Diffeomorphic registration

Jan Kybic

2023

Avants et al: Symmetric Diffeomorphic Image Registration with Cross-Correlation... MIA 2008

Symmetric image normalization (SyN)

- Dense deformation field
- Large deformation
- Symmetric formulation
- Diffeomorphic = invertible and differentiable with differentiable inverse
- Computationally expensive
- Implementation available

Deformation field and velocity

• Deformation
$$\varphi I = I \circ \varphi(\mathbf{x}, t = 1).$$

$$\phi(\mathbf{x},1) = \phi(\mathbf{x},0) + \int_0^1 \upsilon(\phi(\mathbf{x},t),t) dt$$

Distance

1/1 .

$$D(\phi(\mathbf{x},0),\phi(\mathbf{x},1)) = \int_0^1 \left\| \upsilon(\mathbf{x},t) \right\|_L dt$$

$$L = a \nabla^2 + b \mathbf{Id}$$

-

Geodesic path between images

Symmetric formulation

$$\phi_1(\mathbf{x},1)I = J,$$

$$\phi_2^{-1}(\phi_1(\mathbf{x},t),1-t)I = J,$$

$$\phi_2(\phi_2^{-1}(\phi_1(\mathbf{x},t),1-t),1-t)I = \phi_2(\mathbf{z},(1-t)J,$$

$$\phi_1(\mathbf{x},t)I = \phi_2(\mathbf{z},1-t)J,$$

Minimization problem

$$E_{sym}(I,J) = \inf_{\phi_1} \inf_{\phi_2} \int_{t=0}^{0.5} \left\{ \left\| \upsilon_1(\mathbf{x},t) \right\|_L^2 + \left\| \upsilon_2(\mathbf{x},t) \right\|_L^2 \right\} dt + \int_{\Omega} \left| I(\phi_1(0.5)) - J(\phi_2(0.5)) \right|^2 d\Omega.$$

Subject to each $\phi_i \in Diff_0$ the solution of:
 $d\phi_i(\mathbf{x},t)/dt = \upsilon_i(\phi_i(\mathbf{x},t),t)$ with
 $\phi_i(\mathbf{x},0) = \mathbf{Id}$ and $\phi_i^{-1}(\phi_i) = \mathbf{Id}, \phi_i(\phi_i^{-1}) = \mathbf{Id}.$

Cross correlation

►
$$I_1 = I(\phi_1(x, 0.5)), J_2 = J(\phi_2(x, 0.5)),$$

 $\bar{I}(\mathbf{x}) = I_1(\mathbf{x}) - \mu_{I_1}(\mathbf{x}) \text{ and } \bar{J}(\mathbf{x}) = J_2 - \mu_{J_2}(\mathbf{x})$
 $CC(\bar{I}, \bar{J}, \mathbf{x}) = \frac{\langle \bar{I}, \bar{J} \rangle^2}{\langle \bar{I} \rangle \langle \bar{J} \rangle} = A^2/BC,$

Minimize

$$E_{CC}(\overline{I},\overline{J}) = \inf_{\phi_1} \inf_{\phi_2} \int_{t=0}^{\frac{1}{2}} \left\{ \left\| \upsilon_1(\mathbf{x},t) \right\|_{L}^{2} + \left\| \upsilon_2(\mathbf{x},t) \right\|_{L}^{2} \right\} dt + \int_{\Omega} CC(\overline{I},\overline{J},\mathbf{x}) d\Omega.$$

Euler-Langrange equations

$$\nabla_{\phi_1(\mathbf{x},0.5)} E_{cc}(\mathbf{x}) = 2L\upsilon_1(\mathbf{x},0.5) + \frac{2A}{BC} (\overline{J}(\mathbf{x}) - \frac{A}{B} \overline{I}(\mathbf{x})) |D\phi_1| \nabla \overline{I}(\mathbf{x}),$$

$$\nabla_{\phi_2(\mathbf{x},0.5)} E_{cc}(\mathbf{x}) = 2L\upsilon_2(\mathbf{x},0.5) + \frac{2A}{BC} (\overline{I}(\mathbf{x}) - \frac{A}{C} \overline{J}(\mathbf{x})) |D\phi_2| \nabla \overline{J}(\mathbf{x}).$$

with Jacobian determinant $|D\phi_i|$ Algorithm 1 : Computing Cross-Correlation Derivatives

- (1) Deform *I* by $\varphi_1(0.5)$ and *J* by $\varphi_2(0.5)$.
- (2) Calculate \overline{I} and \overline{J} from the result of step (1).
- (3) Calculate and store images representing A, B and C.

