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Frangi et al: Multiscale Vesel Enhancement Filtering. MICCAI 1998
Aim
» Enhancement and detection of vessels (tubular structures)

» Calculate vesselness (pointwise)
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Quadratic approximation
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Gaussian derivatives

o a
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. L(x,s) = s"L(x) * B:BG(K'S)
where the D-dimensional Gaussian is defined as:
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Eigenvalues

Ha,aﬁs k= As kﬁs k
o (M1l < [Aal £ [Aal).

“ T e
uﬂukH"l'“"tk = ’\atk
To summarize, for an ideal tubular structure in a 3D image:

I)lll = 0
[ A1 < A2
)ﬁg ~ /\3
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Patterns

2D iD orientation pattern

ArtAzitAitAa{As

NN || N |N|N ||noisy, no preferred direction
L. | L {H-|| plate-like structure (bright)
L | L |H+|| plate-like structure (dark)

L {H-|| L |H-{H-|| tubular structure (bright)

L |H+|| L |[H+]H+{| tubular structure (dark)

H- | H- || H- | H- [ H- || blob-like structure (bright)

H+|H+||H+ |H+|H+|| blob-like structure (dark)
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Elongation

order ellipsoid. The first ratio accounts for the deviation from a blob-like structure but
cannot distinguish between a linc- and a plate-like pattern:

Volume/(4m/3) _ Ml

Rp = (Largest Cross Section Area/7)3/2 ~ V2]

(10)

This ratio attains its maximum for a blob-like structure and is zero whenever A\; = 0, or A
and Az tend to vanish (notice that A1 / A2 remains bounded even when the second eigenvalue
is very small since its magnitude is always larger than the first).
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Aspect ratio

The second ratio refers to the largesl area cross section of the ellipsoid (in the plane
orthogonal to 1)) and accounts for the aspect ratio of the two largest second order deriva-
tives. This ratio is essential for distinguishing between plate-like and line-like structures
since only in the latter case it will be zero,

__ (Largest Cross Seclion Area)/m ﬁ‘.l an

R
A (Largest Axis Semi-length)? [As
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“Structureness”

of “second order structureness”,

S=lHlr= [3 2
isb

low for no structure (background)
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Vesselness in 3D

Vate) 0 if \2 > 0or Az >0,
ol8) =
(1 - exp (- 38 ) exo (~282) 1 - exp (- £3))
13
a=0.5B=0.5, c=2imax|H|g
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Vesselness in 2D

ifAg >0,

0
Vo(s) = {Exp (_%;_)(1 i (_2_.1;))
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Multiscale

Vo(7) = max Vo(s,7)

Bonin SIS Bmas

where 8miy a4 3mq, are the maximum and minimum scales at
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Results X-rays

¥

contrast X-ray, vesselness, inverted, contrast-reference
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3D Gd/DTPA MRA

original, vesselness, closest vessel projection
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Scale selection

Fig. 4. The first four images show the vesselness obtained at increasing scales. The last image is the
result after the scale selection procedure,
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Volume rendering

volume rendering - direct, based on vesselness
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Turetken et al: Automated Reconstruction of Dendritic and Axonal Trees
by Global Optimization with Geometric Priors. Neuroinformatics 2011

Aim and key techniques
» Detect and segment tree (linear) structures (dendritic, vascular,
bronchial...)
» Machine learning for filament detection
» k-MST to find connections (edges)
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Neuron example

original, MSTs, optimum k, regularized reconstruction
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Retina example

original, MSTs, optimum k, regularized reconstruction
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Method overview

Compute tubularity

Find anchor (seed) points

Compute k-MST - span k edges

>
>
» Compute paths between anchor points
>
» Select the best tree
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Example

Original image - olfactory fibers
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Example (2)

Seed points
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Example (3)

Neighborhood graph




Example (4)

Final tree




Tubularity measure

> features = steerable filter responses (e.g. Gabor), Hessian
eigenvalues, different scales and orientations

» SVM classifier trained on expert labeled data.
> trained on randomly sampled background locations
» tubularity

fi = max fx, w. ¢)

1

R Ra—py Y
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Anchor points

» Threshold tubularity at p=0.5
» Calculate skeleton

» Detect potential junction points —double point

» Greedily assign remaining points

26 /51



Linking anchor points

» Connect points to their neighbors (within distance)
» Dijkstra (minimum path using 26 pixel neighborhood) to minimize

dﬂ”i = f - 10g f)(S}d?

- 8 A
di]':HE = Z - IDg Pij ~ Z f lOg p( X+ ix;) ds
lij

i
€S Emn € FE‘, H

In practice, to avoid divisions by zero, we therefore take

I
pij to be equal to p;" if |p; — pj| < €, and so that

pilog(p;) — 1) + p;(1 —log(p;))

log(pij) = l;j Pi — pj
1 )

(6)

otherwise. Note that this is consistent because when
p;j — pi tends towards zero, log(p;;) defined in this man-
ner tends towards [;;log(p;) = lijlog(p;).
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Optimal tree - image term

P(ﬂT =t) = I_I P{fmn|Tmn = Imn)
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Optimal tree - image term (2)

.F,(t) == ]Og P{flT =1t) = Z Cimn tns

emn€E

where ¢, = Z —log ———

I
34_,"-: Erin

(18)
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Optimal tree - geometric term

