SLIC Superpixels Achanta et al., IEEE PAMI 2012

Jan Kybic

2020

Superpixels

- small compact groups of pixels
- oversegmentation never cross a segmentation boundary / an edge
- advantages speed, uniform color and texture for descriptors
- fast to calculate

Existing superpixels techniques

- normalized cuts slow O(N^{3/2})
- agglomerative clustering using minimum spanning tree -O(N log N) irregular shape superpixels
- optimal splitting paths using GraphCuts slow, O(N^{3/2} log N) + preprocessing
- stitching overlapping patches slow
- **•** mean shift very slow $O(N^2)$, no control over superpixel shape
- quick shift very slow $O(N^2)$, no control over superpixel shape
- watershed $O(N \log N)$, no control over superpixel shape
- level set geometric flow (Turbopixels) in theory O(N) but in practice slow

			Graph	-based		Gradient-ascent-based WS91 MS02 TP09 ^b QS09 SLIC						
	GS04	NC05 [23]	SL08	GCa10 ^b	GCb10 ^b	WS91 [28]	MS02	TP09 ^b	QS09	SLIC		
Adharanaa ta koundariaa	[0]	[23]	[21]	[20]	[20]	[20]	[4]	[13]	[25]			
Under-segmentation error	0.23	0.22	-	0.22	0.22	-	-	0.24	0.20	0.19		
Boundary recall	0.84	0.68	-	0.69	0.70	-	-	0.61	0.79	0.82		
Segmentation speed												
320×240 image	$1.08s^{\alpha}$	178.15s	-	5.30s	4.12s	-	-	8.10s	4.66s	0.36s		
2048 × 1536 image	90.95s ^a	N/A ^c	-	315s	235s	-	-	800s	181s	14.94s		
Segmentation accuracy (using [11] on MSRC)	74.6%	75.9%	-	-	73.2%	-	-	62.0%	75.1%	76.9%		
Control over amount of superpixels	No	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes		
Control over superpixel compactness	No No		No	No^d	No^d	No	No	No	No	Yes		
Supervoxel extension	No	No	No	Yes	Yes	Yes	No	No	No	Yes		

TABLE 1 Summary of Existing Superpixel Algorithms

SLIC superpixels simple linear iterative clustering

- colors converted to CIELAB [I a b]
- pixels represented as [I a b x y]
- main parameter number of superpixels K
- based on k-means clustering
 - calculate means of k groups (superpixels)
 - assign pixels to means

• only search in a limited region $2S \times 2S \implies$ complexity O(N)

• $S = \sqrt{N/k}$

Algorithm 1. SLIC superpixel segmentation

/* Initialization */

Initialize cluster centers $C_k = [l_k, a_k, b_k, x_k, y_k]^T$ by sampling pixels at regular grid steps *S*.

Move cluster centers to the lowest gradient position in a 3×3 neighborhood.

Set label l(i) = -1 for each pixel *i*.

Set distance $d(i) = \infty$ for each pixel *i*.

repeat

/* Assignment */ for each cluster center C_k do for each pixel *i* in a $2S \times 2S$ region around C_k do Compute the distance D between C_k and i. if D < d(i) then set d(i) = Dset l(i) = kend if end for end for /* Update */ Compute new cluster centers. Compute residual error E. until $E \leq \text{threshold}$

Distance measure

Combine space and color

$$d_{c} = \sqrt{(l_{j} - l_{i})^{2} + (a_{j} - a_{i})^{2} + (b_{j} - b_{i})^{2}},$$

$$d_{s} = \sqrt{(x_{j} - x_{i})^{2} + (y_{j} - y_{i})^{2}},$$

$$D' = \sqrt{\left(\frac{d_{c}}{N_{c}}\right)^{2} + \left(\frac{d_{s}}{N_{s}}\right)^{2}}.$$

$$N_S = \bar{S} = \sqrt{(N/K)}. \qquad D = \sqrt{d_c^2 + \left(\frac{d_s}{S}\right)^2 m^2}.$$

Postprocessing

- superpixel k = pixels assigned to center C_k
- find connected components
- "orphaned" components do not contain a center C_i
- joined with the nearest cluster

Complexity

- Each pixel in at most 8 neighborhoods
- Small number of k-means iterations (<10)</p>
- Complexity O(N)

Examples

Boundary recall

Undersegmentation error

Speed

Segmentation example

Gould et al: Multi-Class Segmentation with Relative Location Prior, IJCV 2008

- calculate superpixels
- calculate features on superpixels (color, texture, location...) features
- train a classifier for each object class
- conditional random field model

original image

ground truth

segmentation of [11] using SLIC

TABLE 2 Multiclass Object Segmentation on the PASCAL VOC 2010 Data Set

	background	aeroplane	bicycle	bird	boat	bottle	pus	car	cat	chair	cow	dining table	dog	horse	motorbike	person	potted plant	sheep	sofa	train	TV/monitor	Average
SLIC	77.9	49.4	23.1	19.2	24.8	26.1	52.4	44.9	32.9	6.5	35.8	22.3	25.5	21.9	58.1	34.6	26.8	39.9	17.5	38.0	25.3	33.5%
QS09	78.1	45.0	23.3	18.3	25.0	25.5	52.3	45.6	33.2	7.2	36.0	21.5	24.7	21.9	56.9	34.4	26.0	38.9	17.0	37.9	24.8	33.0%

Similar accuracy, SLIC $> 10 \times faster$

Extensions

- ASLIC adaptive SLIC
- ► GSLIC geodesic SLIC

Conclusions

- Simple and fast method
- Application results at least as good as for previous methods