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Unsupervised segmentation - graph partitioning

I Pixels = vertices
I Edges = neighbors
I Edge weights = similarities
I Segmentation = finding a cut (partitioning)
I Classes = graph components
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Minimum cut
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Normalized cut

Relative cost of the cut
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Computing the normalized cut

Indicator xi = 1if i ∈ A, otherwise xi = −1

Connection weight
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Rayleigh quotient

with and y(i) ∈ {2,−2b}
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Motivation

Solving

is equivalent to

spring analogy - oscillatory modes
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Eigenvalue solution

Relaxation solved by the generalized eigenvalue problem

→
y0 = 1 is an eigenvector with λ = 0. 2ndlargest eigenvalue →

eigenvector y1= solution satisfying
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Graph construction

I Construct a weighted graph

I Solve
Complexity
O(N) thanks to sparsity and low accuracy requirement
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Other pixel features

Extended to spatiotemporal data, motion profiles
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Finalizing the segmentation

I Thresholding yi - minimize Ncut, l thresholds
I Partition recursively if desired

I Stop if Ncut too high
I Stop if eigenspectrum too smooth
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Example
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Example - eigenvectors
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Simulataneous k-way cut

I Recursive 2-way cut computationally wasteful
I Use n top eigenvectors for further partitioning as labels
I Numerical inaccuracies →use k-means to cluster pixel labels
I Postprocessing

I Greeedy pruning (merging)
I Global cut at segment level - eigenvalue formulation or

exhaustive
I Not used in the presented experiments
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Examples
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Example (2)
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Other eigenvalue formulations
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Conclusions

I Unsupervised algorithm based on graph clustering
I Penalizes small classes
I Eigenvalue (spectral) formulation
I Lot of theory, short experimental evaluation
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