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Outline

● How did we get to modern LLMs?

● Internal architecture of LLMs (briefly)

● Emerging abilities of LLMs (theory)

● Applications of LLMs (practice)



  

History: from dictionary mapping to LLMs



  

● Translation
● Chatting
● Prediction of missing words

History: from dictionary mapping to LLMs

What was the initial motivation of NLP researchers?



  

What models would YOU tried to apply?



  

● Try to approximate the real distribution by assuming the nearest words only
(Markov assumption = context is often given very close by)

● Approximation by using counts of observed N-tuples + Laplace smoothing

History: from dictionary mapping to LLMs

1990s: Statistical approach to next word prediction



  

● Problems: curse of dimensionality
● Ideally want to have an entire sentence as a context (N → ∞)
● But majority of N-tuples combinations are zero (nonsense or rare)

● Classification can be added to the model
● Accuracy is not enough for more complex tasks

History: from dictionary mapping to LLMs

1990s: Statistical approach to next word prediction



  

History: from dictionary mapping to LLMs

2000s: Primitive application of Neural Networks
● Application of the state-of-the art Image analysis techniques of Deep Neural Networks
● The same Markov assumption used in sliding window
● Universal function approximator property 



  

History: from dictionary mapping to LLMs

2010s: Recurrent Neural Networks, vector word representation
● Biologically-inspired Neural network architecture, alternative to the mainstream DeepNets 

at the time
● Vector logic applied for words, not using a simple one-hot encoding anymore
● Unlimited input sequence size, inputting one word at the time



  

History: from dictionary mapping to LLMs

2010s: Recurrent Neural Networks, vector word representation
● Problem: too slow for a large sequence (no parallelization allowed)
● Markov assumption is too strict = only alternative is bidirectional Markov assumption 



  

History: from dictionary mapping to LLMs

2018: Pre-trained Language Models (PLMs)
● Attempt to solve the LSTM problem of slow learning

     by applying parallelization
● Older problem of max. size input is back
● A new self-attention Transformer architecture
● The task of word prediction is generally solved

(Accuracy is comparable to the Image processing)



  

History: from dictionary mapping to LLMs

2020: Large Language Models (LLMs)
● Scaling of the Pre-trained Language Models (only the increase in the parameter size)
● Completely new properties, solution of many similar tasks
● Change of the Machine Learning and Deep Learning paradigm

● New training techniques and new evaluation methods 
● Wide applications in industry and everyday life 



  

Transformer: what is happening 
inside?



  

Transformer: what is happening 
inside?



  

Transformer: what is happening inside?

Tokenization of input:

● Given a sentence: “How do we train those models?”
● Define a vocabulary: [‘a’=0, ‘h’=3, ‘o’=4…, ‘w’=12, ‘mo’=22]
● Divide into words: [‘how’, ‘do’, ‘we’, ‘train’, …, ‘models’]
● Convert to numbers by vocabulary: [{3,4}, …, {8,4,1,3,6,12}]
● Convert to single big number: [4587, …, 19812]

+ some tricks for memory efficiency (tokens can be smaller than words)
Goal: compress input data



  

Transformer: what is happening inside?

Embedding: word2vec

● Given a tokenized number, e.g., 0 – N (max. index of tokens)
● Convert it to a vector of size d=512 (parameter to set)
● Why? Instead of just labeling with a random number, get some useful information:

▻ If two vectors have small distance,                
they have similar semantic meaning
  

▻ Operations on vectors represent semantic structures

● Implement as linear matrix and train as normal parameters 

‖V⃗ 1−V⃗ 2‖∝V⃗ 1⋅V⃗ 2



  

Transformer: what is happening inside?

Positional encoding

● Given a semantic vector from embedding: [0.1,   -12.2,     ……,   0.99] = “dog”
● We want to add an information of a unique word position: 2nd position = +[0.05, …, -0.12]  
● Why like that?

▻ Because words change their semantic based on position 
”She can sing”  x   “Can she sing”

▻ Close words are related, far words aren’t
“She can do it but he can’t”

● Can’t use a linear/simple operation to encode
▻ It will depend on absolute values = large values are rare

● A solution is the use of periodic/rotation functions, 
still unique, but bounded



  

● Given a semantic+position vector: [0.1,   -12.2,     ……,   0.99] = “dog”, 2nd word
● Recall that semantic similarity = distance:
● Copy input matrix 3 times – Q, K, V

 
●             is a dot product between each pair of tokens

             = distance matrix of each pair
● Softmax give probabilities (sums to 1) instead of distances
● Normalization by       is to prevent number overflow

(exploding/vanishing gradient)

Transformer: what is happening inside?

Single-Head Self-attention

V⃗ 1⋅V⃗ 2

Q⋅K T

√dk



  

What does self-attention 
ultimately mean?

A distance matrix, normalized to 
a probabilities and dot-

producted with a vector?



  

What does self-attention 
ultimately mean?

A distance matrix, normalized to 
a probabilities and dot-

producted with a vector?

