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Sofka et al: Automatic Detection and Measurement of Structures in
Fetal Head Ultrasound Volumes Using Sequential Estimation
and Integrated Detection Network (IDN)

Key points:
I Motivation - fetus development examination
I Find organs or structures in 3D (ultrasound)
I Probabilistic hierarchical sequential detection
I Probabilistic model learnt from data - relative position and

appearance
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Standard planes
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Measurements to be performed
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Observations
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Notation

I observations conditionally independent, likelihood
I initial distribution f (θ0)

I transition distribution
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Prediction and update

I prediction

I update
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Particle filtering/importance sampling

I represent by a set of weighted particles

I particles generated by a

I adjust weights
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Particle filtering/importance sampling
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I particles generated by a
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Object detection by importance sampling
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Probabilistic boosting tree (PBT)
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PBT illustration
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Observation model

I Optimize instance parameters

I Probabilistic boosting tree (PBT), ys = 1 iff object s is in Vs

Transition model
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Integrated detection network (IDN)

Order to maximize posterior probability (greedily)

13 / 29



Anatomy specific transition models
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Dataset

I 2089 heads, 1982 for training, 107 for testing
I augmentation - X,Y,Z flipping
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Network structure

I 8 structures + 2 resolution levels for CER, detectors for position,
position+orientation, position+orientation+size (not at low
resolution)

I 2 level classification (“bootstrap”) → 54 classifiers
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Example results
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Example results (2)
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Xu: Efficient Multiple Organ Localization in CT Image Using 3D
Region Proposal Network. IEEETMI 2019

Key points:

I MultipleOrgan localization (finding a bounding box)
I CNN
I Region proposals in 3D - simplified and streamlined
I high resolution feature maps
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Flowchart

simplify, only 1 organ

20 / 29



Datasets

Abdomen - 11 organs (heart, lungs, liver, spleen...). Head - 12
anatomical structures (eyes, optic nerve, inner ear, oral cavity...)
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Preprocessing

I resampling to uniform resolution,
I cropping,
I intensity rescaling
I augmentation - translation, slice subset
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Flowchart
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Backbone network

I based on AlexNet, combine high and low resolution features
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Region proposal network

I 3×3×3 convolution, two 1×1×1 convolution
I input:

I W ×H×L spatial cells,
I each cell Mreference bounding boxes
I each box has K +1class scores and 6 adjustment parameters

I goal: predict class scores and refine box positions

I reference boxes: size 30,60,120,240mm in each dimension (for
abdomen) - M = 43 = 64 boxes
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Multiple prediction strategy
Candidate fusion

I multiple candidate boxes per organ
I keep if class score pi > T1 and ranks in top T2% of the candidates
I average positions
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Training
I Assign labels to boxes if IoU is maximum or if IoU> Tf , background

if max IoU< T_b otherwise ignore.
I Compute target adjustment parameters.
I Classification loss focuses on hard examples (γ = 0,2)

I Regression loss

I learning rate 10−4, 1000 epochs, best model by IoU, random
initialization
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Quantitative results
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Examples
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