such

that real�time control cannot be achieved�

The two main methods which are used extensively in robotics for controlling

articulated structure are kinematics and dynamics� Kinematics is the science of

motion without regard to forces a�ecting it� Its only concern is the position�

velocity and acceleration relative to time �Craig� ��
��� Kinematics is separated

into forward and inverse kinematics �IK�� In forward kinematics� the angles for

each joint are given and the position and orientation of the end�e�ector �hand� is

calculated� In inverse kinematics� the position and orientation of the end�e�ector

is given and the angle of each joint is determined� On the other hand� dynamics

deals with the forces� moments of inertia and mass of each limb segment� It can

also be separated into forward dynamics and inverse dynamics� The de�nition is

similar to kinematics but the variables deal with forces� masses and moment of

inertia for each joint�

This thesis provides the core foundation for a human animation package through

inverse kinematics and to consider other minimization algorithms which have not

been considered� Algebraic and iterative methods for solving IK are investigated

in detail� This research work presents extensive formulation and solutions for both

of these methods speci�cally for animating the human articulated structure�

�



Chapter �

PROBLEM DESCRIPTION

The following sections formally outline the problems investigated in this research�

The human arm will be used as the kinematic model for discussion throughout

because it can be modelled with a minimum of six degrees of freedom �DOF� and

is closely related to a generic robotic arm�

��� Statement of the problem

The aim of this research is to review and incorporate methods for solving inverse

kinematics �IK� from robotics for human animation� The focus is two fold� investi�

gate the closed�form solution and the generalized IK solutions� These methods for

solving IK are investigated in detail� Extensive closed�form solutions are derived

for the human arm and various minimization algorithms have been investigated

for solving IK� The second aspect of this research is to demonstrate the appli�

cation of forward and inverse kinematics for animating the human articulated

structure� A detailed review of various methods for solving IK in robotics and

the incorporation of these methods for animating human motion are presented�

��� Subproblems

�� Closed�form Solution

The feasibility of a closed�form IK solution was investigated� This involved

analysis of the algebraic method for deriving a closed�form solution for

�



manipulators having six degrees of freedom �DOF� or more�

�� Iterative Solutions

Generalized IK solutions which utilized iterative methods including mini�

mization and root �nding algorithms were investigated� The main focus was

to implement and incorporate the most robust algorithms which are able

to handle singular and non�square Jacobian� Moreover real�time solutions

were investigated for iterative manipulation of articulated structures� The

main area of research was on minimization algorithms where issues such as

global and local convergence were considered in detail�

�� Dealing With Multiple Solutions

For a particular end�e�ector position there are multiple con�gurations which

can be used� The problem was to determine which solutions are feasible

subject to a set of constraints� Analysis of algebraic and iterative methods

for deriving di�erent set of solutions are presented�

	� IK Interface

A high�level interface was implemented to demonstrate the capabilities of

the IK engine� The main objectives of the interface were interactive manip�

ulation� ease of use and to demonstrate the implementation details for the

theoretical concepts presented in this thesis�

��� Signi�cance of Study

There has been signi�cant work in robotics for solving IK which can be used

in computer graphics� speci�cally human animation� This includes generalized

�Sasaki� ���	� Manocha and Zhu� ���	� Goldenberg et al�� ��
�� and real�time

�Zomaya� ����� solutions in robotics which are applicable to animating humans�

The human joints constitute an articulated structure with redundant DOF� there�

fore the aim of this thesis was to investigate algebraic and iterative methods for

solving IK and hence for animating the human articulated structure�

The possibility of developing a generalized IK engine was made possible by gen�

eralized IK solutions in robotics� Therefore this study looked at the feasibility of

these methods and provides the basis for the implementation of a generalized IK

	



engine which can be extended to handle other parts of the human skeletal struc�

ture �i�e legs�� Further� this thesis extends the work by Goldenberg et al� ���
���

Goldenberg and Lawrence ���
�� and Sasaki ����	� where other minimization al�

gorithms have been considered for solving IK iteratively� Thus the work described

herein presents a contribution to the robotic and computer graphics �elds�

Finally this study provides the foundation needed for applications which involve

human animation in the School of Computing� Another example would be to

incorporate the resulting work into a teaching tool for the School of Physiotherapy�

�



Chapter �

PREVIOUS RESEARCH

The following sections review literature related to solving IK in robotics and the

use of IK in human animation� The extent of work done in both �elds provides

the reader with signi�cant background necessary to understanding this thesis�

Readers who are interested in a general explanation of IK are referred to Korein

and Badler ���
���

��� Kinematics Representation

An articulated �gure is a structure that consists of a series of rigid links connected

at joints �Watt and Watt� ������ To de�ne the representation of these joints

relative to one another� a kinematic notation is needed� Such a notation was

developed by Denavit and Hartenberg which speci�es a coordinate frame for each

joint where each coordinate frame relates joint i with joint i � � �Paul et al��

��
���

DH�Notation is a set of rules which specify the assignment of coordinate frames

�Lee� ��
��� The coordinate frame for each joint is speci�ed using the following

systematic steps�

�� Identify the joint axis� The joint axis for joint i� is the axis the joint rotates

about�

�� Assign Zi axis pointing along the ith joint axis�

�� Assign Xi axis perpendicular to the Zi and Zi�� axis�

�



	� Assign Yi to complete the coordinate frame�

After the frames are assigned� the following four parameters can be obtained �Lee�

��
�� ��
���

� �i� The joint angle from the xi�� axis to the xi axis about the zi�� axis�

� di� The distance from the origin of the �i���th coordinate frame to the

intersection of the zi�� axis with the xi axis along the zi�� axis�

� ai� The o�set distance from the intersection of the zi�� axis with the xi axis

�shortest distance between zi�� and zi�

� �i� The o�set angle from the zi�� axis to the zi axis about the xi axis�

These four parameters describe the position and orientation of joint i relative to

joint i � �� Figure ��� gives an illustration of these parameters for describing

a two DOF kinematic chain� The corresponding values for the four parameters
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Y2 Z2
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Figure ���� Coordinate Frames for a � DOF Kinematic Chain �McKerrow� �����

outlined above ��i to �i� are shown in Table ���� The use of DH�Notation for the

speci�cation of the human arm �� DOF� can be found in Appendix B�

The parameters de�ned above can then be used to construct a general transforma�

tion matrix which describes the position and orientation of joint i and joint i���

This transformation matrix transforms joint i � � to joint i with the following

transformation �Lee� ��
���

Ai
i�� � Translate�Z� d� � Rotate�z� �� � Translate�X� a� �Rotate�X���





Joint theta ��i� alpha ��i� ai di

� �� ��� � d��

� �� �� l�� �

Table ���� DH�Notation Parameters

Thus�

Ai
i�� �

�
��������

cos��i� �sin��i� � ai��

sin��i�cos��i��� cos��i�cos��i��� �sin��i��� �sin��i��di

sin��i�sin��i��� cos��i�sin��i��� cos��i��� cos��i��di

� � � �

�
��������

�����

Once Ai
i�� is de�ned for each joint� the position and orientation of the end�e�ector

can be found �relative to the base frame�� This is de�ned by Craig ���
��� Lee

���
�� as�

Tn �
nY
i��

Ai
i����i� �����

where Tn is the end�e�ector and n is the DOF of the kinematic chain� Equation

����� can be used to describe the pose of the end�e�ector in cartesian space given

the angles for each joint�

DH�Notation is a system where each joint coordinate is related to its previous�

but it is not applicable to branching joints and links� Another intuitive system

is called the Axis�Position method which stores the position of the joint� its

orientation of the joint axis and pointers to the link�s� each joint is attached to

�Watt and Watt� ������

��� Solving For Inverse Kinematics

Solving for IK is one of the major research areas in robotics� This is due to the

need for more complex manipulators with N degrees of freedom �DOF�� There

are three main methods for solving IK� algebraic� geometric and iterative �Korein

and Badler� ��
��� Each method has its advantages and limitations� Algebraic






and geometric methods provide closed�form solutions for a given kinematic chain

but obtaining a solution space is di�cult� Iterative methods provide general�

ized solutions to IK but converge to one solution space where a kinematic chain

has multiple solutions �Korein and Badler� ��
��� Also� algebraic and geometric

methods provide real�time computation of IK and �nd all solutions�

����� Algebraic

Details of an algebraic solution to the PUMA ��� manipulator can be found in

Snyder ���
��� Paul et al� ���
�� and Craig ���
��� To solve IK algebraically� it

is necessary to solve equations for �� � � � �N �joint angles� for N DOF�

Given the required end�e�ector frame� the problem can be formulated as�

nY
i��

Ai
i����i� �

�
��������

Nx Ox Ax Px

Ny Oy Ay Py

Nz Oz Az Pz

� � � �

�
��������

�����

where the right hand side describes the required position and orientation of the

end�e�ector� The problem comes down to solving n equations for n unknowns

�Paul et al�� ��
���

For example� to solve for a six DOF PUMA ��� �robot arm� given its coordinate

frames A� to A�� equate �Paul et al�� ��
���

�Y
i��

Ai
i����i� � A��� ���� �� T�

where �T� is the right hand side of equation ������ Then solve for �i by equating

the left and right hand side� If no more �i can be solved� A� is inverted and

brought over to the right hand side and solved further for joint angles� This

continues until all angles have been determined�

This method does not guarantee a closed�form solution for a manipulator� Thus�

mechanical engineers usually design simple manipulators where closed�form so�

lutions exist �Craig� ��
��� Manocha and Canny ����	� and Manocha and Zhu

����	� proposed a generalized closed�form solution which can be derived for �

DOF �or less� kinematic chain� Manocha and Canny ����	� outlined a method

�



for solving IK algebraically using symbolic manipulation to derive univariate poly�

nomial and matrix computations� This method reduces the complexity of �nding

the closed�form solution of a manipulator using a matrix polynomial to reduce

the problem to an eigenvalue problem�

����� Geometric

As opposed to the algebraic method� a closed�form solution is derived using the

geometry of the manipulator� Lee ���
�� used theorems in coordinate geometry

which can be found in Anon ������ to derive the closed�form solution for a six

DOF manipulator� This involves projecting link coordinate frames onto the xi��

and �yi�� plane �Lee� ��
��� This method can be applied to any manipulator

with known geometry� One limitation of this method is that the solution to

the �rst three joints must be obtained before the rest of the solutions can be

found� Another limitation is that the closed�form solution only applies to a

speci�c geometry �Craig� ��
��� Algebraic and geometric methods can be used

together to obtain the closed�form solution for a given manipulator� Sasaki ������

used both methods to derived the solution for a  DOF manipulator�

����� Iterative

The iterative method solves IK by iteratively solving for the joint angles� Gen�

erally this method is slower and converges to only one solution� The following

subsections serve to provide the background needed for solving IK iteratively� The

derivation of the Jacobian is presented which is needed in some minimization al�

gorithms� the pseudoinverse for inverting a non�square and singular Jacobian and

minimization algorithms are reviewed in detail�

The Jacobian

The Jacobian is used extensively in the �eld of robotics to relate the di�erential

changes of the end�e�ector and the target object� Apart from that� it can be used

to map the end�e�ector rate to joint rates or vice�versa �Paul� ��
���

��



Watt and Watt ������ and Snyder ���
�� represented the Jacobian as�

�X � J��� �� ���	�

where � representes the �� � �� position vector of joint angles and J��� is a

�� � N� matrix whose Jij elements represent the partial derivative of the ith

cartesian coordinate of the end�e�ector with respect to the jth joint angle �Leahy