Hint: look at the single vector:

v’ = v + similarity(v, others) * others



  

What does self-attention 
ultimately mean?

A distance matrix, normalized to 
a probabilities and dot-

producted with a vector?

Answer:
A semantic vector that includes its context 

meaning!



  

● Result is a semantic+position+context vector: [0.1,   -12.2,     ……,   0.99] = 
“dog” + its a 2nd word + “my dog is playing in backyard” [mine, playing, backyard]
● But it has no parameters!
● And why is it only 1D (single head)?

Transformer: what is happening inside?

Single-Head Self-attention



  

● Result is a semantic+position+context vector: [0.1,   -12.2,     ……,   0.99] = 
“dog” + its a 2nd word + “my dog is playing in backyard” [mine, playing, backyard]
● Lets add some parameters! Lets say we want to extract only the spatial context:

e.g. ”dog” + its a 2nd word + “in backyard” 
● Use a simple linear neural network matrix to train! 
● And why is it only 1D (single head)?

Transformer: what is happening inside?

Single-Head attention

 W⋅



  

● Result is a semantic+position+context vector: [0.1,   -12.2,     ……,   0.99] = 
“dog” + its a 2nd word + “my dog is playing in backyard” [mine, playing, backyard]
● Lets add some parameters! Lets say we want to extract only the spatial context:

e.g. ”dog” + its a 2nd word + “in backyard” 
● Use a simple linear neural network matrix to train!  
● If you want to train multiple features simultaneously, just do add 3rd dimension

Transformer: what is happening inside?

Multi-Head attention

64 x W⋅



  

Transformer: what is happening inside?

Multi-Head attention

● Additional 3 linear layers help us to extract some features beforehand:
▻ Do not just copy input 3 times (V, K, Q)
▻ For example: Extract a verb, a noun and an adjective
▻ And perform an analysis with extract 



  

Transformer: what is happening inside?

Multiple stacking:
● Transformer (even multiple heads) is not enough! We need multiple layers of Transformer!



  

Transformer: what is happening inside?

Multiple stacking:
● BERT (Bidirectional Encoder Representations from Transformer)
● Only uses the Encoder part (learning of language rules) 



  

Transformer: what is happening inside?

Multiple stacking:
● BERT (Bidirectional Encoder Representations from Transformer)
● Only uses the Encoder part (learning of language rules)
● Why? 

12 or 16 Stacks of Encoder part of Transformer



  

Transformer: what is happening inside?

New model learning paradigm:
1)   First – learn the context, e.g., the rules of the language

 
● Takes the longest processing time and processing power
● Example: BERT has been training for 16 day on 4 TPUs (Tensor-GPUs)

2)   Then fine-tune to excel in a specific task
● Takes significantly less time given the supervised(labeled) data
● Example: BERT can be trained for your task in 30 minutes on 1 TPU  (91% accuracy)

3)   Finally – reinforcement learning in the interactive environment with real users
● Only if the final task is interactive one (Chat-bot, real-time translation, etc.)



  

Transformer: what is happening inside?

New model learning paradigm: Pre-training
●  Goal: given a large dataset of unlabeled data, try to extract a language semantic logic

●  How? Remember the language model initial task:



  

Transformer: what is happening inside?

New model learning paradigm: Pre-training
●  Goal: given a large dataset of unlabeled data, try to extract a language semantic logic

●  Apply it directly:
▻ Learn to predict a missing word

▻ Given an unlabeled sentence, 
randomly generate blank spots

▻ the model should fill them



  

Transformer: what is happening inside?

New model learning paradigm: Pre-training
●  Goal: given a large dataset of unlabeled data, try to extract a language semantic logic

●  Apply it directly:
▻ Learn to predict a missing word
▻ Given two sentences, the model should decide:

● 1 = The second sentence is the answer to first
● 0 = No, the second sentence is nonsense



  

Transformer: what is happening inside?

New model learning paradigm: Fine-tuning
● Take the trained network from pre-training, it has problems with specific tasks
● Prepare a dataset with certain task 

(e.g. Q & A ChatBot / Search engine)
● Have all training samples labeled
● Run a supervised training afterwards

to make a network specialized in this
particular supervised task

● Can re-use the large pre-trained network for every task!



  

Transformer: what is happening inside?

● Examples of BERT fine-tuning architectures
● Typically:

● Add/Change the last output layer
● Train encoders weights with output layer
● Apply it on the task:

● Predefined prompt formulation
● Or explicit output layer usage

New model learning paradigm: Fine-tuning



  

Why transformers work?



  

Why transformers work?

Before the LLMs:

 

● Single task-purposed only Deep Neural Networks

● Mainly Vision and Image processing

● Logarithmic shape of the learning curve

● MAC = Multiply-Accumulate Operations, e.g., not 
only the number of parameters, but how many 
operations are performed! 



  

Why transformers work?

After the LLMs:

 ● One model can be applied to a variety of tasks

● Exponential learning curve

● Can be used in Natural Language Processing, 
but also in Image/Vision/Robot control/etc...



