Active Contours - Snakes

Jan Kybic

2007-2013

Snake principles

- Initial curve (manual)
- Curve evolves using image data
- ... until finds desired boundary
- Criterion $=$ image term + smoothness (internal) term + shape term
(show animate heart.gif, ventricles_movie.gif)

Traditional snakes

Curve is parameterized as $\mathbf{v}(s)=[x(s), y(s)]$ with $s \in[0,1]$

(a)

(b)

Minimize energy

$$
\begin{aligned}
E_{\text {snake }}^{*} & =\int_{0}^{1} E_{\text {snake }}(\mathbf{v}(s)) \mathrm{d} s \\
& =\int_{0}^{1}\left(E_{\text {int }}(\mathbf{v}(s))+E_{\text {image }}(\mathbf{v}(s))+E_{\text {con }}(\mathbf{v}(s))\right) \mathrm{d} s
\end{aligned}
$$

Internal energy term

$$
E_{\mathrm{int}}=\frac{\alpha}{2}\left|\frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} s}\right|^{2}+\frac{\beta}{2}\left|\frac{\mathrm{~d}^{2} \mathbf{v}}{\mathrm{~d} \boldsymbol{s}^{2}}\right|^{2}
$$

α, β specify elasticity and stiffness. Can depend on s.

Image energy term

$$
E_{\text {image }}=w_{\text {line }} E_{\text {line }}+w_{\text {edge }} E_{\text {edge }}
$$

- Line functional attracts to white/black parts

$$
E_{\text {line }}= \pm f(x, y)
$$

- Edge functional attracts to strong edges

$$
E_{\text {edge }}=-|\nabla f(x, y)|^{2}
$$

smooth/denoise before/after taking the gradient

- Other application-dependent image energy terms.

Shape term - prefer likely shapes.

Euler-Lagrange equations

$$
E_{\text {snake }}^{*}=\int_{0}^{1} E_{\text {snake }}\left(\mathbf{v}(s), \mathbf{v}^{\prime}(s)\right) \mathrm{d} s=\int_{0}^{1} E_{\text {snake }}\left(\mathbf{v}, \mathbf{v}_{s}\right) \mathrm{d} s
$$

For optimal $\mathbf{v}(s)$ it must hold

$$
\frac{\mathrm{d}}{\mathrm{~d} s} E_{\mathrm{v}_{s}}-E_{\mathrm{v}}=0
$$

Substituting for $E_{\text {int }}$ in $E_{\text {snake }}=E_{\text {int }}+E_{\text {image }}$:

$$
-\frac{\mathrm{d}}{\mathrm{~d} s}\left(\alpha(s) \frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} s}\right)+\frac{\mathrm{d}^{2}}{\mathrm{~d} \boldsymbol{s}^{2}}\left(\beta(s) \frac{\mathrm{d}^{2} \mathbf{v}}{\mathrm{~d} \boldsymbol{s}^{2}}\right)+\nabla E_{\text {image }}(\mathbf{v}(s))=0
$$

Supposing constant α, β

$$
-\alpha \frac{\mathrm{d}^{2} \mathbf{v}}{\mathrm{~d} \boldsymbol{s}^{2}}+\beta \frac{\mathrm{d}^{4} \mathbf{v}}{\mathrm{~d} s^{4}}+\underbrace{\nabla E_{\text {image }}(\mathbf{v}(s))}_{\mathbf{f}_{E}}=0
$$

where \mathbf{f}_{E} is an external force

Solving EL equations

Euler-Lagrange equation for $\mathbf{v}(s)$

$$
-\alpha \frac{\mathrm{d}^{2} \mathbf{v}}{\mathrm{~d} s^{2}}+\beta \frac{\mathrm{d}^{4} \mathbf{v}}{\mathrm{~d} s^{4}}+\kappa \mathbf{f}_{E}=0
$$

Gradient descent - time evolution converges to a solution

$$
\frac{\partial \mathbf{v}}{\partial t}=\alpha \frac{\partial^{2} \mathbf{v}}{\partial s^{2}}-\beta \frac{\partial^{4} \mathbf{v}}{\partial s^{4}}+\kappa \mathbf{f}_{\mathrm{E}}
$$

Balloon force

What to do, when no image information is available? Grow/shrink.

$$
\frac{\partial \mathbf{v}}{\partial t}=\alpha \frac{\partial^{2} \mathbf{v}}{\partial s^{2}}-\beta \frac{\partial^{4} \mathbf{v}}{\partial s^{4}}+\kappa \mathbf{f}_{\mathrm{E}}+\lambda \mathbf{f}_{\mathrm{B}}
$$

Balloon force \mathbf{f}_{B} perpendicular to the snake curve.

