
Large language
models and their

learning
applications

Alikhan Anuarbekov
anuarali@fel.cvut.cz

Outline

● How did we get to modern LLMs?

● Internal architecture of LLMs (briefly)

● Emerging abilities of LLMs (theory)

● Applications of LLMs (practice)

History: from dictionary mapping to LLMs

● Translation
● Chatting
● Prediction of missing words

History: from dictionary mapping to LLMs

What was the initial motivation of NLP researchers?

What models would YOU tried to apply?

● Try to approximate the real distribution by assuming the nearest words only
(Markov assumption = context is often given very close by)

● Approximation by using counts of observed N-tuples + Laplace smoothing

History: from dictionary mapping to LLMs

1990s: Statistical approach to next word prediction

● Problems: curse of dimensionality
● Ideally want to have an entire sentence as a context (N → ∞)
● But majority of N-tuples combinations are zero (nonsense or rare)

● Classification can be added to the model
● Accuracy is not enough for more complex tasks

History: from dictionary mapping to LLMs

1990s: Statistical approach to next word prediction

History: from dictionary mapping to LLMs

2000s: Primitive application of Neural Networks
● Application of the state-of-the art Image analysis techniques of Deep Neural Networks
● The same Markov assumption used in sliding window
● Universal function approximator property

History: from dictionary mapping to LLMs

2010s: Recurrent Neural Networks, vector word representation
● Biologically-inspired Neural network architecture, alternative to the mainstream DeepNets

at the time
● Vector logic applied for words, not using a simple one-hot encoding anymore
● Unlimited input sequence size, inputting one word at the time

History: from dictionary mapping to LLMs

2010s: Recurrent Neural Networks, vector word representation
● Problem: too slow for a large sequence (no parallelization allowed)
● Markov assumption is too strict = only alternative is bidirectional Markov assumption

History: from dictionary mapping to LLMs

2018: Pre-trained Language Models (PLMs)
● Attempt to solve the LSTM problem of slow learning

 by applying parallelization
● Older problem of max. size input is back
● A new self-attention Transformer architecture
● The task of word prediction is generally solved

(Accuracy is comparable to the Image processing)

History: from dictionary mapping to LLMs

2020: Large Language Models (LLMs)
● Scaling of the Pre-trained Language Models (only the increase in the parameter size)
● Completely new properties, solution of many similar tasks
● Change of the Machine Learning and Deep Learning paradigm

● New training techniques and new evaluation methods
● Wide applications in industry and everyday life

Transformer: what is happening
inside?

Transformer: what is happening
inside?

Transformer: what is happening inside?

Tokenization of input:

● Given a sentence: “How do we train those models?”
● Define a vocabulary: [‘a’=0, ‘h’=3, ‘o’=4…, ‘w’=12, ‘mo’=22]
● Divide into words: [‘how’, ‘do’, ‘we’, ‘train’, …, ‘models’]
● Convert to numbers by vocabulary: [{3,4}, …, {8,4,1,3,6,12}]
● Convert to single big number: [4587, …, 19812]

+ some tricks for memory efficiency (tokens can be smaller than words)
Goal: compress input data

Transformer: what is happening inside?

Embedding: word2vec

● Given a tokenized number, e.g., 0 – N (max. index of tokens)
● Convert it to a vector of size d=512 (parameter to set)
● Why? Instead of just labeling with a random number, get some useful information:

▻ If two vectors have small distance,
they have similar semantic meaning

▻ Operations on vectors represent semantic structures

● Implement as linear matrix and train as normal parameters

‖V⃗ 1−V⃗ 2‖∝V⃗ 1⋅V⃗ 2

Transformer: what is happening inside?

Positional encoding

● Given a semantic vector from embedding: [0.1, -12.2, ……, 0.99] = “dog”
● We want to add an information of a unique word position: 2nd position = +[0.05, …, -0.12]
● Why like that?

▻ Because words change their semantic based on position
”She can sing” x “Can she sing”

▻ Close words are related, far words aren’t
“She can do it but he can’t”

● Can’t use a linear/simple operation to encode
▻ It will depend on absolute values = large values are rare

● A solution is the use of periodic/rotation functions,
still unique, but bounded

● Given a semantic+position vector: [0.1, -12.2, ……, 0.99] = “dog”, 2nd word
● Recall that semantic similarity = distance:
● Copy input matrix 3 times – Q, K, V

● is a dot product between each pair of tokens

 = distance matrix of each pair
● Softmax give probabilities (sums to 1) instead of distances
● Normalization by is to prevent number overflow

(exploding/vanishing gradient)

Transformer: what is happening inside?

Single-Head Self-attention

V⃗ 1⋅V⃗ 2

Q⋅K T

√dk

What does self-attention
ultimately mean?

A distance matrix, normalized to
a probabilities and dot-

producted with a vector?

What does self-attention
ultimately mean?