» Graph must be a tree
» Consistent widths

» Consistent orientations

- log P(T = t|'D @) = z bn' f; + Z Bomnlmnlom »

enel; eomEE
Epen € £ Iy

(19)
where
bi=—log P(T,; =1|®,, ®;,0), (20)
Agmn = — 102 P(Ton = T = 1, @opn. O).

where ® are width and orientation estimates
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Geometric term modeling

> edge direction similarity (rate of turn) - von Mises distribution
(circular normal)

» width consistency - asymetric Gaussian

v

orientation consistency - von Mises
> tortuosity - //d, Gaussian

-
-’ Wy

- [ )
. Bom — Omn ~ M (,ue; ke) Wyp /
/ . Wey, — W, ~ AN (o, qux-iv 03)7')
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Optimizing the image term

z d!i‘HIIJHH

» for 0 < k < Nbuild a MST minimizing “=<E
» k-MST built by an Ant colony optimization (ACO) method

> “pheromones” to mark useful edges

S SR

(<) (d)

(a) local log-likelihood ratios, (b) total log-likelihood, (c) geometric

priors, (d) geometric priors and log-likelihood "
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Algorithm improvements

vvyVvyyvVyy

take into account pairwise geometric terms for edge weights
pheromone values assigned to pairs of edges

crossover handling by neighborhood structure

branching factor limit

create n,trees by ACO, choose the best, minimizing the primary
objective (log likelihood ratios)
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Example results - rat brains

(a) GT, (b) MST, (c) without geometric constraints, (d) with geometric
constraints
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Retina images
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Sironi et al: Multiscale Centerline Detection. IEEE PAMI 2016
Key ideas

» Learned filters

» Centerline detection as a regression problem
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Example

[~ S

MDOF [53] Our Method Classification [5] Our Method
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Regression target

dar

Fig. 3. The function  in the case of x £ . If a centerline point is located
in 7, the function we want to learn is obtained from the distance trans-
form Dy, after thresholding and scaling. The vertical axis has been

scaled for visualization purposes.

if De(x) < dug,
otherwis
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Gradient boost

K

e(f(x, 1) = ewhi( f(x, 1)),
k=1

» squared loss L(di,¢(fi)) = (di — qp(ff))j

» weak learners h- 250 regression trees of depth 2
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Image features

» Unsupervised learning of sparse convolutional features
o I) = {(f;« Dx+ )}

» Rotating learned filters

» Approximated by separable filters

' £4))°

ij *mJ

argmin
{#7}{mi}

=1 k2j
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Auto context

More precisely, let g(x,¢'") be the feature vector
extracted from the score map ¢'"(x) = ¢(x) and let {(f,, g;,
y:)}; be the new training set, with g, = r(x,,gaf"JJ e B and

()
Wy

= ¢"(f(x;, I;)). We apply again the GradientBoost algo-
rithm to learn a better approximation of the function y(-):

o (%, 1), glx.¢) Z o' (F0x D), glxis ). (5)

We iterate this process M times learning a series of regres-
sors {e"™ (f(x, I),g(x, 0" U))} _, - The final output

» random training subset to prevent overfitting, M = 2
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Scale-space distance transform

1 Doixir),
d(x;r) = 0T ) 1t De(x;r) < dar, (6)
0 otherwise,

where now C'is a set of (x;7) (N + 1)-dimensional vectors of
centerline points and corresponding radii, and De(x;r) is
the scale-space distance transform of C"

Di(x;r) = min ||x — X3 +w(r—+)* , (7
(¥ 1)eC -

» small set of radii

» scaled and normalized regressor
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Flowchart

. Feature
Regl’ESS 100 Exraction

Feature
Input Image Extraction

Regression Regression Multiscale

N Multiscale Score Map
. Regression
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Example score maps

(a) Input Image / (b) Score map @ (c) Score map o (d) Final approximation @
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Example neuron delination

(using integer programming reconstruction)
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Tiretken et al: Reconstructing Curvilinear Networks Using Path
Classifiers and Integer Programming. |IEEE PAMI 2016

Key ideas

» Classifier-based edge weights
» Integer program formulation, leverage existing solvers

» Allow for non-tree topologies
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Flowchart
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Path weights

» geodesic tubular path maximizing tubularity in the space-scale
coordinates

» for each segment - gradient strength and gradient symmetry
histogram by angle

» BoW descriptor - distances to the codewords

» gradient boosted decision tree classifier

( HGD  BoW Embedding

— b V=[x
‘;—»mﬁ &K
\—'T H; V‘_’dz
: a’
. x ! d
M antg =l
J_’*wm hdvn—1x" Vid,
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Quadratic program

argmin Z Cijt bij Lk
IST(6) ey ty € {0,1},

» connected tree - flow constraints.

> y,-’j— if path to / traverses ejj,root(s) given

Z v <L wieV\{r},
jeEV{r}
> ovisL vIe VA {r),
jeVi{i}
Y -y =0 SN
jeV\{ir) eV (a0} vie VA {r.l},
y,’,it,/. Ve € E, le V\ {r.ij}.
vl = tu. Ve € B,
o, >0, Ve, € B, Le VA\{r i},
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Optimization

» Branch and cut (implemented in Gurobi)
> solve without integer constraints
» add a constraint violated by the current non-integer solution
» branch and bounds: branch on a variable and solve the two
subproblems, some subproblems may be pruned
» Prune or merge some edges based on weights

» Start with reduced set of constraints. Check for connectivity
violations. Add constraint. Repeat.
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Example results
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