  

Why transformers work?

Emerging abilities

 

“Emergence is when quantitative changes in a system result in qualitative changes in 
behavior.”
© Nobel prize-winning physicist Philip Anderson
“An ability is emergent if it is not present in smaller models but is present in larger 
models.”
© Jason Wei, et al.

● Given a simple Transformer architecture, 
researchers started to increase the number of 
parameters and something unexpected happened 
after certain threshold….

● Model started to excel in a variety of tasks at once

● Exponential curve and sudden jump in performance

● Changes the Machine Learning perspective:
”My models does not work…. yet!”



  

Not every task shows emerging abilities…. yet!



  

Why transformers work?

Emerging abilities

 ● The threshold depends not only on parameter size:
▻ Better architecture = lower threshold
▻ Better training dataset samples = lower threshold
▻ Better prompting technique = lower threshold

● Scaling depends on more low-level issues
▻ HW implementation decisions

● More complex (need more logical steps) and more precise 
(math solving, computer vision) tasks are still not emerging in 
general….

● Easy to hack, can learn the human toxicity, ethical issues with 
privacy, etc...

● Still no theoretical justification of why, only observation



  

Applications: what can LLMs do and what cannot (yet) 



  

Applications: what can LLMs do and what cannot (yet) 

Question of evaluation

 ● As we have seen, the LLMs can be fine tuned for the specific tasks. However, if a general-
purpose AI (AGI) is considered, the fine-tuning may not always be possible 

● ChatGPT – can be fine-tuned, but task is needed to be prepared in advance

● Typically, if any fine-tuning is performed, it is a smaller model trained on smaller dataset

● Because of this, every task has a marking:

▻ FE = Fully Evaluated = LLM model has been fully fine-tuned on a single task

▻ PE = Partially Evaluated = LLM model has been fine-tuned on given task, but not only on it

▻ NE = No Evaluation = LLM model has not received any train samples of given task 



  

● Given a sentence, a model is asked to logically conclude whether the hypothesis holds

● Train dataset is labeled with the correct labeling 

Applications: what can LLMs do and what cannot (yet) 

Natural Language Inference (NLI), Strict classification

 

Accuracies:

● FE: 83% (366M)

● PE: 86% (20B)

● NE: 78% (175B) 



  

Applications: what can LLMs do and what cannot (yet) 
Natural Language Inference (NLI), Human disagreement

 ● A real human reasoning is not always logical, can AI mimic? 

● Instead of one answer -- distribution is asked to be predicted

Results (Accuracy, KL, closer to 0 = better):

● FE: 70%,   0.2128    (366M)

● PE: 71%,   0.1558    (20B)

● NE: 63%,   0.3606    (175B) 



  

Applications: what can LLMs do and what cannot (yet) 
Sentiment Analysis/Text classification

 
● Have been partially solved by N-grams in the past
● Sentiment Analysis (ChatGPT outperforms previous methods) 
● Text classification

 
▻ ChatGPT has AUC=0.89 on Miscellaneous text classification [binary task])



  

Adversarial prompts

 
● Carefully crafted inputs used to mislead or exploit the vulnerabilities of AI system

Applications: what can LLMs do and what cannot (yet) 



  

Applications: what can LLMs do and what cannot (yet) 
Robustness evaluation

 ● How to limit the effect of adversarial prompts? Use existing framework PromptBench

● Train via a dataset of adversarial prompt examples

1) Random typos and text errors

2) Replace words with synonymous or similar meaning words

3) Add random characters/words at the end of a prompt

4) Simulation of the imperfect English prompts from other languages (Korean, Spanish, French)



  

Applications: what can LLMs do and what cannot (yet) 
Robustness evaluation

 



  

Applications: what can LLMs do and what cannot (yet) 
Robustness evaluation

 ● Introduce a metric for robustness
● Performance Drop Rate (PDR) 
● Essentially – a drop in accuracy after attack



  

Applications: what can LLMs do and what cannot (yet) 
Summary:

 



  

Applications: what can LLMs do and what cannot (yet) 
Summary:

 



  

https://mfaizan.github.io/2023/04/02/sines.html
https://cw.fel.cvut.cz/b222/courses/smu/start

https://www.youtube.com/watch?v=bCz4OMemCcA

[Attention is all you need]                        https://arxiv.org/pdf/1706.03762.pdf  

Additional materials used:

https://www.youtube.com/watch?v=xI0HHN5XKDo

[BERT for language understanding]        https://arxiv.org/pdf/1810.04805.pdf

[A survey of Large LMs]                           https://arxiv.org/pdf/2303.18223.pdf

[Emergent abilities of LLMs]                    https://arxiv.org/pdf/2206.07682.pdf

[Improving Language Understanding by Generative Pre-Training] 
                                                                https://www.mikecaptain.com/resources/pdf/GPT-1.pdf

Papers used:

[A Survey on Evaluation of Large Language Models] 
                                                                https://arxiv.org/pdf/2307.03109.pdf
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