Jr et al�� ��
�� Each element of the Jacobian matrix is a non�linear function

of the joint variables �Featherstone� ��
��� The Jacobian�s inverse is de�ned as

�Watt and Watt� ����� Snyder� ��
���

�� � J����� �X �����

Paul et al� ���
�� de�ned the Jacobian as a � � N matrix for N DOF� Each

column of the Jacobian consists of the di�erential translation and rotation vector

corresponding to the di�erential changes of each of the joint coordinates �Paul�

��
��� �X �� � � vector� represents the linear velocity �dx�dy�dz� and rotational

velocity ��x� �y� �z� of the end�e�ector� �� �N � � vector� is the time derivative of

the state vector �rotational velocity for each joint��Watt and Watt� ������

There are various methods for deriving the Jacobian� One method is to take the

partial derivative of the closed�form equations �Orin and Schrader� ��
	� Angeles�

��
��� According to Leahy Jr et al� ���
�� partial di�erentiating is straightfoward

but it is ine�cient for computer implementation�

Paul ���
�� represented the Jacobian in the following form �� DOF��

�
���������������

�x

�y

�y

��x

��y

��z

�
���������������

�

�
���������������
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��y��y��y��y��y��y
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���������������
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���

���

���

���

���

���

�
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�����

which directly corresponds to the form shown in equation ���	��

��



Each element of the Jacobian is then de�ned as �Paul� ���� ��
���

T�dix
� n � �� � p�

T�diy
� o � �� � p�

T�diz
� a � �� � p�

����

T��ix
� n � �

T��iy
� o � �

T��iz
� a � �

���
�

where � is the di�erential rotation vector and i � � � � � n DOF� n�o�a and p

are vectors which correspond to columns of coordinate frames which de�ned the

frame�s x�y�z axis and its position relative to the reference frame� �See equation

�������

Then compute the columns of the Jacobian shown in ����� using ���� and ���
� �

To use ���� and ���
�� the di�erential coordinate transformations corresponding

to ��� to ��� which are the coordinate frames A� to A� respectively as de�ned in

Section ��� �Paul� ��
�� are needed� This method is generalized in that it can be

implemented easily and applied to various kinematic chains�

Craig ���
�� derived the Jacobian in terms of the screw axis �see McKerrow

������ for explaination of screw axis� variables � �angular velocity� and V �linear

velocity�� Craig ���
�� de�ned the angular velocity ��� at frame fi��g as�

i���i�� �
i��
i Ri�i � ��i��

i�� �Zi�� �����

where i��
i R is the transform frame from i to i� � and �Z is the joint axis of joint

i� � �usually the Z�axis� and linear velocity �at frame i� �� is de�ned as�

i��Vi�� �
i��
i R

�
iVi �

i �i �i Pi��

�
������

where iPi�� is the position vector from joint i to i� ��

Using equations ����� and ������ and rearranging the �nal equations and fac�

toring out ��� from equation ����� we can derive the Jacobian which relates the

end�e�ector rate to joint rates� This method is used in Maciejewski and Klein

���
�� for de�ning �gures in their animation software� According to Maciejewski

��



and Klein ���
�� this method formulates the Jacobian in a minimum number of

computation steps because the majority of work has been done in generating the

homogeneous transformations�

Performance measures for various methods in deriving the Jacobian can be found

in Orin and Schrader ���
	�� Whitney ����� derived the Jacobian using vector

cross products where each element of the Jacobian is de�ned using Vj �linear

velocity vector�� �j �rotational velocity vector� and biN �a vector from joint j to

N� for the jth joint in a N DOf manipulator� This method was later improved

by Paul ���
���

According to Zomaya ������� the di�erence between various methods for com�

puting the Jacobian are�

� the components of the Jacobian may be de�ned in any coordinate frame�

� the reference point of the end�e�ector for which the translational velocity

is computed may be chosen arbitrarily�

Inverting the Jacobian

The inverse of the Jacobian is needed to solve equation ������ Given the linear

and angular velocity of the hand �end�e�ector� the joint rates can be computed�

There are a number of numerical methods which can be used for calculating joint

rates� For example� Gaussian Elimination can be used to invert the Jacobian

if it is invertible �Snyder� ��
��� Press et al� ������ used LU decomposition to

solve equation ������ Maciejewski ������ outlined the following problems when

mapping e�ector�rate to joint rates�

�� Singularity

The Jacobian is singular if it is not of full rank or if its determinant is zero�

Nakamura and Hanafusa ���
�� solved this problem using the singularity

robust inverse �SR�Inverse� as an alternative to the pseudoinverse in the

area of singularity� Alternatively� Whitney ����� suggested the use of

redundant DOF to avoid singularities�

�� Non�Square

The Jacobian is a ���N� matrix for N DOF� Therefore for DOF less than

��



or more than six� the Jacobian is non�square� A general solution would be

needed to handle N � � and N � � �Fletcher� ���
�� When N � �� any

inverse methods �e�g� Gaussian Elimination� can be used to obtain J�� if

and only if the Jacobian is non�singular� Otherwise� the pseudoinverse or

the SR�Inverse is used�

�� Degeneracies

This is due to the fact that there is an in�nite number of solutions for the

same end�e�ector con�guration� When degeneracies occur� certain joint

velocities exist but do not contribute to the overall end�e�ector velocity

�Zomaya� ������

The Pseudoinverse

As mentioned� the pseudoinverse is used to invert the Jacobian �J� when it is sin�

gular or non�square� Thus� it provides a best approximation which gives a least

squares solution of minimum norm� Golub and Kahan ������ de�ned the pseu�

doinverse using Singular Value Decompostion �SVD�� Other methods of de�ning

the pseudoinverse can be found in the comprehensive book by Rao and Mitra

������

The pseudoinverse of a rectangular matrix �J�� satis�es�

JJ�J � J

J�JJ� � J�

�J�J�
T
� J�J

�JJ��T � JJ�

where T denotes the complex conjugate transpose �Klein and Huang� ��
�� Golub

and Kahan� ������ Proof of the above properties and that the pseudoinverse sat�

is�es least squares can be found in Noble and Daniel ���
��� Comprehensive

examples can found in Noble and Daniel ���
��� Golub and Kahan ������ pre�

sented proof and basis for deriving SVD�

Noble and Daniel ���
�� de�ned the pseudoinverse using SVD as�

J� � V ��UH ������

�	



where V and U are unitary matrices of dimension p � p and q � q respectively�

�� contain the reciprocals of the eigenvalues of J� Albert ����� computed the

pseudoinverse as�

A� � lim
x��

��ATA� x�I���AT � ������

where T denotes the transpose and I is the identity matrix�

Klein and Huang ���
�� reviewed the pseudoinverse and outlined problems in

solving IK when the end�e�ector follows a rectilinear space� Klein and Kee ���
��

provided proof and experimental results to support Klein and Kee ���
��� They

identi�ed various con�gurations of a simple manipulator where this situation

arises� Maciejewski and Klein ���
�� presented various methods for de�ning the

pseudoinverse used in their animation system� This included determining the

pseudoinverse if the rank of J is unknown� Furthermore� Maciejewski and Klein

���
�� pointed out that the pseudoinverse is ideal when redundant DOF are

present�

Maciejewski ������ used SVD to identify ill�conditioning� This is done using

SVD to determine the rank of the Jacobian� If the rank is zero� the Jacobian is

singular� thus the pseudoinverse is needed to provide a least�square and minimum

norm solution� Maciejewski ������ suggested that the use of the pseudoinverse

is spurious at the transition from an approximate solution to an actual solution�

He overcame this limitation by using damped least squares or regularization�

Numerical Methods

This section reviews papers on numerical analysis which are used for solving IK

iteratively� The minimization methods provided here give a brief introduction to

existing methods� Comprehensive details are covered in Ortega and Rheinboldt

������ Massara ������� Rabinowitz ������ Press et al� ������� Adby and Demp�

ster ���	� and CSEP ������� This treatment is signi�cant because it provides

a mathematical foundation for understanding methods for solving IK iteratively�

The basic structure of iterative methods can be summarized as �CSEP� ������

� Supply an initial guess Xo

� For k � �� � � � until convergence

��



�� Test Xk for convergence

�� Calculate a search direction Pk

�� Determine an appropriate step length �k �or modi�ed step Sk�

	� Set Xk�� � Xk � �kPk �or Xk � Sk�

In minimization� it is required to �nd the local minimum of f �Brent� ���� of

the function f � Rn � R� In relation to IK� we are solving for the joint angles �n

dimension� which minimizes the error between the end�e�ector and the required

�destination� coordinate frame� A detailed explanation can be found in Chapter

��

Powell�s Method

Powell ����	� outlined a method for the minimization of a function with several

variables which did not require the derivative of the given function� One limitation

of Powell�s method is that the function variables cannot have constraints �un�

constrained optimization�� Interested readers are directed to Powell ����	� for

proof that Powell�s method is quadratically convergent�

The main idea of Powell�s method for achieving convergence is by searching down

a given direction vector U � �u� � � � un� with each element in the direction vec�

tor updated iteratively� The direction vector produces N mutually conjugate

directions which means that once all elements of the direction vector are linearly

independent �mutually conjugate directions�� the next N line minimizations �one

dimensional minimization method� will put the function at the minimum �Press

et al�� ������

Massara ������ pointed out that Powell�s method need O�n�� line searches and

fails to converge when the set of search directions become linearly dependent�

PRAXIS method

PRAXIS is another method which also does not require derivatives of the objec�

tive function� This method was originally presented in Brent ������ According

to Brent ������ this method performs better than Powell�s method presented

above� The Praxis method is a modi�cation of Powell�s algorithm such that it

��



ensures quadratic convergence� and avoids di�culties associated with accepting

new search directions which are inherent in Powell�s method� This is achieved

by reseting the search direction U � �u� � � � un� after every n or n� � iterations�

Brent ����� reset U � �u� � � � un� to an orthogonal matrix and ensured that the

new directions are conjugate� This e�ectively removes the linear dependence of

the search directions with the Powell�s method�

Fletcher�Reeves�Polak�Ribiere �FRPR�

Fletcher�Reeves�Polak�Ribiere �FRPR� is a method which has been modi�ed by

Polar�Ribiere �Press et al�� ������ This method makes use of the conjugate gra�

dient vectors �generated from gradient evaluations� which replaces the Hessian

matrix� In this method� a direction vector is calculated such that it produces a

basis set of mutually conjugate directions such that each successive step continu�

ally re�nes the direction toward the minimum� In this method the new direction

vector �hi��� leading from point i� � is computed by the gradient at point i� �

denoted by gi�� to the previous hi scaled by a constant 	i� Mathematicaly this

is de�ned as�

hi�� � gi�� � 	ihi ������

In the FRPR method� 	i is de�ned as�

	i �
gi�� � gi��
gi � gi ����	�

Another variation called Fletcher�Reeves de�ned 	i as�

	i �
�gi�� � gi�gi��

gi � gi ������

Newton�s Method for Non�Linear System

Generally� in non�linear systems� the aim is to minimize the set of equations

�functions with N variables��

Fi�x�� x�� � � � � xN� � � i�� � � � N ������

According to Press et al� ������� equation ������ can be expanded in Taylor Series

and by neglecting second order terms or higher� obtain the following equation�

J�x�� � �x � �F �x�� �����

�



where J is the Jacobian matrix� �x�� is the initial guess and F denotes the en�

tire vector of functions Fi de�ned in equation ������� Solving for �x using LU

decomposition we obtain the correction vector for the next iteration�

xnew � x� � �x ����
�

Equation ����� can be solved as�

�x � J�x��
�� � �F �x�� ������

This requires the Jacobian to be inverted� Section ����� gives a detailed discussion

on inverting the Jacobian for solving equation �������

Iteration stops when the sum of the magnitudes of the functions Fi is less than


 �tolerance value� or the sum of j�ixj � �� where � is the given accuracy is

true� The mathematical basis can be found in Ortega and Rheinboldt ����� and

implementation details and source code can be found in Mathews �������

Broyden�Fletcher�Goldfarb�Shanno �BFGS�

The BFGS method belongs to the class of methods called Quasi�Newton or vari�

able metrics� Quasi�Newton is a term used to de�ne a class of methods which

replaces the Jacobian in the ordinary Newton�s method with an approximation

matrix that is updated at each iteration� The advantage of this method is that

the Jacobian does not need to be recalculated and inverted at each iteration�

On the other hand� the Quasi�Newton method in general does not have quadratic

convergence and is not self correcting �results does not correct for round�o� error�

�Burden and Faires� ��
���

In Quasi�Newton methods the inverse of the Hessian �H� matrix is approximated

iteratively �Press et al�� ������ The Hessian �H� matrix for a given objective

function F �x� �n variables� is de�ned as Gi�j � ��F �x���xi�xj�i� j � �� � � � � n��

the second partial derivatives of the objective function� However in Quasi�Newton

methods� H�� is approximated by Hr� Hr is positive de�nite and the sequence

of Hr for r � � � � �� tends to the value of H�� �Massara� ������

The iterative equation is de�ned as �Massara� ������

xi�� � xi � �idi ������

�




where the direction vector di is de�ned as�

di � �H igi ������

Equation ������ is guaranteed to converge if Hr is positive de�nite and the scalar

� is chosen such that it reduces the objective function �Massara� ������

The di�erence between the variations of the Quasi�Newton method is the com�

putation of the Hessian matrix �Press et al�� ������ In BFGS� the Hessian matrix

is approximated iteratively using the following formula�

Hi�� � Hi � Term�� Term� � Term� ������

where

Term� �
�xi�� � xi�� �xi�� � xi�

�xi�� � xi� � ��fi�� ��fi�

Term� �
�Hi � ��fi�� ��fi��� �Hi � ��fi�� ��fi��

��fi�� ��fi� �Hi � ��fi�� ��fi�

Term� � ���fi�� ��fi� �Hi � ��fi�� ��fi��u� u

u � �xi�� � xi�

�xi�� � xi� � ��fi�� ��fi�
� Hi � ��fi�� ��fi�

��fi�� ��fi� �Hi � ��fi�� ��fi�

�fi is the gradient of the objective function at ith iteration� In the Davidon�

Fletcher�Powell �s variation� the expression Term� is omitted� Sasaki ����	�

provided a �ow diagram and explanation to the Davidon�Fletcher�Powell method

which was used to solve IK�

Iterative Solutions for IK

Goldenberg and Lawrence ���
�� gave an overview of a generalized method for

solving IK using an iterative method� The method formulates the problem by

obtaining the residual vector which is de�ned as the di�erence between the hand

frame and the target frame� The joint constraints are not considered in their

solution� Goldenberg et al� ���
�� extended the generalized method presented

in Goldenberg and Lawrence ���
��� Steps and equations to their algorithm are

outlined and joint constraints are considered� This is done by reducing the step

size in their computation�

��



Wang and Chen ������ used two minimization algorithms� namely Cyclic Coor�

dinate Descent �CCD� and Broyden�Fletcher�Shanno �BFS�� The CCD algorithm

is used to �nd the starting value for BFS which ensure that for any given initial

value� BFS will sucessfully converge� Furthermore� the joint limits are considered�

Tsai and Orin ���
� developed a generalized method for solving IK� Their

method solves N DOF based on integration of joint rates and includes a position

feedback term for convergent checking� Moreover� the developed method con�

verged near singular points� The developed method does not solve IK iteratively

but uses a feedback mechanism which enables the determination of deviation of

joint rates from actual rate� Sasaki ����	� provided an overview of numerical

methods used to solve IK and also provided test results and evaluation for each

numerical method used� Refer to Press et al� ������ for general overview and

source code for the Broyden�Fletcher �Goldfarb�Shanno �BFGS� minimization

algorithm which is a variation of the BFS method� Source code for other mini�

mization algorithms such as steepest descent and conjugate gradient can also be

found in Press et al� ������� The mathematical background on Quasi�Newton

can be found in Mathews ������� Dennis and et al ���	�� Other methods for

solving non�linear systems can be found in Byrne and Hall ������

��� Kinematics in Computer Graphics

IK is used to animate all aspects of human motion� This includes locomotion and

manipulating the skeletal system which includes feet� pelvis� spine and torso and

center of mass �Cary B and Badler� ������ IK or goal directed motion used in

human animation seeks to aid in positioning and orienting a body model which

consists of joints and segments �Badler� ��
�� The PODA system �Girard� ��
�

linearizes kinematics at a point and solves for the joint angles iteratively� This is

done by computing the Jacobian and iteratively solving for IK� The pseudoinverse

is used when the Jacobian is not square and singular� Otherwise Gaussian elim�

ination with pivoting is used to remove the complexity of computation �Girard

and Maciejewski� ��
��� One downside of using the pseudoinverse is its expensive

computational cost �Sasaki� ���	�� In order to provide ease of manipulation� the

PODA system incorporates both inverse and forward kinematics� Figures in the

��



PODA system are animated using a parameterized model where a set of end�

e�ector positions are speci�ed and IK is invoked to move the �gure through the

predetermined path� The limitation in the PODA system is that joint limitations

are not considered� The Jack system employs an iterative method to solve IK

as well� The Jack system uses a combination of the BFGS method and Rosen

�������s method to solve IK� This method is used to solve multiple constraints

which are speci�ed by the user� Moreover it supports joint constraints�

Badler et al� ���
� outlined an innovative application of IK by having multiple

constraints on a human model� IK is then used to solve for each constraint

�through minimization�� This allows the desired end�e�ector con�guration to be

reached in fewer iterations� For example� to position a �gure for sitting� the

destination position and orientation of the shoulders� hip� arms and knees are

speci�ed� Then IK is used to solve for each constraint iteratively� Also� the

centre of mass of the �gure positioned at the hip is taken into account� The

downside of this is that the �gure is seen hanging about its centre of mass�

Also� each constraint can be solved in parallel� Phillips et al� ������ provided

the mathematical formulation of the method presented in Badler et al� ���
��

With multiple constraints� Phillips et al� ������ and Zhao and Badler ����	�

determined the computation is of order O�n� � O�n� where n is the number of

degrees of freedom �DOF��

Rijpkema and Girard ������ used IK to choreograph the �ngers in their knowledge�

based approach to human grasping� The di�culty in this problem is that the

movement of each �nger may in�uence one another� Also� the thumb is very dex�

trous� To represent the �ngers� DH�Notation is used to describe the kinematics of

each �nger� IK is then invoked to position and orient each �nger when grasping is

done� The thumb is solved using an iterative method since a closed�form solution

cannot be found�

The animation of human locomotion relies on IK to position and orient joints� A

path describing the end�e�ector�s trajectory is speci�ed and IK is used to solve for

the joint angles along this path� In human locomotion� a parameterized model is

used to simulate the limb motion through time� The Jack system is able to specify

motion using scripts which consists of constraints� velocity� and start and ending

time �Badler et al�� ������ Keyframing techniques for articulated structures are

��



presented in Korein and Badler ���
�� where a kinematic chain of N DOF is

parameterized as the vector q � �q�� q�� � � � � qn�� Then keyframing can be used

to animate each element to the desired goal� A parameterized model for gaits is

also presented in van de Panne ������� along with various parameterized models

for animating creatures�

Apart from using IK to interactively manipulate human �gures and controlling

joints for a speci�ed path as in Girard and Maciejewski ���
�� and Girard ���
��

there are other applications of IK such as Reachable Workspace and Collision

Avoidance �Zhao and Badler� ���	�� The use of IK in systems incorporating dy�

namics provides an intuitive mechanism in human animation� Ko and Badler

������ combines both kinematics and dynamics for better control in the speedy

system� They used IK as a locomotion generator based on collected biomechani�

cal data of human locomotion� At each frame� dynamics is used to give a realistic

characteristic of human locomotion� This includes balance control and force con�

trol�

��� Summary

As can be seen various methods are available for solving IK and little work has

been presented which incorporates the advancement in solving the IK of manipu�

lators in robotic for animating the human �gure� Example of this is the algebraic

and geometric methods which o�er fast and e�cient computation cost� Futher�

more generalized solutions are available which can be used to animate articulated

structure having N DOF� This thesis contributes by incorporating various meth�

ods for solving IK in robotics for animating the human �gure� Furthermore as can

be seen in the robotics �eld� minimization algorithms such as modi�ed POWELL

�Press et al�� ������ PRAXIS �Brent� ����� and Modi�ed Fletcher �Lau� �����

methods have not been investigated for solving IK� Thus this thesis contributes

to research in animating human motion and generalized IK solutions in robotics�

��



Chapter �

RESEARCH METHODOLOGY

This chapter outlines the hypotheses� deliminitions and the research methodology

undertaken in this work used to prove or disprove the hypotheses outlined�

��� Hypotheses

The following outlines hypotheses which were of concerned to this study� These

hypotheses are evaluated in Chapter ��

�� Iterative methods are better than the closed�form method presented at han�

dling articulated structures having N �e�g N � � or N � �� DOF� This is

because the formulation of algebraic equations is time consuming and er�

ror prone� Furthermore� articulated structures having more than six DOF

might not have a closed�form solution�

�� Solutions from iterative methods do not necessarily give the required joint

con�gurations� Since iterative methods only converge to one solution� it is

time consuming to obtain other solutions�

�� Generalized solutions presented in robotics can be incorporated to manip�

ulate di�erent joints in humans� This is done by applying IK to a segment

of joints�

	� In iterative methods� if the required target position and orientation is near

the current con�guration of the articulated structure� there will not be

��



sudden changes to each DOF�

��� Types of Investigation

The following outlined methodologies were used to test each hypothesis and solve

the stated problems in Section ��

� Comparative

The performance and feasibility of closed�form and iterative solutions in

providing real�time manipulation of the human arm was compared and con�

trasted� This is needed to compare the limitations and advantages of each

method� This is vital because the objective was to provide a real�time en�

gine and the problems associated with each method needed to be thoroughly

investigated�

� Evaluation

The e�ectiveness of closed�form solutions and iterative methods in deriving

speci�ed end�e�ector con�guration was investigated� This methodology was

incorporated to determine the e�ectiveness of the closed�form and iterative

solutions in providing the required results� The algebraic solutions yield

multiple solutions and iterative solutions converge to one solution�

� Design and Demonstration

A simple graphical interface was developed to demonstrate the use of the

concepts and solutions presented in this thesis� This shows the applica�

tion of inverse kinematics �IK� solution in animating the human articulated

structure� The human arm is used to demonstrate this aspect of the thesis�

��� Deliminations and Assumptions

The main aims of this thesis were to provide ways of manipulating articulated

structures through IK and to show the use of IK for human animation� Therefore

the following do not apply�
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�� Dynamics

The dynamics of an articulated structure is not considered� The forces and

mass acting on the articulated structure are omitted�

�� Skin Deformation

Skin deformation which occurs when the arm is manipulated is not consid�

ered� The model used is a skeletal structure� therefore the joint constraints

are of importance� The arm will be modelled using the joint angles con�

straints as measured by Norkin and White ���

�

�� Collision Detection

Collision detection is not considered� Thus� interaction with the environ�

ment is omitted�

	� Target Tracking

The target position and orientation which the IK solution will solve is as�

sumed to be stationary�

�� Human Motion Package

A full human animation package is not implemented� This thesis mainly

covers methods for solving IK� The simple graphics system developed serves

to demonstrate the application of this thesis for animating human motion�

Therefore this thesis provide the foundation for a full package where devel�

oper can concentrate fully on the high level interface�

�� Constrained Optimization

Constraint minimization is not within the scope of this thesis� This thesis is

concerned mainly with investigating un�constrained minimization and root

�nding algorithms for solving IK�

��



Chapter �

IMPLEMENTATION

This chapter outlines algebraic and iterative methods for solving inverse kinemat�

ics �IK�� Further� the application of kinematics for human animation is outlined�

The �rst section deals with the derivation of closed�form solution for the human

arm modelled with � degrees of freedom �DOF�� The closed�form solution derived

can be used directly for solving IK of a human arm� The second section presents it�

erative methods for solving IK� Various minimization and root �nding algorithms

have been investigated and are outlined herein� Finally the implementation de�

tails of a simple human arm animator is outlined which incorporates forward and

inverse kinematics�

��� Solving IK Algebraically

����� Problem Formulation

In the algebraic method� �nding a closed�form solution for each angle of the artic�

ulated structure is of interest� Solving IK algebraically starts with the following

problem formulation�

T� � A����� 	 A����� 	 A����� 	 A����� 	 A����� 	 A����� �����

where A� to A� are transformation matrices� In equation ������ we have six

unknowns ��� to ���� The problem is formulated as�

Given the required end�e�ector position and orientation� �nd �� to ��

��



�T� is a �x� matrix which describes the orientation and position of the

required end�e�ector��

To solve for the angles� the following steps are taken� the following matrix

multiplication are derived with the help of the symbolic mathematical package

MAPLE�

�� Invert A����� and bring it over to the left hand side�

�� Equate both sides and �nd the equation where there is only one unknown�

Sometimes� this involves squaring two equations together� adding �or sub�

tracting� them together and simplifying�

�� Once such an equation is found� algebraically solve for the unknown�

	� Find equations which can be solved by substituting the angle calculated in

step ��

�� If no more equations can be found� invert another matrix �e�g� A������ and

solve further� This continues until all angles are solved�

In summary� this method systematically solves for the joint angles by inverting

the A matrix and equating row and column from the right and left hand side� A

more comprehensive example can be found in Snyder ���
���

According to Paul et al� ���
��� the algebraic method is di�cult because both

sine and cosine are needed to determine a given joint angle correctly� Moreover�

the manipulator has more than one solution and there are twelve equations in six

unknowns�

����� Solving IK for the Human Arm

The �rst step in solving IK� is to assign coordinate frames to the human arm�

This is needed to relate joint i with joint i� � which we can then determine the

end�e�ector�s position and orientation relative to the base frame� A variation of

the DH�Notation was used to describe a human arm modeled as � DOF� The

coordinate frames and the A matrices derived for an arm of � DOF is shown

below� �Ci and Si denotes the Cosine and Sine respectively�

�



            

Figure ���� Axis of Rotation for Human Arm
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To solve for �� formulate the following�

A��� 	 T� � A� 	 A� 	 A� 	 A� 	 A� �����

where Ai describes the position and orientation of joint i to i� ��

By multiplying and simplifying both sides �see Appendix A�� for calculated ex�

pressions�� equate the equations in R�Left���	� and R�Right���	� �See Appendix

A�� for R�Left�� and R�Right��� to get�

�Note� Ci�Si and Sij denotes cos��i�� sin��i� and sin��i � �j�� Px to Pz� Ox to

Oz� Ax to Az and Nx to Nz are columns of the target frame��

C�Px � S�Pz � � �����

Equation ����� has the following form Craig ���
���

a cos��� � b sin��� � � ���	�

where � is solved as � � ATAN��a��b� or � � ATAN���a� b�� Therefore �� is

solved as�

�� � ATAN��Px��Py�
�� � ATAN���Px� Py�

�����

Once having solved for ��� other equations which can be solved by substituting

�� or equations containing only one unknown are solved for� By inspection� ��

can be solved by equating equations in R�Left���	� with R�Right���	� and equate

R�Left���	� with R�Right���	�� see Appendix A�� for R�Left�� and R�Right��� The

following sets of equation are derived�

�d�C�� � C�d� � �S�Px � C�Py �����

�d�S�� � S�d� � Pz ����

Rewrite equations ����� and ���� so that C�� and S�� can be eliminated�

�d�C�� � �S�Px � C�Py � C�d� ���
�

�d�S�� � Pz � S�d� �����

Then square equation ���
� and ������ add them together� simplify and factor out

C� and S� to obtain the form shown in equation �������

d���P �
x�P

�
xC

�
���S�PxC�Py�C�

�P
�
y�P �

z�d�� � C���d���S�Px�C�Py���S���Pzd��

������

��



a 	 cos��� � b 	 sin��� � d ������

As shown in �Craig� ��
��� � in Equation ������ can be solved as�

� � ATAN��a� b�
 ATAN��
p
a� � b� � c�� c�

Then solve for �� using equation �������

a � �d���S�Px � C�Py�

b � S���Pzd��

c � d�� � P �
x � P �

xC
�
� � �S�PxC�Py � C�

�P
�
y � P �

z � d��

�� � ATAN��b� a�
 ATAN��
p
a� � b� � c�� c� ������

There are two solutions for ��� Each of these solutions can be used in the following

expression to derive di�erent con�gurations of the arm for a required end�e�ector�s

position and orientation�

By inspection� there are no other equations which can be used to solve for other

angles� Therefore bring over A� to the left hand side� and formulate the following�

A��� 	 A��� 	 T� � A� 	 A� 	 A� 	 A� ������

From the above results� by equating S�Lft���	� with S�Rgt���	� and S�Lft���	�

with S�Rgt���	� �� can be solved� See Appendix A�� for S�Lft�� and S�Rgt���

Equating both of these equations and factoring out C� and S��

C� �
C�S�Px � C�C�Py � S�Pz � d�

d�

S� �
�S�S�Px � S�C�Py � C�Pz

d�

Therefore �� can be solved as�

�� � ATAN��S�� C�� ����	�

To solve for ��� bring over A� and A� to the right hand side to formulate the

following�

A��� A��� 	A��� 	 A��� 	 T� � A� 	 A� ������

The full expression for the above is shown in Appendix A���

��



�� can be solved by equating Q�Lft���	� and Q�Rgt���	�� Refer to Appendix A��

for full expression of Q�Lft���	��

C��AxC� � AyS�� � S��AyC�S�� �AxS�S�� � AzC��� � � ������

Equation ������ has the form shown in Equation ���	��

Therefore equate�

a � AxC� � AyS�

b � AyC�S�� � AxS�S�� � AzC��

Then the closed�form equation for �� is�

�� � ATAN��a��b� or

�� � ATAN���a� b�
�����

�� can be solved by equating Q�Lft����� with Q�Rgt����� and Q�Lft����� with

Q�Rgt������

C� � C��NyS� �NxC�� � S��NyC�S�� �NxS�S�� �NzC��� ����
�

S� � C���OxC� � OyS�� � S��O � zC�� � OyC�S�� � OxS�S��� ������

Therefore �� is�

�� � ATAN��S�� C�� ������

Finally� once �� is solved� �� is solved using equating in R�Lft����� and R�Rgt������

After factoring out C� and S��

C��S��S��� � S��S�C�C��� � Nz � S�C�C��

The closed�form solution for �� has the same form as Equation �������

Therefore

a � S�S��

b � S�C�C��

c � Nz � S�C�C��

�� � atan��a� b�
 atan��
p
a� � b� � c�� c� ������

Once each closed�form equation for �� to �� is derived� these equations can then

be implemented �hard�coded� directly� The required end�e�ector�s position and

��



orientation is described by a 	x	 homogenous coordinates� The use of the above

closed�form solutions in the Human Arm Animator Applet will be explained in

Section ������

The steps described above can be applied to any revolute articulated structure

of � DOF� Articulated structures having more than � DOF �redundant� may be

solved using both algebraic and geometric method as in Sasaki �������

��� Solving IK Iteratively

����� Problem Formulation

The second method of solving IK uses iterative methods such as minimization�

root �nding and least�square algorithms� There has been little reported work

done which uses iterative methods because iterative methods are generally slow�

On the other hand� iterative methods provide a generalised solution for solving

IK� Compared to the algebraic method where �xed solutions for each joint an�

gle are analytically calculated� the iterative method calculates the joint angles

dynamically based on the transformation matrices� Goldenberg and Lawrence

���
�� use a modi�ed Newton�s method to solve for IK� Moreover� constraints on

each joint are taken into consideration� Sasaki ����	� provided comparisons of

various gradient minimization methods where derivative of the objective function

is required�

Iterative methods need an objective function to minimize� One method is to

represent this function as a vector of � elements R � ��x �y �y �x �y �z� which

represents the residual position and orientaion between the end�e�ector �EE� and

the target frame� Figure ��� gives a graphical view of this process�

��



            

Figure ���� Mapping hand frame to target frame

Wu and Paul ���
�� and Goldenberg et al� ���
�� formulated R as follows�

rx � nH � �pT � pH�

ry � oH � �pT � pH�

rz � aH � �pT � pH�

r	 � �
�
�aH � oT � aT � oH�

r� �
�
�
�nH � aT � nT � aH�

r� � �
�
�oH � nT � oT � nH�

������

where nH � oH and aH are columns of the hand frame and nT � oT and aT are

columns of the Target frame� Collectively� equation ������ transform the hand

frame to the target frame� Derivation of ������ can be found in Paul ���
���

When both frames coincide� the joint angles q������ satisfy �TB
T is a constant��

R�q�� � � ������

So the problem becomes �nding q� such that ������ is true�

Sasaki ����	� provides a simple formulation for solving IK� Sasaki ����	� formu�

lated the objective function as follows�

�� Compute the current state of the end�e�ector using forward kinematics�

��



The current end�e�ector frame is described as�
�
��������

NXc OXc AXc PXc

NYc OYc AYc PYc

NZc OZc AZc PZc

� � � �

�
��������

����	�

which is equivalent to T� in equation ������ Recalling that each of ����	�

depends on �����n for n DOF�

�� Given the required position and orientation of the end�e�ector which is

given as� �
��������

NXd OXd AXd PXd

NYd OYd AYd PYd

NZd OZd AZd PZd

� � � �

�
��������

������

where each element of the matrix is constant� To formulate the problem�

equate matrix ����	� and ������ and obtain the following �� sets of non�

linear equations�

f���� � NXc����NXd

f���� � NYc����NYd

f���� � NZc����NZd

f���� � OXc���� OXd

f���� � OYc���� OYd

f���� � OZc���� OZd

f
��� � AXc���� AXd

f���� � AYc���� AYd

f���� � AZc���� AZd

f����� � PXc���� PXd

f����� � PYc���� PYd

f����� � PZc���� PZd

������

The IK problem than becomes �nding �����n which minimizes the set of non�linear

equations �IK��� � fi��� � ��� In the least�square form� we are solving for the

least value of

IK��� �
��X
i��

�fi����
� �����

�	



As can be seen in Equation ���� only �� non�linear equations are derived� If

the number of DOF is more than ��� then it is necessary to either add constraint

conditions or to optimize by the number of unspeci�ed dimensions �Sasaki� ���	��

Two of these problem formulations de�ne the objective function required in the

minimization algorithms� A simpler method for calculating the residual vector

�R� can be found in section ����	�

����� Computing the Jacobian

In order to present iterative solutions� the Jacobian needs to be calculated� The