A distance matrix, normalized to
a probabilities and dot-

producted with a vector?

Hint: look at the single vector:

v’ = v + similarity(v, others) * others

What does self-attention
ultimately mean?

A distance matrix, normalized to
a probabilities and dot-

producted with a vector?

Answer:
A semantic vector that includes its context

meaning!

● Result is a semantic+position+context vector: [0.1, -12.2, ……, 0.99] =
“dog” + its a 2nd word + “my dog is playing in backyard” [mine, playing, backyard]
● But it has no parameters!
● And why is it only 1D (single head)?

Transformer: what is happening inside?

Single-Head Self-attention

● Result is a semantic+position+context vector: [0.1, -12.2, ……, 0.99] =
“dog” + its a 2nd word + “my dog is playing in backyard” [mine, playing, backyard]
● Lets add some parameters! Lets say we want to extract only the spatial context:

e.g. ”dog” + its a 2nd word + “in backyard”
● Use a simple linear neural network matrix to train!
● And why is it only 1D (single head)?

Transformer: what is happening inside?

Single-Head attention

 W⋅

● Result is a semantic+position+context vector: [0.1, -12.2, ……, 0.99] =
“dog” + its a 2nd word + “my dog is playing in backyard” [mine, playing, backyard]
● Lets add some parameters! Lets say we want to extract only the spatial context:

e.g. ”dog” + its a 2nd word + “in backyard”
● Use a simple linear neural network matrix to train!
● If you want to train multiple features simultaneously, just do add 3rd dimension

Transformer: what is happening inside?

Multi-Head attention

64 x W⋅

Transformer: what is happening inside?

Multi-Head attention

● Additional 3 linear layers help us to extract some features beforehand:
▻ Do not just copy input 3 times (V, K, Q)
▻ For example: Extract a verb, a noun and an adjective
▻ And perform an analysis with extract

Transformer: what is happening inside?

Multiple stacking:
● Transformer (even multiple heads) is not enough! We need multiple layers of Transformer!

Transformer: what is happening inside?

Multiple stacking:
● BERT (Bidirectional Encoder Representations from Transformer)
● Only uses the Encoder part (learning of language rules)

Transformer: what is happening inside?

Multiple stacking:
● BERT (Bidirectional Encoder Representations from Transformer)
● Only uses the Encoder part (learning of language rules)
● Why?

12 or 16 Stacks of Encoder part of Transformer

Transformer: what is happening inside?

New model learning paradigm:
1) First – learn the context, e.g., the rules of the language

● Takes the longest processing time and processing power
● Example: BERT has been training for 16 day on 4 TPUs (Tensor-GPUs)

2) Then fine-tune to excel in a specific task
● Takes significantly less time given the supervised(labeled) data
● Example: BERT can be trained for your task in 30 minutes on 1 TPU (91% accuracy)

3) Finally – reinforcement learning in the interactive environment with real users
● Only if the final task is interactive one (Chat-bot, real-time translation, etc.)

Transformer: what is happening inside?

New model learning paradigm: Pre-training
● Goal: given a large dataset of unlabeled data, try to extract a language semantic logic

● How? Remember the language model initial task:

Transformer: what is happening inside?

New model learning paradigm: Pre-training
● Goal: given a large dataset of unlabeled data, try to extract a language semantic logic

● Apply it directly:
▻ Learn to predict a missing word

▻ Given an unlabeled sentence,
randomly generate blank spots

▻ the model should fill them

Transformer: what is happening inside?

New model learning paradigm: Pre-training
● Goal: given a large dataset of unlabeled data, try to extract a language semantic logic

● Apply it directly:
▻ Learn to predict a missing word
▻ Given two sentences, the model should decide:

● 1 = The second sentence is the answer to first
● 0 = No, the second sentence is nonsense

Transformer: what is happening inside?

New model learning paradigm: Fine-tuning
● Take the trained network from pre-training, it has problems with specific tasks
● Prepare a dataset with certain task

(e.g. Q & A ChatBot / Search engine)
● Have all training samples labeled
● Run a supervised training afterwards

to make a network specialized in this
particular supervised task

● Can re-use the large pre-trained network for every task!

Transformer: what is happening inside?

● Examples of BERT fine-tuning architectures
● Typically:

● Add/Change the last output layer
● Train encoders weights with output layer
● Apply it on the task:

● Predefined prompt formulation
● Or explicit output layer usage

New model learning paradigm: Fine-tuning

Why transformers work?

Why transformers work?

Before the LLMs:

● Single task-purposed only Deep Neural Networks

● Mainly Vision and Image processing

● Logarithmic shape of the learning curve

● MAC = Multiply-Accumulate Operations, e.g., not
only the number of parameters, but how many
operations are performed!

Why transformers work?

After the LLMs:

 ● One model can be applied to a variety of tasks

● Exponential learning curve

● Can be used in Natural Language Processing,
but also in Image/Vision/Robot control/etc...

