Localization of organs and structures

Jan Kybic

2020

Sofka et al: Automatic Detection and Measurement of Structures in Fetal Head Ultrasound Volumes Using Sequential Estimation and Integrated Detection Network (IDN)

Key points:

- Motivation fetus development examination
- Find organs or structures in 3D (ultrasound)
- Probabilistic hierarchical sequential detection
- Probabilistic model learnt from data relative position and appearance

Standard planes

Measurements to be performed

Fig. 2. Using the input volume (a), Automatic Fetal Head and Brain (AFHB) system provides the following measurements: (b) Lateral Ventricles (LV), (c) Cerebellum (CER) and Cisterna Magna (CM), and (d) Occipitofrontal Diameter (OFD), Biparietal Diameter (BPD), and Head Circumference (HC). In addition, the system provides automatic detection of median plane for visualization of Corpus Callosum (CC) and a plane for visualization

Observations

Notation

detected by a multi-object detection system as follows. The state (pose) of the modeled object s is denoted as θ_s and the sequence of multiple objects as $\theta_{0:s} = \{\theta_0, \theta_1, \dots, \theta_s\}$. In our case, $\theta_s = \{\mathbf{p}, \mathbf{r}, \mathbf{s}\}$ denotes the position \mathbf{p} , orientation \mathbf{r} , and size \mathbf{s} of the object s. The set of observations for object s are obtained from the image neighborhood V_s . The

- \blacktriangleright observations conditionally independent, likelihood $f(V_s|\pmb{\theta}_s)$
- initial distribution $f(\theta_0)$
- transition distribution $f(\theta_s|\theta_{0:s-1})$

Prediction and update

prediction

$$f(\theta_{0:s}|V_{0:s-1}) = f(\theta_s|\theta_{0:s-1})f(\theta_{0:s-1}|V_{0:s-1}).$$

update

$$f(\theta_{0:s}|V_{0:s}) = \frac{f(V_s|\theta_s)f(\theta_{0:s}|V_{0:s-1})}{f(V_s|V_{0:s-1})},$$

Particle filtering/importance sampling

represent f(θ_{0:s}|V_{0:s}) by a set of weighted particles {θ^j_{0:s}, w^j_s}^m_{j=1}
 particles generated by a proposal distribution p(θ_{0:s}|V_{0:s})

$$p(\boldsymbol{\theta}_{0:s}|V_{0:s}) = p(\boldsymbol{\theta}_{0:s-1}|V_{0:s-1})p(\boldsymbol{\theta}_s|\boldsymbol{\theta}_{0:s-1}, V_{0:s}).$$

Particle filtering/importance sampling

represent f(θ_{0:s}|V_{0:s}) by a set of weighted particles {θ^j_{0:s}, w^j_s}^m_{j=1}
 particles generated by a proposal distribution p(θ_{0:s}|V_{0:s})

$$p(\boldsymbol{\theta}_{0:s}|V_{0:s}) = p(\boldsymbol{\theta}_{0:s-1}|V_{0:s-1})p(\boldsymbol{\theta}_s|\boldsymbol{\theta}_{0:s-1}, V_{0:s}).$$

adjust weights

Object detection by importance sampling

- 1) Obtain m samples from the proposal distribution, $\theta_s^j \sim p(\theta_s^j | \theta_{0:s-1}^j)$.
- 2) Reweight each sample according to the importance ratio

$$\tilde{w}_s^j = \tilde{w}_{s-1}^j f(V_s | \boldsymbol{\theta}_s^j).$$
(10)

Normalize the importance weights.

3) Resample the particles using their importance weights to obtain more particles in the peaks of the distribution. Finally, compute the approximation of $f(\boldsymbol{\theta}_{0:s}|V_{0:s})$:

$$f(\boldsymbol{\theta}_{0:s}|V_{0:s}) \approx \sum_{j=1}^{m} w_s^j \delta(\boldsymbol{\theta}_{0:s} - \boldsymbol{\theta}_{0:s}^j), \qquad (11)$$

where δ is the Dirac delta function.