Jacobian plays an important role in iterative methods where it is used to calculate

the joints direction � ��� � � � ��n�� The Jacobian is calculated at the frame where

motion is applied� In this work� the Jacobian is calculated for the End�E�ector�s

frame since manipulation is done at the end�e�ector�s frame�

As outlined in Chapter �� the Jacobian �J� relates the di�erential changes in joint

space to cartesian space�

�X � J��� �� ����
�

where �X is a � element vector �dx� dy� dz� �x� �y� �z�
T � and �� is the di�erential joint

vector ��� � � � ��N �N � DOF �� The application of the Jacobian can be found in

section ����	 where Newton�s method for a multi�dimension function is used to

solve IK�

Although there are numerous methods for computing the Jacobian as presented

in Chapter � the method used in this thesis is based on the formulation presented

in �Zomaya� ������ This method was chosen because of its simple and algorithmic

nature�

The method presented by �Zomaya� ����� de�nes the linear and rotational veloc�

ity ��dxi� dyi� dzi� 
xi� 
yi� 
zi �
T � components as follows�

� Linear Velocity �dxi� dyi� dzi�
T

�dxi� dyi� dzi�
T � Zi�� � �PN � Pi��� ������

��



where � is the cross�product operator� N is the DOF and Pi denotes the

position vector from the ith joint to the base frame �Frame ��� Zi is just

the �rd column of the coordinate frame for joint i where i ranges from � to

the number of joints�

� Angular Velocity �
xi� 
yi� 
zi �
T

�
xi� 
yi� 
zi �
T � Zi�� ������

Equation ������ assumes the axis of rotation is about Zi���

The following outlines the implementation steps for computing the Jacobian based

on the above formulation�

�� Compute T� �
NQ
i��

Ai
i����i�

�� Store the 	th column of T� as PN �

�� FOR i� � to N DO STEP 	 to 

	� Compute G � GAi��� At i � �� G and A� is initialized to the identity

matrix�

�� Store the 	th column of G as Pi�� �� element vector��

�� Store the �rd column of G as Zi���

� Compute column i of the Jacobian using equation ������ and �������

Once the Jacobian is computed� it is used in iterative methods to calculate the

end�e�ector�s di�erential change� Moreover for calculating the gradient and Hes�

sian matrix of the Objective function being minimized�

Computing the Gradient

Computing the gradient is often required in minimization algorithms such as

Broyden� BFGS� FRPRM and Fletcher� The gradient can be calculated easily

from the Jacobian as �Rabinowitz� ���� Sasaki� ���	� Goldenberg et al�� ��
���

g
k�
j � �

�X
i��

fi�x
k��J

k�
ij � j � �� �� � � � � n ������

��



where J
k�
ij denotes the Jacobian calculated at iteration k� fi is the residual error

as de�ned in equation ������ or ������� xk� is the joint angles at iteration k and

n is the degree of freedom �DOF� being modelled�

����� The Objective Function

An objective function is needed by all minimization algorithms� The principle

role of this function is to calculate the relative error between the required and

current e�ector�s position� The skeleton structure of the objective function used

in this research is de�ned as follows�

Pseudocode for Objective Function

Input	 Joint Angles� q����n

Exit 	 Error� 

� Calculate current end�e�ector �EE��s position� CEE � FK�q����n�

where FK is the forward kinematic function�

� Calculate the residual vector r using the formulation shown in

equation ������ or �������

� Calculate error�  �
GP
i��

r�i

where G � � and G � �� for equation ������ and ������

respectively� This step can vary where some minimization

methods require the residual vector r�

����� Algorithms for Solving IK Iteratively

The following are the minimization and root �nding algorithms investigated for

solving IK� The following is by no means a comprehensive explanation of each

algorithm� Comprehensive details can be found in Press et al� ������� Lau ������

and Chong and Zak �������

Newton�s Method

Newton�s method is the simplest root �nding method and converges e�ciently if

the initial guess is close �Press et al�� ������ Netwon�s method solves F �qk� � �

iteratively by computing qk � qk��� �qk until convergence� where F is the objective

�



function� qk is the joint vector ��� to ��� and �qk is the direction vector �see below��

The iterative process for solving IK is shown in the following steps �From k � �

to convergence� �Burden and Faires� ��
���

Newton�s Method

Input	 Initial guess for joint angles� qk

Exit 	 solution or FAIL

� Compute the Jacobian for the current joint con�guration qk�

using the formulation shown in section ������

� Compute �pk�� � Objective�qk�� where Objective is the

objective function de�ned in section ������

� Invert the Jacobian �J� using pseudoinverse and solve for the

joint rates�

�qk � J���pk

�pk is the EE di�erential change as shown in

equation ���

� Compute the new joint angles by qk�� � qk � �qk�

� Set k � k � ��

� Exit this iteration when one of the following is true�

A
P�

� �qk� �� TOLX �Tolerance factor�

B
P�

� �pk�� �� TOLX �Tolerance factor�

C k � MAX �Max iteration�

Results showed that by applying the above algorithm on a � DOF kinematic

chain requires at least ��� iterations before convergence is achieved� Therefore

the improved method �NEWT� presented in Press et al� ������ was used� This

method uses LU decompsition to solve the equation in step 	 above and uses a

LineSearch routine for faster convergence� The role of the line search routine is to

determine a step size �i which decreases Objective�qk��� � Objective�qk��� One

advantage of this method is that it solves step 	 with less computation but fails

when the Jacobian is singular� On the other hand� the method presented above is

robust in that the inverse of Jacobian can be obtained using pseudoinverse when

the Jacobian is singular�

�




Powell�s Method

This method solves IK without calculating the Jacobian� This method is imple�

mented in Press et al� ������� The pseudcode for the modi�ed Powell�s method

is shown below �Brent� �����

Modi�ed Powell�s Method �POWELL	

Input	 Initial guess for joint angles� x� � �x�� � � � � xn�
t

u�� � � � � un be the colums of the identity matrix

Exit 	

� For i � �� � � � � n� compute �i to minimize Objective�xi�� � �iui�

and de�ne xi � xi�� � �iui� See Press et al� ������ �pg 	��� for details of

for details of linmin� This function moves to a direction where

Objective takes on a minimum�

� For i � �� � � � � n� �� replace ui by ui���

� De�ne fO � f�x��� fn � f�xn�� fE � f��xn � x��

IF �fE � fO� OR ��fO � �fn � fE���fO � fn���f �� � �fO � fE�
�� f

THEN keep the direction computed in step �� ELSE

Compute new direction� xn � x��

� Compute � to minimize Objective�x� � �un� and replace x� by x� � �un

Brent�s Method �PRAXIS�

Brent�s is an improvement of Powell�s method� The implementation details can

be found in Lau ������� This method improved Powell�s method by reseting

the search direction U � �u�� � � � � un� every n or n � � iterations� U is reset to

an orthogonal matrix Q � �q�� � � � � qn� which is computed using singular value

decomposition �SVD� �Brent� ����� See Golub and Kahan ������ for a detail

explaination of SVD� This modi�cation produces a search direction which is or�

thogonal� Therefore the search can never become restricted to a subspace and the

new direction is conjugate with respect to a matrix which is close to the Hessian

matrix of the Objective function� thus achieving a faster convergence rate �Brent�

�����

��



Fletcher�Reeves�Polak�Ribiere �FRPRM��s Method

FRPRM solves quadratics of n variables in n steps and requires no Hessian eval�

uations and matrix inversion� The di�erence between this method and Powell�s

method �or Brent�s� is that it does not use prespeci�ed conjugate directions but

computes the directions dynamically �Chong and Zak� ������ The following out�

lines the pseudcode for the FRPRM�s method �Chong and Zak� ����� Press et al��

������

FRPRM�s Method

Input	 Initial guess for joint angles� x� � �x�� � � � � xn�
t

TOLX �tolerance� and N �maximum iterations allowed��

Exit 	 Estimated minimum or FAIL

� Set k � � and select x��

� Compute�

g�� � �Objective�x��� �Compute the Gradient at x���

IF g�� � TOLX return xk� �solved�

ELSE Set d�� � �g��
� Find �k �step length� which minimizes Objective�

See Press et al� ������� Chong and Zak �������

� xk��� � xk� � �kd
k�

� gk��� � �Objective�xk����� �Gradient at xk���

IF gk��� � TOLX return xk� �solved�

� Compute�

�k � g�k����g�k��g�k���

g�k��g�k�

� dk��� � �gk��� � �kd
k�


 Set k � k � �

� IF k � N return ITERATION MAX

ELSE goto Step ��
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Broyden�s Method

Broyden�s method provides cheap computational approximations to the Jacobian

for zero �nding� This method is also called secant method because it reduces to

the secant method in one dimension �Press et al�� ������ The pseudocode for this

method is shown below �Burden and Faires� ��
���

Broyden�s Method

Input	 Initial guess for joint angles� x� � �x�� � � � � xn�
t

TOLX �tolerance� and N �maximum iterations allowed��

Exit 	 Solution or MAX iteration exceeded

� Set A� � J�x��� where J is the Jacobian�

v � Objective�x��

� Set A � A���

� Set k � ��

s � �Av
x� � x� � s

� WHILE �k  N� DO Steps ����

� Set w � v

v � Objective�xk�

yk � v � w

� Set z � �Ayk
� Set p � �stz

 Set C � pI � �s� z�st

� Set A � ���p�CA

�� Set s � �Av
�� Set xk�� � xk � s

�� If jjsjj � TOLX then return x

�� Set k � k � �

�� Return ITERATION N EXCEEDED
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Broyden�Fletcher�Goldfarb�Shanno �BFGS��s Method

This main feature of this method is that it provides cheap approximations to the

Hessian matrix �Press et al�� ������ The iterative formula used can be seen in

Step � in the pseudocode shown below� The pseudcode for this method is as

follows �Chong and Zak� ������

BFGS�s Method

Input	 Initial guess for joint angles� x� � �x�� � � � � xn�
t

and a positive de�nite H��

Exit 	 Estimated solution or FAIL

� Set k � �

� Compute the gradient gk��

if gk� �� � return xk� else

dk� � �Hkg
k�

� Compute�

�k � arg min Objective�xk� � �dk��

arg min Objective�xk� � �dk�� basically searches for

� �step length� which reduces Objective�

See Press et al� ������ �pg �
�� for details�

� xk��� � xk� � �kd
k�

� Compute�

�xk� � �kd
k�

�gk� � gk��� � gk�

Hk�� � Hk �
�
� � �g�k�THkg

�k�

�g�k�T�x�k�

�
�x�k��x�k�T

�x�k�T�g�k�

�Hk�g�k��x�k�T�Hk�g�k��x�k�T �T

�g�k�T�x�k�

� Set k � k � ��

� IF k � MAX ITERATION return FAIL

ELSE goto step ��

Fletcher�s Method

This method is suitable for problems where the number of unknowns is large� The

di�erence between this method and BFGS is the rank�two updating formulae for

updating the Hessian matrix �Lau� ������
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Modi�ed Fletcher�s Method

Input	 Initial guess for joint angles� x� � �x�� � � � � xn�
t

and a positive de�nite H��

Exit 	 Estimated solution or FAIL

� Set k � �

� g�xk� denotes a function which compute the gradient at xk�

Set dk� � �Hk�g�xk��

�

� Compute 	k� � g�xk��� � g�xk��

IF ��k��T	k� � � THEN

Hk��� � Hk�

ELSE IF ���k��T	k� � �� AND ���k��T	k� � �	k��THk�	k� THEN

Hk��� � Hk� � c
k�
� vk��wk��T � c

k�
� wk��vk��T � �� � �c

k�
� �c

k�
� �c

k�
� vk��vk��T

where c
k�
� � �

��k��T ��k�
� c

k�
� � ��

��k��TH�k���k�
� vk� � �k�� wk� � Hk�	k�

ELSE

Hk��� � Hk� � c
k�
� vk��vk��T � c

k�
� wk�wk�

where c
k�
� � � � � � wk� as de�ned above�

� IF kHk���gk���k  rkxk���k� a AND kg�xk���k  g AND

g�xk����THk���g�xk���� � � AND k � n �n�Angles �unknowns�� THEN

xk��� is accepted as an approximation to the minimum�

��� Application of Kinematics in Human

Animation

This section describes the procedures for representing the human �gure� This

includes assignment of coordinate frames and performing the transformations re�

quired for IK manipulation� This is needed to show the application of forward

and inverse kinematics presented in the previous sections for animating human

motion� An initial prototype was developed in OpenGL which provided a means

for showing the correctness �the solved angles yield the correct position and orien�

tation of the end�e�ector� of the closed�form solution derived� The �nal graphic

system is the Human Arm Animator applet which uses forward and inverse kine�
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matics to animate the human arm�

����� Human Figure Representation

Badler et al� ������ classi�ed human �gure modeling into two categories� bound�

ary and volumetric schemes� In boundary schemes� the human �gure can be

modeled using points and lines� polygons or surface patches� On the other hand�

volumetric schemes combine the concepts of constructive solid geometry and vox�

els to produce the human �gure�

The approach taken in this work is the boundary scheme utilizing a polygonal

representation� The use of this scheme provides reasonable speed for interactive

manipulation� Furthermore� if a more realistic human �gure is to be produced�

higher polygon counts and smooth shading can be utilized to generate a �realistic�

human model �Badler et al�� ������ An example of a human animation system

which uses polygonal representation is the Jack system �Badler et al�� ������

Figure ��� shows the polygonal mesh and the name of each segment of the hu�

man �gure in use in the Human Animator applet� The polygonal mesh for each

of these segments is available in di�erent �les and is described relative to the

world coordinate system� The human �gure is translated to the origin of the

world coordinate system with the center of the pelvis at the origin of the world

frame �our view vector looks down the Z axis of the world frame�� The following

illustrates the steps taken to achieve this�

�� Obtain the bounding volume of the pelvis segment� This process will locate

the center of the pelvis segment at the origin of the world coordinate frame�

This is done by locating the minimum and maximum x �MinX andMaxX��

y �MinY and MaxY� and z �MinZ and MaxZ� vertices�

�� For each segment� translate along x� y and z axis by �MinX �MaxX�����

�MinY �MaxY ����� �MinZ �MaxZ���� respectively�

Figure ��	 shows how body parts are linked together� This hierarchy is highly

dependent on the complexity of the model �number of segments used�� For ex�

ample� the Jack system uses a model which consist of �� segments and �
 joints

		



            

Figure ���� Polygonal representation of human �gure and pivot points location

�Badler et al�� ������ Therefore� the Jack system has more nodes than the model

used here�

Each segment of the model is linked to another to form a hierarchy� When the

human �gure is manipulated �e�g� change of angle at a given node�� the e�ect

must be propagated down to its child nodes� For example� if the Left�Upper

Arm node is manipulated� the changes also e�ect the Left�Lower Arm and

Left�Hand� This is certainly true since if the upper�arm �humerus� is moved�

it is expected that the lower arm �ulna and radius� and the hand move with the

upper�arm� A change in the pelvis node would amount to expensive computation

since all nodes are descedent from the pelvis node where a number of joint updates

are neccessarily�

The degree of freedom �DOF� for each joint is summarized in Table ���� Table

��� shows the range for the human arm� Only the measurement for the humam
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arm is shown because to present the work in this research� the human arm is

su�cient�

Pelvis

Chest

Head

Right-Upper Arm

Left-Hand Right-Hand

Right- Lower Arm
Right Foot

Left Shin

Left Foot

Left-Lower Arm

Neck

Left Thigh Right Thigh

Right Shin

left-Upper Arm

Figure ��	� Tree Hierarchy for Human Figure

����� Human Figure Manipulation

The coordinate assignment of a given segment is very important� This is because

incorrect frame assignment results in erroneous IK formulation� This is because

the end�e�ector is describe numerically as a 	�	 matrix and is di�cult to visualize

without graphical means� Each joint or body segment rotates about its own local

axis� This local axis is related to the world coordinate frame by a translation

along the X� Y and Z axis relative to the world coordinate frame�

The procedure for assigning a local coordinate frame for each joint starts by

assigning a pivot point to origin of local coordinate frame or the origin of the

local axis relative to the world coordinate frame to each joint� This is done

with the help of �D modeling software such as �D�Studio 	��� The pivot point

assignment for the human �gure can be seen in Figure ����

Once all pivot points are assigned� the local coordinate frame can be assigned to

the given joint� The local axis is orthogonal to the world coordinate frame so no
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Body Segments Degree of Freedom �DOF� Axis of Rotation

Neck � XYZ

Pelvis � XYZ

Left Upper Arm � XYZ

Left Lower Arm � XY

Left Hand � XYZ

Right Upper Arm � XYZ

Right Lower Arm � XY

Right Hand � XYZ

Left Thigh � XYZ

Left Shin � X

Left Foot � XYZ

Right Thigh � XYZ

Right Shin � X

Right Foot � XYZ

Table ���� DOF Assignment for Human Figure

Body Segments X�axis Y�axis Z�axis

Shoulder ���  �  �
� ��  �  �� �  �  �
�

Elbow �  �  ��� �
�  �  
� �

Wrist ��  �  
� � ���  �  ��

Table ���� Angles� Range for the Human Arm �Norkin and White� ��

�

	



rotation is needed to align the assigned local axis�

Changes of angle in a given node propagate down to its child nodes� This is where

the joint angles for the given articulated structure being modelled are speci�ed

or calculated from forward or inverse kinematics� An example of articulated

structure manipulation is presented as follows�

Taking the left arm of Figure ��� as an example and we rotate the Left�Upper

Arm about its own local axis� the following shows the manipulation at the shoul�

der �Upper�Arm� and the change propagation to the lower arm and hand� The

steps below essentially outlines the implementation of forward kinematic for the

human arm�

�� Translate the Left�Upper Arm to theWorld Coordinate Frame by �Px�Py�Pz��

where �Px� Py�Pz� is a vector which describes the Left�Upper Arm�s pivot

relative to the world coordinate frame�

�� Rotate the Left�Upper Arm by ��x� �y� �z��

�� Translate the left shoulder back to where it was by ��Px��Py��Pz��

	� Translate the Left�Lower Arm by �Px�Qx� Py�Qy� Pz�Qz� where �Qx� Qy�

Qz� is the pivot point for the Left�Lower Arm� Then translate it again

by �Px�Py�Pz� to move the Left�Lower Arm to the world coordinate frame�

�� Rotate the Left�Lower Arm by ��x� �y� �z��

�� Translate the Left�Lower Arm back to its original position by ���Px�Qx��

��Py�Qy�� ��Pz�Qz� � and ��Qx� �Qy� �Qz�

� The Left�Hand is translated to the World origin by translating the Left�

Hand to the Left�Lower Arm�s pivot point� then translate to the Left�

Uper Arm�s pivot point and �nally onto the world origin as in step 	�


� Rotate the Left�Hand by ��x� �y� �z��

�� Finally� translate the Left�Hand back to it�s original position� The reverse

of step �

	




This applies to each manipulated node except for the hand and foot node� This

is because no other nodes are relative to these nodes� The above operations can

be concatenate into a 	x	 matrix which reduces computation signi�cantly�

Using IK for Human Figure Manipulation

The previous section outlined the implementation details of forward kinemat�

ics� The use of IK for manipulating the human articulated structure follows the

following basic steps�

�� Get current joint angles for articulated structure�

�� Get the required end�e�ector position and orientation� This is represented

as a 	�	 homogeneous matrix� If the end�e�ector is to be translated along a

trajectory starting from the current end�e�ector position then� �rst use the

joint angles from Step � to compute the current end�e�ector frame which is

then translated and rotated �relative to the end�e�ector frame� as required

by the trajectory�

�� Then use IK �iterative or algebraic� to solve for the joint angles for the

required frame calculated in Step ��

	� Finally use the algorithm presented in Section ����� to re�ect the changes

in joint angles�

��� Summary

This chapter has discussed the procedures for deriving a closed�form solution

for an arm modeled as � DOF� The closed�form solution derived can be hard�

coded directly� Further factoring was used to avoid repeated terms to reduce

computation of transcendental functions� As can be seen from the algebraic

method various solutions can be derived� For example the closed�form solutions

for �� yield two angles which can be used to derive di�erent con�guration for a

given end�e�ector position and orientation� Solving IK iteratively was presented

and the pseudocode for each minimization and root �nding algorithm has been

outlined� Finally the implementation details of forward and inverse kinematics
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for animating a human �gure has been outlined� The representation of the human

�gure and the process of transforming each joint relative to its local frame has

been discussed in detail�

��



Chapter �

RESULTS AND ANALYSIS

This chapter presents the results generated from this research work� analysis

of results and analysis of the algebraic and iterative methods for solving IK�

Hypotheses which were addressed in Chapter 	 are evaluated�

��� Analysis of Algebraic Solution

The algebraic method is susceptible to problems with transcendental functions

�e�g� sin function� �McKerrow� ������ The problems which are inherent in closed�

form solutions are�

�� The division by cos������� cos������ sin����� sin��
��� or tan���� results in
inaccuracy �when near these angles� and indeterminacy� This was avoided

by bringing over �inverting� the next Ai transformation matrix and deriv�

ing the closed�form equation for the required angle using the new set of

equations�

�� The closed�form solutions presented in section ��� degenerate when the

square root portion of the closed�form equation for �� or �� becomes negative

��a� � b� � c�� � ��� This occurs when the arm is out�stretched� This is

because the axes of joint � and � are aligned �McKerrow� ������ When this

occurs� �� and �� were set to an arbitrary angle �e�g ��� This is because

this articulated structure is in a degenerated state where there are in�nite

number of solutions for the required end�e�ector position and orientation�

��



Algebraic solutions are signi�cantly faster than iterative solutions� Computation

expense can be decreased by using lookup tables for transcendental �i�e sin� cos�

atan� functions� factoring out repeated terms and storing computed expression�

Further all solutions for the given end�e�ector position can be derived� This can

be seen in the closed�form equation for �� where there are two unique solutions�

These two solutions can then be substituted into the closed�form solutions for ���

to ���� Choosing the appropriate solutions involve eliminating solutions which

violate joint constraints� If there are multiple remaining solutions given that the

articulated structure is not in a degenerated state� then the closest �the di�erence

between the current and solved joint angles is at a minimum� solution to the

current arm solution is chosen �Craig� ��
��� The problem with the algebraic

method is that not all kinematic chains have a closed�form solution especially

kinematic chains which have more than six DOF �McKerrow� ������

��� Analysis and Results of Iterative Solutions

of a � DOF Kinematic Chain

The following presents IK results solved iteratively for a human arm modeled at

� DOF� The corresponding transformation frames used to describe the human

arm �using DH�Notation� can be found in Appendix B� The following data were

generated by translating the end�e�ector �hand� along a line� At each unit step�

a new pose for the hand was generated and IK was used to solve for the joint

angles�

Example �

Given that the current frame has the following position and orientation�

CEE �

�
��������

��������� ����
��	 �������� �����
��

��������� ��������� ��������� ������
	�
�����
��� ��������� �������� ��	
�	�

�������� �������� �������� ��������

�
��������

and the joint angles are at ���� ��� ��� ��� ��� �����

��



Now translate the hand �CEE� by one along x and y�

DEE�Translate�CEE� �� �� ��

where Translate is a function which translates a given frame by x�y and z relative

to the world coordinate frame� Orientation of the end�e�ector can be done by

the rotation transformation if needed� The required frame is then calculated as

�returned from Translate��

DEE �

�
��������

��������� ����
��	 �������� �����
��

��������� ��������� ��������� ���
��
	
�����
��� ��������� �������� ��	
�	�

�������� �������� �������� ��������

�
��������

IK is then invoked �as presented in the previous chapter� to solve for the joint

angles needed to achieve the orientation and position of the hand de�ned by DEE�

The following matrix shows the result after minimization �using NEWTON�s

method��

NewEE �

�
��������

��������� ����
��	 �������� �����
��

��������� ��������� ��������� ���
��
		
�����
��� ��������� �������� ��	
�	�

�������� �������� �������� ��������

�
��������

The corresponding angles �new arm con�guration� which yield the above pose

were �������� ���	��
 ���	��� ��	
��� ����
	�� ���
���� The residual error

�di�erence between DEE and NewEE� was �������	�

����� Convergence Rate

Table ��� shows the average number of iterations before convergence for each of

the minimization and root �nding methods �NEWTON and BROYDN� used to

solve the IK for a � degree of freedom �DOF� arm� The residual error �
�P

i��
r�i � for

each trajectory step was 	����� The data in Table ��� show the average number of

iteration as the end�e�ector was translated along a trajectory of length ��� As can

