Quicksilver: fast deep learning registration

 Yang et al, Neuroimage 2017Jan Kybic

2020

Key features

- Deep learning-based
- Prediction/correction network
- Fast (11s on 1GPU for a 3D volume)
- Diffeomorphic transformation
- Large deformations (large deformation diffeomorphic metric mapping - LDDMM)
- Patch-based, patch pruning
- Uncertainty quantification
- Multimodal registration

Formulation

$$
E(\Phi)=\operatorname{Reg}[\Phi]+\frac{1}{\sigma^{2}} \operatorname{Sim}\left[I_{0} \circ \Phi^{-1}, I_{1}\right] .
$$

LDDMM is a non-parametric registration method which represents the transformation via spatio-temporal velocity fields. In particular, the sought-for mapping, Φ, is obtained via an integration of a spatio-temporal velocity field $v(x, t)$ for unit time, where t indicates time and $t \in[0,1]$, such that $\Phi_{t}(x, t)=v(\Phi(x, t), t)$ and the sought-for mapping is $\Phi(x, 1)$. To single-out desirable velocity-fields, non-

$$
\begin{aligned}
E(v)= & \int_{0}^{1}\|v\|_{L}^{2} d t+\frac{1}{\sigma^{2}}\left\|M \circ \Phi^{-1}(1)-T\right\|^{2} \\
& \text { s.t. } \Phi_{t}(x, t)=v(\Phi(x, t), t), \Phi(x, 0)=\mathrm{id}
\end{aligned}
$$

Differential formulation $\Phi_{t}^{-1}+D \Phi^{-1} v=0$.

Classical solution

- forward transformation - follow a particle in v. Ensures diffeomorphy
- optimization
- current mismatch
- solve (adjoint) system backward
- gradient of the velocity field at all t
- update v

Shooting formulation

- find the shortest path (geodesics) between images
- geodesic parameterized by initial Φ^{-1} and momentum $m=L v$
- m supported mainly on image edges, $m(x, t)=\lambda(x, t) \nabla I(x, t)$
- v is a smoothed momentum, $v=L^{-1} m$

Method

- predict m patch-by-patch
- train network to predict m
- training data - m found by numerical optimization
- m well predicted from patches, does not have to be smooth, zero in homogeneous regions

- large stride, drop background patches

Network structure

encoder/decoder, I_{1} loss function on m (not E),
3 decoders (easier to train)

Probabilistic network

- Instead of $\boldsymbol{y}=f(\boldsymbol{x})$, predict $p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{X}, \boldsymbol{Y})$ for training data $\boldsymbol{X}, \boldsymbol{Y}$
- variational inference for network weights \boldsymbol{W},minimize KL divergence of $q(\boldsymbol{W})$ and $p(\boldsymbol{W} \mid \boldsymbol{X}, \boldsymbol{Y})$

$$
q\left(\mathbf{W}_{i}\right)=\mathbf{M}_{i} \cdot \operatorname{diag}\left(\left[z_{i, j}\right]_{j=1}^{K_{i}}\right), \quad z_{i, j} \sim \operatorname{Bernoulli}(d)
$$

- \rightarrow dropout with probability 0.2

$$
p\left(\mathbf{y}^{\prime} \mid \mathbf{x}^{\prime}, \mathbf{X}, \mathbf{Y}\right) \approx \frac{1}{T} \sum_{t=1}^{T} \hat{f}\left(\mathbf{x}^{\prime}, \hat{\mathbf{w}}\right)
$$

- result=mean, variance \rightarrow uncertainty estimate

Patch number reduction

- skip all background patches
- large voxel stride (14 for $15 \times 15 \times 15$)

Prediction/correction

- trained sequentially
- Mand $T \circ \Phi$ are in the same coordinate space, can be added

Datasets

- T1, T2 MR images
- training m obtained from T1 images \rightarrow learn also multimodal T1-T2 registration

Atlas-to-image example

blue - low uncertainty

Prediction/correction experiments

Quantitative results

	Deformation Error for each voxel $[\mathrm{mm}]$							$\operatorname{det} \boldsymbol{J}>\mathbf{0}$
Data percentile for all voxels	0.3%	5%	25%	50%	75%	95%	99.7%	
Affine	0.0613	0.2520	0.6896	1.1911	1.8743	3.1413	5.3661	$\mathrm{~N} / \mathrm{A}$
D, velocity, stride 5	0.0237	0.0709	0.1601	0.2626	0.4117	0.7336	1.5166	100%
D, velocity, stride 14	0.0254	0.075	0.1675	0.2703	0.415	0.743	1.5598	100%
D, deformation, stride 5	0.0223	0.0665	0.1549	0.2614	0.4119	0.7388	1.5845	56%
D, deformation, stride 14	0.0242	0.0721	0.1671	0.2772	0.4337	0.7932	1.6805	0%
P, momentum, stride 14, 50 samples	0.0166	0.0479	0.1054	0.1678	0.2546	0.4537	1.1049	100%
D, momentum, stride 5	0.0129	0.0376	0.0884	0.1534	0.2506	0.4716	1.1095	100%
D, momentum, stride 14	0.013	0.0372	0.0834	0.1359	0.2112	0.3902	0.9433	100%
D, momentum, stride 14, 40 epochs	0.0119	0.0351	0.0793	0.1309	0.2070	0.3924	0.9542	100%
D, momentum, stride 14 + correction	$\mathbf{0 . 0 1 0 4}$	$\mathbf{0 . 0 3 0 9}$	$\mathbf{0 . 0 7 0 4}$	$\mathbf{0 . 1 1 6 7}$	$\mathbf{0 . 1 8 5}$	$\mathbf{0 . 3 4 7 8}$	$\mathbf{0 . 8 4 1}$	100%

Target overlap

Multimodal registration

Figure 10: Example test case for multi-modal image-to-image tests. (a): T1w moving image; (b): T2w target image; (c): T1w-T1w LDDMM optimization (L0) result; (d)-(f): deformation prediction+correction (LPC) result using (d) T1w-T1w data; (e) T1w-T2w data; (f) T1w-T2w data using only 10 images as training data.

