GRAPHICAL MARKOV MODELS (WS2023) 5. SEMINAR

Assignment 1. Consider the task of finding the most probable sequence of (hidden) states for a (Hidden) Markov model on a chain.

- a) Show that the Dynamic Programming approach applied for this task can be interpreted as an equivalent transformation (re-parametrisation) of the model.
- **b**) Show that the transformed functions (potentials) encode an explicit description of *all* optimisers of the problem.

Assignment 2. Prove that a sum of submodular functions is submodular.

Assignment 3. Examine the following functions w.r.t. submodularity

- a) f(k, k') = |k k'|, where $k, k' \in \mathbb{Z}$.
- **b)** $f(k, k') = (k k')^2$, where $k, k' \in \mathbb{Z}$.
- c) $f(k_1, \ldots, k_n) = \max_i k_i \min_i k_i$, where $k_i \in \mathbb{Z}$.

Assignment 4. Let K be a completely ordered finite set. We assume w.l.o.g. $K = \{1, 2, ..., m\}$. For a function $u \colon K \to \mathbb{R}$ define its discrete "derivative" by Du(k) = u(k+1) - u(k).

a) Let u be a function $u \colon K^2 \to \mathbb{R}$ and denote by D_1 and D_2 the discrete derivatives w.r.t. the first and second argument. Prove the following equality

$$D_1D_2u(k_1, k_2) = u(k_1 + 1, k_2 + 1) + u(k_1, k_2) - u(k_1 + 1, k_2) - u(k_1, k_2 + 1).$$

Conclude that all mixed derivatives $D_1D_2u(k_1, k_2)$ of a submodular functions are non-positive.

b) Prove that the condition established in a) is necessary and sufficient for a function to be submodular.

Hint: Start from the observation that the following equality holds for a function of one variable

$$u(k+l) - u(k) = \sum_{i=k}^{k+l-1} Du(i)$$

and generalise it for functions of two variables.

c) Prove that any function $u\colon K^2\to\mathbb{R}$ can be represented as a sum of a submodular and a supermodular function.

Hint: Consider the mixed derivative $D_1D_2u(k_1, k_2)$, decompose it into its negative and positive part and "integrate" them back separately.

Assignment 5. Consider a GRF for binary valued labellings $x \colon V \to \{0,1\}$ of a graph (V,E) given by

$$p(x) = \frac{1}{Z} \exp \left[\sum_{ij \in E} u_{ij}(x_i, x_j) + \sum_{i \in V} u_i(x_i) \right].$$

Show that is is always possible to find an equivalent transformation (re-parametrisation)

$$u_{ij} \to \tilde{u}_{ij}, \quad u_i \to \tilde{u}_i$$

such that the new pairwise functions \tilde{u}_{ij} have the form

$$\tilde{u}_{ij}(x_i, x_j) = \alpha_{ij}|x_i - x_j|$$

with some real numbers $\alpha_{ij} \in \mathbb{R}$.

Assignment 6. Transform the *Travelling Salesman Problem* into a $(\min, +)$ -problem.

Assignment 7. Consider the language L of all b/w images $x \colon D \to \{b, w\}$ containing an arbitrary number of non-overlapping and non-touching one pixel wide rectangular frames (see figure).

a) Prove that L is not expressible by a locally conjunctive predicate

$$x \in L \quad \text{if and only if} \quad f(x) = \bigwedge_{c \in \mathcal{C}} f_c(x_c) = 1$$

with predicates f_c , defined on image fragments x_c , where the hyperedges $c \subset D$ have bounded size $|c| \leq m < |D|$.

b) Show that L can be expressed by introducing a field $s\colon D\to K$ of non-terminal symbols, a locally conjunctive predicate on them and pixel-wise predicates g relating the non-terminal and terminal symbol in each pixel

$$x \in L \quad \text{if and only if} \quad \bigvee_{s \in K^D} \left[\bigwedge_{c \in \mathcal{C}} f_c(s_c) \wedge \bigwedge_{i \in D} g(x_i, s_i) \right] = 1$$

Find a suitable structure C, an alphabet of non-terminal symbols K and predicates f_c , g.