be seen from Table ��� �and Appendix C��� NEWTON�s method has the fastest

convergence rate� This is because NEWTON�s method has fast convergence when

��



Iterative Methods Average Convergence Rate

NEWTON ���

BFGS ���

POWELL ����

FRPRM �	��

PRAXIS �	��

FLETCHER ����

BROYDN �
��

Table ���� Average Convergence Rate for Iterative Methods

the initial estimate is close �Burden and Faires� ��
��� The disadvantage of

NEWTON�s method is that the routine fails when the Jacobian becomes singular

and non�square� The use of the pseudoinverse provides a solution to this where

solutions can be obtained whether the system of equations is underspeci�ed�

overspeci�ed or singular� On the other hand� the use the pseudoinverse causes

discontinuity between the transition of singular and nonsingular con�gurations

�Maciejewski� ������

����� Objective Function Evaluations

Table ��� shows the average number of function calls needed for each method

before convergence was achieved� As can be seen from Table ��� �and Appendix

C���� the POWELL and PRAXIS minimization algorithms required many func�

tion calls since these methods are based purely on the Objective function only �i�e

without calculating derivatives�� The disadvantage of this is that with high DOF

articulated structures� the objective function is expensive to compute �multipli�

cation of N matrices� evaluation of sin�cos and atan functions�� The computation

expense is proportional to N � This a�ects the time needed to traverse through

the trajectory�

�	



Iterative Methods Average Function Evaluations

POWELL �	�
��

FRPRM ����

PRAXIS ��	��

FLETCHER ���

BROYDN ����

BFGS ����

NEWTON �	��

Table ���� Number of function evaluations �� DOF Arm�

����� Minimization Algorithms with Large Residual Error

The aim of this is to investigate the ability of various iterative methods in handling

the constraints where the residual error between the current and required end�

e�ector frame is large� This is useful where the end�e�ector can be speci�ed

anywhere within the reachable workspace as opposed to translating it along �xed

size steps along the trajectory to the required position and orientation� Table ���

and ��	 were generated where the residual error is at ����

Iterative Methods Average Convergence Rate

BFGS 
��

POWELL ����

NEWTON ����

FLETCHER �	��

PRAXIS ���

FRPRM See Appendix G

BRODYN FAIL

Table ���� Convergence Rate with Large Residual Error

��



Iterative Methods Average Function Evaluations

BFGS ���

FLETCHER ���

NEWTON �����

PRAXIS �	��

POWELL ������

FRPRM See Appendix G

BRODYN FAIL

Table ��	� Function Evaluations with Large Residual Error

��� Iterative IK Solutions of � and � DOF Ar�

ticulated Structure

The iterative methods presented were also used to solve the IK of 
 and � DOF

articulated structures� This is to demonstrate its generality in solving articulated

structures having N DOF� The articulated structures modeled are shown in Ap�

pendix D and Appendix E� The best three minimization algorithms were used to

solve the IK of an N DOF articulated structure base on its fast convergence rate�

least function evaluations and handling singularities� Another problem which

arose was that the BRODYN and NEWTON routines provided by Press et al�

������ assumed that the Jacobian is square and has the same dimension as the

number of DOF� The POWELL or PRAXIS methods were not considered in the


 DOF case due to the high computation cost of evaluating the Objective func�

tion� The convergence rate and number of function evaluations needed is shown

in Table ��� and Table ����

Iterative Methods Average Convergence Rate

BFGS ��

FLETCHER �
��

FRPRM 		�

Table ���� Average Convergence Rate for Minimization Algorithms �
 DOF�

��



Iterative Methods Average Function Evaluations

BFGS 	��	

FRPRM 		��

FLETCHER ���

Table ���� Average Number of Function evaluations �
 DOF�

Iterative Methods Average Convergence Rate

BFGS ���

FRPRM ���


FLETCHER �
��

Table ��� Average Convergence Rate for Minimization Algorithms �� DOF�

Iterative Methods Average Function Evaluations

BFGS ����

FLETCHER �
�


FRPRM �����

Table ��
� Average Number of Function evaluations �� DOF�

This shows that using iterative methods for solving IK� the IK of a given articu�

lated structure can be generated dynamically where only the coordinate frames

need to be speci�ed� As mentioned in Section ������ the human �gure is rep�

resented as a tree hierarchy where the coordinate frame between each joint is

known� Therefore these coordinate frames can be used directly by the iterative

IK method�

�



��� Analysis of Joint Angles Computed Itera�

tively

Figure ����a� and ����b� shows two di�erent changes in joint angles as computed

by BFGS and NEWTON�s method respectively �residual error is at 	���� The

joint angles computed by other numerical methods can be found in Appendix F�

���A to ��A correspond to �� to �� respectively� Figure ����a� and and ����b�
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Figure ���� Changes in Joint angles using �a� BFGS�s �b� NEWTON�s Method

and �gures in Appendix F show di�erent joint angles con�gurations as the � DOF

kinematic chain was translated along a line� Di�erent numerical methods pro�

duced di�erent joint angles at each trajectory step� By comparison� NEWTON�

BROYDEN and FLETCHER�s method produced similar joint con�gurations�

This can be seen in Figure ����a�� F�� and F�	 respectively �See Appendix F

for Figures F�� to F�	�� The joint angles generated from FLETCHER�s method

shown in Figure F�	 were inconsistent from step  to step ��� This was due to

the convergence error which can be seen in Figure G�� �Appendix G��

Hypothesis 	 states that if the residual error between the target and current

end�e�ector �EE� is small then moving from the current frame to the target

frame does not cause huge changes to each joint angle� This is useful because

when an animator moves an end�e�ector �e�g� hand� to a required position� a

sudden change in joint angles might cause the articulated structure to collide

�




with the environment or make the motion of the articulated structure seem un�

natural� Analysis of the joint con�guration for each numerical method shows that

this is only true for certain algorithms� For example� in BFGS and PRAXIS�s

method� huge change in joint angles at each iteration is needed� This shows

the variety of joint con�gurations which can be used to derive the required end�

e�ector position� In contrast with algebraic solutions � where all solutions for

the required end�e�ector position are available� this provides the animator with

better choices given the option to choose the appropriate joint con�gurations�

��� The Human Arm Animator Applet
            

Figure ���� Snapshot of the Human Arm Animator Applet

Figure ��� shows the high�level interface where the closed�form solutions derived

were used to animate the human arm� This high�level interface was implemented

��



in the Java language which takes advantage of its portability� object�oriented

and multi�threading features� The applet shown in Figure ��� allows the user to

position and orient the left arm using forward and inverse kinematics�

����� Forward Kinematics
            

Figure ���� Forward Kinematic Panel

Forward kinematics of the human arm is controlled using scroll bars to speci�y

the joint angles� This is shown in Figure ���� Each angle change is then applied

to the given DOF using the algorithm presented in Section ������

����� Inverse Kinematics

This applet uses closed�form solutions presented in Section ��� for animating

�exion and abduction at the elbow and shoulder� The closed�form solutions were

used because there are less computational expensive than the iterative methods

and all solutions for the required end�e�ector frame can be obtained� Flexion

of the forearm at the elbow is achieved by continuosly translating the hand as

follows�

Hand 
 Translate��� ����� ������

Any amount of translation can be speci�ed� The number given above a�ects

the speed of �exion� Smaller numbers would mean smoother animation of the

arm� Of importance to note is that the arm is �exed by translating the hand up

along y and along z and this action requires movement from at least two DOF

��



�elbow and shoulder�� Then IK is used to solve for the joint angles needed to

obtain the required position and orientation of the hand� Initialy the arm is at

at outstretched position� if a �y translation is performed� the closed�form solution

would be degenerated because the required position is unreachable�

Abduction is achieved by translating the hand as follows�

Hand 
 Translate������ ����� ���

This e�ectively moves the hand to the side and up� IK is used to solve for the joint

angles as in the �exion case� The amount to be translated �x and y� determines

the speed of abduction�

��



Chapter �

CONCLUSION

This thesis has investigated the algebraic and iterative methods for solving IK� Ex�

tensive formulation� investigation and implementation of both methods have been

discussed� The original aims which were presented in Chapter � were achieved�

Each of the subproblems were solved and detailed analysis and results were pre�

sented� Closed�form solutions for the human arm were derived and have been

incorporated into the Human Arm Animator Applet� As can be seen from the

process of deriving the closed�form solution� it is a lengthy process� speci�c for a

given kinematic chain and error prone �too much human intervention�� On the

other hand� it provides all possible solutions for the required end�e�ector frame

as shown� Further it is less computationally expensive �compared to the iterative

methods� and is ideal for environment such as Java�

Apart from that� generalized methods for solving IK were presented� This enables

any articulated structure �human� animal� robot manipulator� to be manipulated

where the frames which describes the articulated structure can be dynamically

fed into the generalized IK engine and the IK for the given articulated structure

is solved iteratively� Comparative study has shown that this method is computa�

tionally expensive compared to the algebraic method� The BFGS�s method was

found to be the most robust� has fast and consistent convergence rate and overall

least objective function evaluations among the iterative methods compared� The

BFGS�s method was used for solving the IK of a three and eight DOF articulated

structure to demonstrate its �exibility in handling N DOF articulated structure�

Moreover� the case where the initial estimate and the required position is not

��



close was considered� This was to investigate the global convergence of each it�

erative method� This feature enables the animator to specify the position and

orientation of the end�e�ector arbitrary instead of transversing a �xed step size

trajectory� It was found that BFGS� POWELL and NEWTON�s perform well in

this case� The modi�ed NEWTON�s method only performs well when the Jaco�

bian is square and non�singular� The incorporation of the pseudoinverse to invert

the Jacobian when it is non�square and singular was not considered because the

use of pseudoinvese and minimum norm method results in computation which is

generally formidable �Sasaki� ���	� and did not address joint limits �Zhao and

Badler� ���	�� Other methods such as POWELL and PRAXIS methods were high

in objective function evaluation� This is due to the nature of the algorithm where

the derivative of the objective function is not needed� Moreover these methods

have a good convergence rate�

The following summarizes the discussion in relation to the hypotheses presented

in Section 	���

�� This thesis has shown that the iterative method provides a dynamic and

�exible method for solving IK� Only coordinate frames which describe the

articulated structure to be manipulated are needed� This implies that the

generality of the iterative method can be used for animating other forms of

articulated �gures� for example animals�

�� Iterative results have shown that it only converges to one solution� Further�

more there is no way in which a di�erent starting point can be given which

guarantees a di�erent set of solutions� Since the constraint used in this the�

sis is that the initial estimates and the correct solution is close� it provides

e�cient computation� Constraint optimization can be used to alleviate this

problem but constraint optimization methods are inevitably expensive in

terms of computer resources and with the added complexity of the problem

which may occur after many restarts or yield and un�satisfactory solution

�Massara� ������

�� The use of IK which is used inherently in the robotics area has been applied

successfully for animating the human �gure� This was demonstrated by the

Human Arm Animator applet� This applet provides a visual feedback on

��



the correctness of the IK solutions�

	� The joint angles computed when the current and target frame is close de�

pends on the iterative method used� Analysis of the joints angle computed

as it transverses through a trajectory have shown that di�erent minimiza�

tion algorithms produce varying sets of solutions� This re�ects the fact that

there is more than one solution to a required end�e�ect frame�

����� Future Directions

The next stage for this research is to implement a full IK human motion anima�

tion package� Another application would be as a teaching tool for the School of

Physiotherapy�

Apart from that� research on constrained optimization has been the current focus

of optimization algorithms� In constraint optimization a set of constraints can be