Probabilistic boosting tree (PBT)

To train a tree of maximum depth of L:

- Given: A training set $S = \{(x_1, y_1, w_1), ..., (x_m, y_m, w_m); x_i \in \chi, y_i \in \{-1, +1\}, \sum_i w_i = 1.$
- Compute the empirical distribution q
 [¯](y) = Σ_i w_i δ(y_i = y).
- On training set S, train a strong classifier using a boosting algorithm with T weak classifiers but exit early if φ > θ, e.g. θ = 0.45.
- If the current tree depth is L then exits.
- Initialize two empty sets S_{le ft} and S_{right}.
- For each sample (x_i, y_i), compute the probability q(+1|x_i) and q(-1|x_i) using the learned strong classifier.
- If $q(+1|x_i) \frac{1}{2} > \varepsilon$ then $(x_i, y_i, 1) \rightarrow S_{right}$ else If $q(-1|x_i) - \frac{1}{2} > \varepsilon$ then $(x_i, y_i, 1) \rightarrow S_{left}$ else $(x_i, y_i, q(+1|x_i)) \rightarrow S_{right}$ and $(x_i, y_i, q(-1|x_i)) \rightarrow S_{left}$.
- Normalize all the weights of the samples in S_{le ft}.
- · Repeat the procedure recursively.
- Normalize all the weights of the samples in Sright.
- · Repeat the procedure recursively.

PBT illustration

Observation model

Optimize instance parameters

$$\hat{\boldsymbol{\theta}}_s = rg\max_{\boldsymbol{\theta}_s} P(V_s | \boldsymbol{\theta}_s).$$

▶ Probabilistic boosting tree (PBT), $y_s = 1$ iff object s is in V_s

$$\hat{\boldsymbol{\theta}}_s = \arg \max_{\boldsymbol{\theta}_s} P(y_s = +1 | \boldsymbol{\theta}_s, V_s)$$

Transition model

context. In this paper, we use a pairwise dependency

$$f(\boldsymbol{\theta}_s|\boldsymbol{\theta}_{0:s-1}) = f(\boldsymbol{\theta}_s|\boldsymbol{\theta}_j), \quad j \in \{0, 1, \dots, s-1\}.$$
(14)

We model $f(\boldsymbol{\theta}_s | \boldsymbol{\theta}_j)$ as a Gaussian distribution estimated from the training data. The statistical model captures spatial

Integrated detection network (IDN)

Order to maximize posterior probability (greedily)

$$S[s, (j)] = (15)$$

$$\int_{\boldsymbol{\theta}_s \in \Omega(\hat{\boldsymbol{\theta}}_s)} f(\boldsymbol{\theta}_{(0:s-1)} | V_{(0:s-1)}) f(\boldsymbol{\theta}_s | \boldsymbol{\theta}_{(j)}) f(V_s | \boldsymbol{\theta}_s) d\boldsymbol{\theta}_s d\boldsymbol{\theta}_{(0:s-1)},$$

$$\boldsymbol{\theta}_{s(0:s-1) \in \Omega(\hat{\boldsymbol{\theta}}_{(0:s-1)})}$$

Anatomy specific transition models

the pose of the cerebellum *within* the cerebellar plane. We can write the transition model from (14) as

$$f(\boldsymbol{\theta}_s|\boldsymbol{\theta}_j) = f(\boldsymbol{\theta}_{CM}|\hat{\boldsymbol{\theta}}_{CER}) = \mathcal{N}(\mu_{CER-CM}, \sigma_{CER-CM}^2),$$
(16)

Dataset

- 2089 heads, 1982 for training, 107 for testing
- augmentation X,Y,Z flipping

	Antares	S2000	Total
CER, CM, LV	884	1205	2089
HC, BPD, OFD	365	1206	1571
CC, CP	0	1193	1193
Total (all structures)	3747	9619	13366

Network structure

- 8 structures + 2 resolution levels for CER, detectors for position, position+orientation, position+orientation+size (not at low resolution)
- ▶ 2 level classification ("bootstrap") \rightarrow 54 classifiers

Example results

CM: 0.57, 0.07 CER: 4.89, 0.88

CER: 1.61, 0.32

Example results (2)

Xu: Efficient Multiple Organ Localization in CT Image Using 3D Region Proposal Network. IEEETMI 2019

Key points:

- MultipleOrgan localization (finding a bounding box)
- CNN
- Region proposals in 3D simplified and streamlined
- high resolution feature maps

