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Do we need interpretations?

https://www.nytimes.com/2017/06/13/opinion/h
ow-computers-are-harming-criminal-justice.html

https://www.propublica.org/article/machine-b
ias-risk-assessments-in-criminal-sentencing



Is it an issue of models being proprietary?



What is Interpretable ML?
According to Graziani et al. [2023]

● Definition extracted from a survey of many articles and talks with various 
professionals:

● “An AI system is interpretable if it is possible to translate its working principles 
and outcomes in human-understandable language without affecting the 
validity of the system”

● In some cases the definition can include also “approximations of the AI 
system that maintain its validity as much as possible.”



Interpretability through other lens
According to Graziani et al. [2023]

EU law - AI interpretability defines the supply of meaningful information about the 
underlying logic, significance and envisaged consequences of the AI system

Sociology - AI interpretability must define a social relationship of trust between 
the human and the machine

Ethics - Interpretability is about accountability of the model, similarly to human 
interaction

Should we allow for some models to not be interpretable?
E.g. IVF using black-box AI [Afnan et al. 2021]



What is Interpretable ML?
5 principles according to Rudin et al. [2022]

1. Models are domain-specific and should be understandable by humans
2. Should help decide on trust, not just improve trust
3. Interpretability vs. Accuracy is a false dichotomy
4. Metrics should be refined throughout the data science process
5. In high-stakes decisions, interpretable models should be preferred.

Full / partial interpretability

A proprietary model is also a black box 



Interpretability vs Accuracy trade-off
Argument that interpretability just takes more work  [Rudin et al. 2022]

BUT also:



Interpretability vs Accuracy
Rashomon Effect - Existence of multiple models with similarly good performance

Could we choose the most interpretable out of the Rashomon set?



All part of a Data Science process
● Interpretability is desirable even for model creators

○ it is useful to learn why the mistakes are happening 

● Instead of providing reasons for trust → Let user make their own decision
● Interpretability metrics need iterations



Why make a non-interpretable model?
According to Rudin [2019]:

● Interpretable models are more difficult to construct
○ One finds out issues with the data, needs extra metrics

● Black box protects intellectual property
○ Interpretations from outside might give out market advantage

● Belief of black-box models accessing “hidden patterns”
○ Interpretable models might find them too - and uncover them to humans



Inherent Interpretability
AI Models interpretable by design / under some constraints

[Rudin et al. 2022]



Interpretable under condition: 

Sparsity - as few features used in a decision as possible

But not too sparse, humans are opposed to too simplistic representations of 
complex relations

Decision lists/trees/sets

[Rudin et al. 2022]

Decreasing probabilities 
in a rule list



Sparsity is again important

Also integrality and magnitude of weights

Scoring systems

[Rudin et al. 2022]



Generalized additive models

Interpretability comes from option 
of visualization of the univariate 
functions

[Rudin et al. 2022]

And sparsity, again

We can check if a model fits the 
expert knowledge

E.g. enforce monotonicity



Case-based reasoning

[Rudin et al. 2022]

Natural to humans, use examples you already know

Nearest Neighbors

Prototypes - compute only few distances

Part-based - Find similar parts - images, text



Disentangled NNs
Train a NN where each neuron (in a layer) 
corresponds to a single “concept”

Question of expressiveness

Active learning - for concepts

Unsupervised scenario
Generative models
Capsule networks

[Rudin et al. 2022]

[Mathieu et al. 2016]



Other topics
Interpretable dimensionality reduction?

Physics/causality integration with ML

Exploration of the Rashomon set

Interpretable RL - Interpretable policy

Models suitable for visualization 

How to express uncertainty

How to measure Variable importance
…



Interpretability methods
Global - entire model

Feature visualization

Prototypes and Criticisms

Influential Instances

Global surrogate model

Concept attribution

Local - single instance

Not interpretable 

According to [Graziani et al. 2023]



Feature Visualizations

[Nguyen et al. 2016]

[Olah et al. 2017] 



Prototypes and Criticisms

[Kim et al. 2016] 



Influential Instances
[Koh et al. 2020]



Global surrogate model
Train an Interpretable model on output of a high performing Black-box model

[Molnar 2020]



Concept attribution
1) Prepare a set of concepts
2) Annotate some data with 

specific concepts
3) Check the model’s 

sensitivity to a concept

[Graziani et al. 2020]



Post-hoc global explanation = Interpretation?
Lakkaraju et al. show that one can create highly misleading global explanation

[Lakkaraju et. al. 2020]



Recap
● An AI system is interpretable if it is possible to translate its working principles 

and outcomes in human-understandable language without affecting the 
validity of the system
 

● Interpretability means more work, for possibly more knowledge

● Interpretable models fit the definition best
● Interpretability methods are better than nothing

● Beware of potential for misinterpretation
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