Discretization and implementation

- Unit time steps $\Delta t=1$
- Snake is represented by two vectors containing the x and y coordinates of a sequence of points on the snake curve.
- Distance between subsequent points is maintained close to 1 pixel.
- Resample if needed.
- Snake is supposed to be closed and non-intersecting.

Discretization and implementation

- Unit time steps $\Delta t=1$
- Snake is represented by two vectors containing the x and y coordinates of a sequence of points on the snake curve.
- Distance between subsequent points is maintained close to 1 pixel.
- Resample if needed.
- Snake is supposed to be closed and non-intersecting.
- Derivatives approximated by discrete convolution

$$
\alpha \frac{\partial^{2} \mathbf{v}}{\partial s^{2}}-\left.\beta \frac{\partial^{4} \mathbf{v}}{\partial s^{4}}\right|_{s=s_{i}} \approx h *\left[\begin{array}{l}
x\left(s_{i}\right) \\
y\left(s_{i}\right)
\end{array}\right] .
$$

- Stop when area no longer changes.

Snake example 1

MRI image

Energy

result

Energy $=$ smoothed image $\alpha=0.1, \beta=0.01, \kappa=0.2, \lambda=0.05$.
Growing balloon force.

Snake example 2

input image

energy

result

Energy $=$ image converted to grayscale, thresholded, smoothed. $\alpha=0.1, \beta=0.1, \kappa=0.3, \lambda=-0.05$
Shrinking balloon force.

Gradient vector flow (GVF) snakes

(Xu and Prince)

- Image gives information close to edges
- No information in flat region
- An edge map f is high where we want the snake to be attracted, i.e. $\mathbf{f}_{E}=\nabla f$
- GVF provides a smooth interpolation $\mathbf{g}=(u, v)$ everywhere from f
- Alternative to balloon force, less parameter tuning.

GVF field

Minimize

$$
\iint \mu\left(u_{x}^{2}+u_{y}^{2}+v_{x}^{2}+v_{y}^{2}\right)+\|\nabla f\|^{2}\|\mathbf{g}-\nabla f\|^{2} \mathrm{~d} x \mathrm{~d} y
$$

GVF minimization

$$
\iint \mu\left(u_{x}^{2}+u_{y}^{2}+v_{x}^{2}+v_{y}^{2}\right)+\|\nabla f\|^{2}\|\mathbf{g}-\nabla f\|^{2} \mathrm{~d} x \mathrm{~d} y
$$

At minimum, Euler-Lagrange equations must hold

$$
\begin{aligned}
& \mu \Delta u-\left(u-f_{x}\right)\left(f_{x}^{2}+f_{y}^{2}\right)=0 \\
& \mu \Delta v-\left(v-f_{y}\right)\left(f_{x}^{2}+f_{y}^{2}\right)=0
\end{aligned}
$$

Solved by gradient descent / time evolution:

$$
\begin{aligned}
& u_{t}(x, y, t)=\mu \Delta u(x, y, t)-\left(u(x, y, t)-f_{x}(x, y)\right)\left(f_{x}(x, y)^{2}+f_{y}(x, y)^{2}\right) \\
& v_{t}(x, y, t)=\mu \Delta v(x, y, t)-\left(v(x, y, t)-f_{y}(x, y)\right)\left(f_{x}(x, y)^{2}+f_{y}(x, y)^{2}\right)
\end{aligned}
$$

- Equations are discretized and solved by numeric integration with a fixed time step on a uniform grid.
- Multiresolution needed for speed and robustness.

GVF example

Lung slice

Energy

result

Energy $=$ thresholded smoothed edge map $E=\left\|\nabla G_{\sigma} * f\right\|$ No balloon force needed.