Deformation from speed

- Gradients give us update of v_1, v_2
- Diffeomorphism ϕ is generated by $d\phi(\mathbf{x}, t)/dt = v(\phi(\mathbf{x}, t), t)$

Discretize as

 $\phi(\mathbf{x},t+\Delta t) \leftarrow \phi(\mathbf{x},t) + \Delta t \ \upsilon(\phi(\mathbf{x},t),t).$

Inversion method

- Enforce $\phi \phi^{-1} = \mathsf{Id}$
- Start with $\varphi(x) = y$, $\psi^{-1}(\tilde{y}) = x, \tilde{y} \neq x$ 1: while $\|\psi^{-1}(\varphi(\mathbf{x})) - \mathbf{x}\|_{\infty} > \varepsilon_2 r$ do

2: Compute
$$v^{-1}(\mathbf{x}) = \psi^{-1}(\varphi(\mathbf{x})) - \mathbf{x}$$
.

- 3: Find scalar γ such that $\|\boldsymbol{v}^{-1}\|_{\infty} = 0.5r$.
- 4: Integrate ψ^{-1} s.t. $\psi^{-1}(\mathbf{\tilde{y}}, t) + = \gamma v^{-1}(\psi^{-1}(\mathbf{\tilde{y}}, t)).$

5: end while

Symmetric normalization algorithm

(1) Initialize
$$\phi_1 = \mathbf{Id} = \phi_1^{-1}$$
 and $\phi_2 = \mathbf{Id} = \phi_2^{-1}$.

(2) Repeat the following steps until convergence:

(3) Compute the cross correlation as described in algorithm 1.

(4) Compute each v_i by smoothing the result of step (3) in this table. One may also u modified midpoint method for each velocity, as in the LPF algorithm [39], to give smoothing the time.

(5) Update each φ_i by v_i through the *o.d.e.* as described in equation 8. This step autom adjusts the time step-size such that the maximum length of the updates to the φ_i is su and approximately constant over iterations. We explicitly guarantee $||v_1(\cdot, t)|| = ||v_2(\cdot, t)||$

(6) Use algorithm 2 to get the inverses of the φ_i .

(7) Generate the time 1 solutions from $\phi_1(1) = \phi_2^{-1}(\phi_1(\mathbf{x}, 0.5), 0.5)$ and $\phi_1^{-1}(1) = \phi_2(1) = \phi_1^{-1}(\phi_2(\mathbf{x}, 0.5), 0.5)$.

Implementation details and performance

- uses multiresolution, 100 iterations per level
- ▶ 5×slower than demons, 30%slower than ITK elastic registration
- robust and accurate
- can handle both large and small deformations

Experiments

- 20 T₁MRI from 10 normal elderly and 10 frontotemporal dementia patients
- register normal and patients to atlas to find volumetric differences

MRI Bias example

Atlas registration

Atlas registration (controls)

images should look similar to first column

Atlas registration (patients)

Dice coefficient

Structure	Demons	Elastic XCor > Demons	SyN XCor > Elastic
temporal	Mean+-Sigma: 0.76 +- 0.021	0.81 +- 0.02	0.84 +- 0.019
	Min - Max : [0.69-0.79]	[0.76-0.84]	[0.79-0.87]
	Significance:	p< 0.0001	p< 0.0001
parietal	0.69 +- 0.034	0.74 +- 0.03	0.78 +- 0.027
	[0.62-0.73]	[0.68-0.79]	[0.70-0.83]
	-	p< 0.0001	p< 0.0001
occipital	0.78 +- 0.030	0.79 +- 0.024	0.83 +- 0.022
	[0.72-0.82]	[0.73-0.84]	[0.78-0.87]
	-	P < 0.011	p< 0.0001

Volume measurements

