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Besl, McKey: A method for registration of 3D shapes. PAMI 1992

Key points:
▶ Find a geometric transformation between two point sets or a point

set and a parametric model
▶ Matching closest points
▶ Iterative
▶ Rigid transformations (extensions possible)
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3D Example
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Geometric models

▶ Points
▶ Lines
▶ Triangles
▶ Parametric models
▶ Implicit models

Finding distance
▶ closed form
▶ iteratively (e.g. Newton method)
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Quaternions for rotation representation

▶ “Four-vector”
q=(q0,q1,q2,q3) = q0 + iq1 + jq2 +kq3 = q0 +(q1,q2,q3), with
i2 = j2 = k2 =−1, ij = k, jk = i ,ki = j , ji =−k,. . .

▶ Rotation by angle α around axis u

q=cos α

2 +usin α

2 =
(
cos α

2 ,ux sin
α

2 ,uy sin
α

2 ,uz sin
α

2
)

▶ Applying a rotation
Rv=q v q−1with q−1 = (q0,−q1,−q2,−q3)

q2
0+q2

1+q2
2+q2

3

▶ Rotation matrix from a unit quaternion (q2
0 +q2

1 +q2
2 +q2

3 = 1)
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Product of quaternions
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Closed-form for rotation and translation (Horn)
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Cross-covariance
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Centering

x̃i = xi −µx p̃i = pi −µp

fN = ∑
i

∣∣xi −Rpi −qT
∣∣2 = ∑

i

∣∣x̃i −Rp̃i + e
∣∣2

where e = µx −Rµp −qT

f (e,R)N = ∑
i

∣∣x̃i
∣∣2 + ∣∣Rp̃i

∣∣2︸ ︷︷ ︸
const

+
∣∣e∣∣2 +2eT x̃i −2eT R︸ ︷︷ ︸

0

−2x̃T iRp̃i

min fN =
∣∣e∣∣2 −2∑

i
x̃T

i Rp̃i

Therefore:

e = 0 −→ qT = µx −Rµp, max∑
i

x̃T
i Rp̃i
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Optimal rotation matrix by SVD

Maximize

∑
i

p̃T
i Rx̃i = tr ∑

i
RT p̃i x̃T

i = tr(RTΣpx ) = ∑
kl
(RT )kl(Σpx )kl

since
aT b = tr(abT )⇒ aT Rb = tr(RT ab)

Calculate the SVD

Σpx = USV T = ∑
k

σkukvT
k σ1 = max

u,v∈S
uT

1 Σpx v1, . . .

then
Ropt = VCUT with C=diag(1,. . . ,1,det(UV T ))
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Quaterion solution

With quaternions

max∑
i
(qpiq−1)xi =max∑

i
(qpi )(xiq)

max∑
i
(Wpi q)(Wxi q) = qT

(
∑
i

W T
pi Wxi

)
q

since piq = Wpi q
Optimal q — eigenvector of Q = ∑i W T

pi Wxi
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Quaternion solution (2)

Horn, Closed-form solution of absolute orientation using unit quaternions. J.Opt. Soc. Amer., 1987
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Finding closest points
▶ Brute force O(NpNx )
▶ Grid method, k-D tree, O(Np logNx )on the average

▶ Approximate nearest neighbors 13 / 39



Iterative closest point algorithm

Initialize q as identity, P0 = P. Repeat:
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ICP convergence
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Parameter evolution
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Accelerated ICP
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Accelerated parameter evolution
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Initial pose estimation

▶ ICP finds only local minima, sensitive to initial pose
▶ If sufficient overlap → not too sensitive to translation
▶ Uniform/random sampling of initial poses

Moment matching
▶ align centers of gravity
▶ calculate covariance matrices
▶ find and match eigenvectors
▶ rotate to align eigenvectors
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Conclusions

▶ Simple and fast method for matching 2D/3D shapes or point sets
▶ Needs good initialization
▶ Sufficient overlap
▶ Widely used in practice
▶ Many extensions to make it more robust (e.g. ICRP, soft

assignment)
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Myronenko, Song: Point Set Registration: Coherent Point Drift.
PAMI 2010

Key points:
▶ Probabilistic extension to ICP
▶ Both rigid and nonrigid registration
▶ Gaussian density model
▶ Soft assignment
▶ Can handle outliers
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Example point set registration problem
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Probabilistic model
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Probabilistic model (2)

Centroid locations y(θ)
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EM algorithm

▶ Find θ ,σ2by alternative maximization of E
▶ Expectation step calculates posterior prob. of ymgiven xnfor fixed

θ ,σ2

▶ Maximization step minimizes the expected negative log-likelihood
Q = EY∼Pold [logP(θ ,σ |X ,Y )]≥ E for fixed Pold(m|xn)
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Minimization of Q
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Rigid and affine transformations

Can be minimized analytically for R, t, s, σ2. R is found using SVD.
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Rigid coherent point drift
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Affine coherent point drift
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Nonrigid registration
▶ Variational formulation with a smoothness regularization term

▶ Minimizing

▶ Solution must have the form (from Euler-Lagrange equations) with a
Green’s function L̂LG = δ
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Regularization term

▶ Green’s function is a Gaussian
▶ Coefficients w minimizing Q found by
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Non-rigid coherent point drift
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CPD algorithm notes

▶ Three parameters: w ,λ ,β

▶ Alternative minimization of σ2and W , very few iterations needed

Speed

▶ Complexity O(NM +M3)per iteration - slow
▶ Fast Gauss transform to calculate matrix-vector products

▶ “multipole” type hierarchic approximation
▶ complexity O(M +N)

▶ Low-rank approximation to solve the linear equations
▶ factorization of G by eigendecomposition precomputed
▶ complexity O(M)
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Rigid 2D examples
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Rigid 3D example
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Non-rigid 2D example
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Non-rigid 3D example
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3D left ventricle matching
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CPD summary

▶ Relatively fast (seconds to minutes)
▶ Rigid, affine, non-linear transformation.
▶ Closed form rigid case
▶ Can be applied to 2D, 3D, nD
▶ Soft matching
▶ Robust to outliers and missing points (explicit modeling)
▶ Spatial coherence in the non-rigid case
▶ May fall to local minima
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