Flowchart

simplify, only 1 organ

Datasets

Dataset	Subset	Image number	Slice size	Slice number	In-plane resolution[mm]	Slice thickness[mm]
Abdomen	Training	118	512×512	74-987	0.56-1.00	0.70-5.00
	Validation	13	512×512	122-846	0.68-1.00	0.70-3.00
	Testing	70	512×512	42-1026	0.60-0.98	0.45-5.00
Head	Training	80	512×512	109-202	0.62-1.27	3.00
	Validation	9	512×512	130-151	0.88-1.56	3.00
	Testing	30	256×256 512×512	118-208	0.90-1.95	3.00

Abdomen - 11 organs (heart, lungs, liver, spleen...). **Head** - 12 anatomical structures (eyes, optic nerve, inner ear, oral cavity...)

Preprocessing

- resampling to uniform resolution,
- cropping,
- intensity rescaling
- augmentation translation, slice subset

Flowchart

Backbone network

based on AlexNet, combine high and low resolution features

Region proposal network

- \blacktriangleright 3 \times 3 \times 3 convolution, two 1 \times 1 \times 1 convolution
- input:
 - $W \times H \times L$ spatial cells,
 - each cell *M*reference bounding boxes
 - each box has K + 1class scores and 6 adjustment parameters $(t_x, t_y, t_z, t_w, t_h, t_l)$

goal: predict class scores and refine box positions

$$\begin{cases} x = x_r + t_x w_r \\ y = y_r + t_y h_r \\ z = z_r + t_z l_r \end{cases} \begin{cases} w = w_r e^{t_n} \\ h = h_r e^{t_h} \\ l = l_r e^{t_l} \end{cases}$$

reference boxes: size 30,60,120,240mm in each dimension (for abdomen) - M = 4³ = 64 boxes

Multiple prediction strategy Candidate fusion

- multiple candidate boxes per organ
- ▶ keep if class score $p_i > T_1$ and ranks in top T_2 % of the candidates
- average positions

$$\boldsymbol{B} = \frac{\sum_{i} p_{i} \boldsymbol{B}_{i}}{\sum_{i} p_{i}}$$

Training

- Assign labels to boxes if IoU is maximum or if IoU > T_f, background if maxIoU < T_b otherwise ignore.</p>
- Compute target adjustment parameters.
- Classification loss focuses on hard examples ($\gamma = 0, 2$)

$$L_{cls} = -\sum_{i} [u_i \ge 0] \frac{1}{N_{u_i}} (1 - p_i)^{\gamma} \log p_i$$

Regression loss

$$L_{reg} = \frac{1}{N_{total}} \sum_{i} \left[u_i > 0 \right] smooth_{L_1}(\boldsymbol{t}_i - \boldsymbol{t}_i^*) \tag{5}$$

in which

$$smooth_{L_1}(x) = \begin{cases} 0.5x^2, & \text{if } |x| < 1, \\ |x| - 0.5, & \text{otherwise,} \end{cases}$$
(6)

 learning rate 10⁻⁴, 1000 epochs, best model by IoU, random initialization

Quantitative results

DETECTION AND LOCALIZATION RESULTS OF 11 BODY ORGANS ON THE ABDOMINAL CLINICAL CT DATASET

Organs	IoU [%]		Wall dist.	Centroid	
organs	Mean	Worst	[mm]	dist. [mm]	
Left lung	84.84	72.73	5.09(3.83)	7.55(2.64)	
Right lung	86.88	72.31	4.87(4.93)	7.91(4.80)	
Heart	80.52	66.46	4.07(4.63)	6.53(4.05)	
Liver	77.83	58.62	8.46(9.36)	12.26(6.69)	
Spleen	70.01	42.17	6.28(6.65)	9.95(5.84)	
Pancreas	58.56	16.89	9.23(7.95)	13.25(6.48)	
Left kidney	75.29	48.04	4.31(4.18)	6.19(3.75)	
Right kidney	76.46	48.35	3.89(3.47)	5.59(2.86)	
Bladder	58.23	6.24	7.32(6.53)	10.23(4.58)	
Left femoral head	77.26	43.86	2.10(1.89)	3.25(1.79)	
Right femoral head	79.77	61.72	1.85(1.62)	3.01(1.53)	
Global	73.01	6.24	5.38(6.25)	7.94(5.73)	
Precision[%]	Recall[%]		AP[%]	Time[s]	
97.91	98.71		98.24	0.29	

Examples