Why transformers work?

Emerging abilities

“Emergence is when quantitative changes in a system result in qualitative changes in
behavior.”
© Nobel prize-winning physicist Philip Anderson
“An ability is emergent if it is not present in smaller models but is present in larger
models.”
© Jason Wei, et al.

● Given a simple Transformer architecture,
researchers started to increase the number of
parameters and something unexpected happened
after certain threshold….

● Model started to excel in a variety of tasks at once

● Exponential curve and sudden jump in performance

● Changes the Machine Learning perspective:
”My models does not work…. yet!”

Not every task shows emerging abilities…. yet!

Why transformers work?

Emerging abilities

 ● The threshold depends not only on parameter size:
▻ Better architecture = lower threshold
▻ Better training dataset samples = lower threshold
▻ Better prompting technique = lower threshold

● Scaling depends on more low-level issues
▻ HW implementation decisions

● More complex (need more logical steps) and more precise
(math solving, computer vision) tasks are still not emerging in
general….

● Easy to hack, can learn the human toxicity, ethical issues with
privacy, etc...

● Still no theoretical justification of why, only observation

Applications: what can LLMs do and what cannot (yet)

Applications: what can LLMs do and what cannot (yet)

Question of evaluation

 ● As we have seen, the LLMs can be fine tuned for the specific tasks. However, if a general-
purpose AI (AGI) is considered, the fine-tuning may not always be possible

● ChatGPT – can be fine-tuned, but task is needed to be prepared in advance

● Typically, if any fine-tuning is performed, it is a smaller model trained on smaller dataset

● Because of this, every task has a marking:

▻ FE = Fully Evaluated = LLM model has been fully fine-tuned on a single task

▻ PE = Partially Evaluated = LLM model has been fine-tuned on given task, but not only on it

▻ NE = No Evaluation = LLM model has not received any train samples of given task

● Given a sentence, a model is asked to logically conclude whether the hypothesis holds

● Train dataset is labeled with the correct labeling

Applications: what can LLMs do and what cannot (yet)

Natural Language Inference (NLI), Strict classification

Accuracies:

● FE: 83% (366M)

● PE: 86% (20B)

● NE: 78% (175B)

Applications: what can LLMs do and what cannot (yet)
Natural Language Inference (NLI), Human disagreement

 ● A real human reasoning is not always logical, can AI mimic?

● Instead of one answer -- distribution is asked to be predicted

Results (Accuracy, KL, closer to 0 = better):

● FE: 70%, 0.2128 (366M)

● PE: 71%, 0.1558 (20B)

● NE: 63%, 0.3606 (175B)

Applications: what can LLMs do and what cannot (yet)
Sentiment Analysis/Text classification

● Have been partially solved by N-grams in the past
● Sentiment Analysis (ChatGPT outperforms previous methods)
● Text classification

▻ ChatGPT has AUC=0.89 on Miscellaneous text classification [binary task])

Adversarial prompts

● Carefully crafted inputs used to mislead or exploit the vulnerabilities of AI system

Applications: what can LLMs do and what cannot (yet)

Applications: what can LLMs do and what cannot (yet)
Robustness evaluation

 ● How to limit the effect of adversarial prompts? Use existing framework PromptBench

● Train via a dataset of adversarial prompt examples

1) Random typos and text errors

2) Replace words with synonymous or similar meaning words

3) Add random characters/words at the end of a prompt

4) Simulation of the imperfect English prompts from other languages (Korean, Spanish, French)

Applications: what can LLMs do and what cannot (yet)
Robustness evaluation

Applications: what can LLMs do and what cannot (yet)
Robustness evaluation

 ● Introduce a metric for robustness
● Performance Drop Rate (PDR)
● Essentially – a drop in accuracy after attack

Applications: what can LLMs do and what cannot (yet)
Summary:

Applications: what can LLMs do and what cannot (yet)
Summary:

https://mfaizan.github.io/2023/04/02/sines.html
https://cw.fel.cvut.cz/b222/courses/smu/start

https://www.youtube.com/watch?v=bCz4OMemCcA

[Attention is all you need] https://arxiv.org/pdf/1706.03762.pdf

Additional materials used:

https://www.youtube.com/watch?v=xI0HHN5XKDo

[BERT for language understanding] https://arxiv.org/pdf/1810.04805.pdf

[A survey of Large LMs] https://arxiv.org/pdf/2303.18223.pdf

[Emergent abilities of LLMs] https://arxiv.org/pdf/2206.07682.pdf

[Improving Language Understanding by Generative Pre-Training]
 https://www.mikecaptain.com/resources/pdf/GPT-1.pdf

Papers used:

[A Survey on Evaluation of Large Language Models]
 https://arxiv.org/pdf/2307.03109.pdf

	B4M36SAN
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