enforced on the variables� The optimization routine than take these constraints

into account to search for a feasible solution �Massara� ������ Constraint opti�

mization can be incorporated easily with the existing work to provide a more

re�ned IK engine where the upper and lower bound of each joint angle is ad�

dressed�
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Appendix A

Workings for Algebraic Solution

The following shows the workings for the derivation of the algebraic solution

presented in this thesis� The equations above are derived with the help of MAPLE

�Symbolic mathematical package��

A�� A�A�A	A�A� � A
��
� T�

R�Left and R�Right denotes the left and right hand side of the above expression�

R�Left andR�Right presents a 	 � 	 matrix after multiplication of the matrices

in the above expression� Therefore� row � and column � can be accessed as

R�Left������ Ci� Si� Cij and Sij denotes cos��i�� sin��i�� cos��i��j� and sin��i��j�

respectively�

R�Left����� � C�C� � S�S�S� R�Right������C�Nx � S�Ny

R�Left����� � �C�S� � S�S�C� R�Right������C�Ox � S�Oy

R�Left����� � S�C� R�Right������C�Ax � S�Ay

R�Left���	� � � R�Right������C�Px � S�Py

R�Left����� � S�C�S�� � S�C�C�� � S�C�S�S�� R�Right�������S�Nx� C�Ny

R�Left����� � �S�S�S�� � C�C�C�� � C�C�S�S�� R�Right�������S�Ox � C�Oy

R�Left����� � �S�C�C� � S�S�S� � C�C�S�� R�Right�������S�Ax � C�Ay

R�Left���	� � �d�C�� � C�d� R�Right���	���S�Px � C�Py

R�Left����� � S�C�C�� � S�C�S�� � S�C�S�C�� R�Right������Nz

�



R�Left����� � S�S�C�� � C�C�S�� � C�C�S�C�� R�Right������Oz

R�Left����� � �S�S�C�� � C�C�S�� � C�C�S�C�� R�Right������Az

R�Left���	� � �d�S�� � S�d� R�Right���	��Pz

R�Left�	��� �� R�Right�	�����

R�Left�	��� �� R�Right�	�����

R�Left�	��� �� R�Right�	�����

R�Left�	�	� �� R�Right�	�	���
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A�� A�A	A�A� � A
��
� A

��
� T�

S�Lft����� � C�C� � S�S�S� S�Rgt����� � C�Nx � S�Ny

S�Lft����� � �C�S� � S�S�C� S�Rgt����� � C�Ox � S�Oy

S�Lft����� � S�C� S�Rgt����� � C�Ax � S�Ay

S�Lft���	� � � S�Rgt���	� � C�Px � S�Py

S�Lft����� � S�S�C� � S�C�� S�Rgt����� � �C�S�Nx � C�C�Ny � S�Nz

S�Lft����� � �S�S�S� � C�C�C� � C�S�C�S� S�Rgt����� � �C�S�Ox � C�C�Oy � S�Oz

S�Lft����� � �C�S� � S�C�C� S�Rgt����� � �C�S�Ax � C�C�Ay � S�Az

S�Lft���	� � �C�d� � d� S�Rgt���	� � �C�S�Px � C�C�Py � S�Pz

S�Lft����� � �C�S�C� � S�S�C� � S�C�C�S� S�Rgt����� � S�S�Nx � S�C�Ny � C�Nz

S�Lft����� � C�S�S� � C�S�C� � C�C�C�S� S�Rgt����� � S�S�Ox � S�C�Oy � C�Oz

S�Lft����� � �S�S� � C�C�C� S�Rgt����� � S�S�Ax � S�C�Ay � C�Az

S�Lft���	� � �S�d� S�Rgt���	� � S�S�Px � S�C�Py � C�Pz

S�Lft�	��� �� S�Rgt�	�����

S�Lft�	��� �� S�Rgt�	�����

S�Lft�	��� �� S�Rgt�	�����

S�Lft�	�	� �� S�Rgt�	�	���
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A�� A
��
	 A

��
� A

��
� A

��
� T� � A�A�

Q�Lft����� � NyS�C�S�� �NxS�S�S�� � S�NzC�� �NxC�C� �NyC�S�

Q�Lft����� � �S�OzC�� � OxC�C� � OyS�S� � OyS�C�S�� � OxS�S�S��

Q�Lft����� � AyC�S� �AxC�C� � S�AzC�� � AxS�S�S�� �AyS�C�S��

Q�Lft���	� � PxC�C� � PxS�S�S�� � PyS�C�S�� � S�d�S� � PyC�S� � S�PzC��

Q�Lft����� � �S�NxC�� � C�NyC�� �NzS��

Q�Lft����� � �S�OxC�� � C�OyC�� � OzS��

Q�Lft����� � �S�AxC�� � C�AyC�� �AzS��

Q�Lft���	� � �S�PxC�� � C�PyC�� � PzS�� � d�C�

Q�Lft����� � NxS�C� �NyS�S� �NxC�S�S�� �NyC�C�S�� � C�NzC��

Q�Lft����� � OxS�C� � OxC�S�S�� � OyC�C�S�� �OyS�S� � C�OzC��

Q�Lft����� � C�AzC�� �AxS�C� � AyC�C�S�� � AxC�S�S�� � AyS�S�

Q�Lft���	� � C��PxS�C�S� � PyS�� � PxS�S�C�� � S��PxC� � PyS�� � C�PzC�� � C�d�S�

Q�Lft�	��� � �

Q�Lft�	��� � �

Q�Lft�	��� � �

Q�Lft�	�	� � �

A�A� is computed as �Q�Rgt�� matrix��

�
��������

C� �S� � �

C�S� C�C� �S� �d�
S�S� S�C� C� �

� � � �

�
��������

	



Appendix B

DH�Notation for the Human

Arm �� DOF Kinematic Chain	

The following represents the human arm at � DOF using DH�Notation� The

length used �a� and d�� are arbitrary�

Jointi �i ai �i di

� �� � ��� � ��� �

� �� �� �� �

� �� � ��� � ��� �

	 �� � ���� ��

� �� � ��� � ��� �

� �� � ��� � ��� �

Table B��� DH�Notation for Human Arm �� DOF�

The corresponding matrices constructed from the parameters shown in Table B

follows�

A� �

�
��������

C� � S� �

S� � �C� �

� � � �

� � � �

�
��������

A� �

�
��������

C� �S� � ��C�

S� C� � ��S�

� � � �

� � � �

�
��������
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�
��������

C� � S� �
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� � � �

� � � �
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��������

A� �

�
��������

C� � �S� �

S� � C� �

� �� � ��

� � � �

�
��������

A� �

�
��������

C� � S� �

S� � �C� �

� � � �

� � � �

�
��������

A� �

�
��������

C� � S� �

S� � �C� �

� � � �

� � � �

�
��������

The axis of rotation represented by each matrix is shown below�
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Figure B��� Coordinate Frames assignment using DH�Notation





Appendix C

Data for Iterative Results

This appendix outlines the numerical values for the graph shown in the results

chapter for a � DOF kinematic chain�

C�� Convergence Rate

Trajectory BFGS BROYDN FLETCHER FRPRM NEWTON POWELL

� 
 �	 �� �� 	 ��

� � �
 �� 	� � 


� �� �� � �� � ��

	 � � �� �� 	 ��

� �� �� �� �� � 


� � �� �	 �� � �

 � �� �� �� � ��


 � �
 �	 �� � ��

� �� �� �� �� � �

�� �� �� �	 �� � �

Table C��� Convergence Rate of Minimization Algorithms�

As can be seen from the above NEWTON�s method has the overall fastest con�

vergence rate� The average convergence rate between BFGS and POWELL are

��� and ���� respectively� The POWELL�s method provide has a fast convergence






rate but has huge number of objective function evaluation� This method is ideal

for problems where the derivative of the objective function is di�cult or costly

to derive and the objective function is cheap to compute�

C�� Objective Function Evaluations

	� DOF Kinematic Chain


The following shows the number of function �Objective� evaluations before con�

vergence is achieved�

Trajectory BFGS BROYDN FLETCHER FRPRM

� � �� ��� ��

� 	
 �	 ��� 
��

� �� 	� ��� ���

	 	 �� ��� �	

� ��	 � ��� ���

� �� � ��� ���

 �	 
� ��� ���


 �	 	 ��� �
�

� �
 
� ��� ���

�� 
	 �� ��� �


As can be seen� methods which use only the Objective function have the most

number of Objective function evaluations�
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Trajectory NEWTON POWELL PRAXIS

� �	 �
�� ���
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� �� ��� ��

	 �� ���
 ��	
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� �� ���
 ��

 �� ��	 ���


 �� ���
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� �� ���� ���

�� �� ���	 ���

Table C��� Number of Function Evaluations Needed
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Appendix D

DH�Notation for the Human

Arm with the Pelvis �
 DOF	

The following models an articulated structure with 
 DOF� This extends the

model presented in Appendix B to include an additional � DOF at the pelvis�

The lengths used �a�� a�� d� and d�� are arbitrary�

Jointi �i ai �i di

� �� � ��� � ��� �

� �� � �
�� 
� ��� ��

� ��� �� ���� �

	 �� � �� �

� �� � ��� � ��� �

� �� � ���� ��

 �
 � ��� � ��� �


 �� � ��� � ��� �

Table D��� DH�Notation Parameters �
 DOF Kinematic Chain�
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The corresponding matrices constructed from the parameters in the above table

are shown below �Ci and Si denotes cos��i� and sin��i� respectively��
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�
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The axis of rotation represented by each matrix is shown below�
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Figure D��� Coordinate Frames assignment using DH�Notation
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Appendix E

DH�Notation for a � DOF

Kinematic Chain

Jointi �i ai �i di

� �� � ��� �� �� �

� �� �� �� �

� �� �� �� �

Table E��� DH�Notation for � DOF Kinematic Chain
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Figure E��� Coordinate Frames for � DOF Kinematic Chain


	



The corresponding transformation matrices is as follows �Ci and Si denotes sin��i�

and cos��i� respectively��

A� �

�
��������

C� �S� � ��C�

S� C� � ��S�

� � � �

� � � �

�
��������

A� �

�
��������

C� �S� � ��C�

S� C� � ��S�

� � � �

� � � �

�
��������

A� �

�
��������

C� �S� � ��C�

S� C� � ��S�

� � � �

� � � �

�
��������
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Appendix F

Change in Joint Angles �� DOF

Kinematic Chain	

The graphs below show the changes in joint angles generated by the given mini�

mization or root �nding algorithms� This graphs show the di�erent set of solutions

generated by di�erent minimization algorithms� ��A to ��A correspond to �� to

�� respectively�
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Figure F��� Changes in Joint angles using Broyden�s Method


�



-50

-40

-30

-20

-10

0

10

20

30

1 2 3 4 5 6 7 8 9 10

A
ng

le
s

Trajectory Step

"1_A"
"2_A"
"3_A"
"4_A"
"5_A"
"6_A"

Figure F��� Changes in Joint angles using FRPRM�s Method
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Appendix G

Trajectory Graphs

G�� FRPRM with Large Residual Error

The following �gure shows the required and calculated trajectory using FRPRM�s

method when the residual error between current and required end�e�ector frame

is at ���� DEE denotes the required trajectory and SEE denotes the calculated

trajectory� This �gure shows that the FRPRM method does not produce exact

convergence when the residual error is large�
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Figure G��� Error between desired and calculated path
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G�� Trajectory Path Using FLETCHER�s Method

	� DOF Kinematic Chain


The following shows the Trajectory path taken as solved by FRPRM�s method�

Note the slight error between the step  to �� Recalling that SEE and DEE

denotes the calculated and the required end�e�ector frame respectively�
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