CZECH TECHNICAL UNIVERSITY IN PRAGUE

3D Computer Vision - Task 0-4 notes
Lab session materials for subjects B4M33TDV, BE4M33TDV, XP33VID

Martin Matoušek

October 2020

CENTER FOR MACHINE PERCEPTION

Planar Homography

Transformation between two projective planes
vector form elementwise form

$$
\lambda \underline{\mathbf{x}}_{2}=\mathbf{H} \underline{\mathbf{x}}_{1} \quad \lambda\left[\begin{array}{c}
u_{2} \\
v_{2} \\
w_{2}
\end{array}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1}
\end{array}\right]
$$

- bijection, \mathbf{H} is regular, invertible
- $\lambda \neq 0$, any nonzero multiple of \mathbf{H} represents the same transformation
- works for ideal points $\left(w_{1}=0, w_{2}=0\right)$ as well
- in the affine plane (no ideal points) we can work with $w_{1}=1, w_{2}=1$ fixed

Notation of rows of \mathbf{H}

$$
\mathbf{H}=\left[\begin{array}{l}
\mathbf{h}_{1}^{\top} \\
\mathbf{h}_{2}^{\top} \\
\mathbf{h}_{3}^{\top}
\end{array}\right]
$$

i.e., \mathbf{h}_{i} (without the ${ }^{\top}$) is the i-th row of the matrix transposed to column vector.

- Express particular elements of the vector \underline{x}_{2}
vector form

$$
\begin{align*}
\lambda u_{2} & =\mathbf{h}_{1}^{\top} \underline{\mathbf{x}}_{1} \tag{1}\\
\lambda v_{2} & =\mathbf{h}_{2}^{\top} \underline{\mathbf{x}}_{1} \\
\lambda w_{2} & =\mathbf{h}_{3}^{\top} \underline{\mathbf{x}}_{1}
\end{align*}
$$

elementwise form

$$
\begin{array}{ll}
(1) & \lambda u_{2}=h_{11} u_{1}+h_{12} v_{1}+h_{13} w_{1} \\
(2) & \lambda v_{2}=h_{21} u_{1}+h_{22} v_{1}+h_{23} w_{1} \\
(3) & \lambda w_{2}=h_{31} u_{1}+h_{32} v_{1}+h_{33} w_{1} \tag{3}
\end{array}
$$

- Eliminate nonzero λ - multiply sides of eq. (1) and (2) by swapped sides of eq. (3) divided by λ, i.e., multiply the right side of (1) and (2) by w_{2} and the left side of (1) and (2) by $\mathbf{h}_{3}^{\top} \underline{\mathbf{x}}_{1} / \lambda$.

Note: we do not divide by any of the coordinate entries (some can be zero).

$$
\begin{array}{ll}
u_{2} \mathbf{h}_{3}^{\top} \mathbf{x}_{1}=w_{2} \mathbf{h}_{1}^{\top} \mathbf{x}_{1} & u_{2}\left(h_{31} u_{1}+h_{32} v_{1}+h_{33} w_{1}\right)=w_{2}\left(h_{11} u_{1}+h_{12} v_{1}+h_{13} w_{1}\right) \\
v_{2} \mathbf{h}_{3}^{\top} \underline{\mathbf{x}}_{1}=w_{2} \mathbf{h}_{2}^{\top} \underline{\mathbf{x}}_{1} & v_{2}\left(h_{31} u_{1}+h_{32} v_{1}+h_{33} w_{1}\right)=w_{2}\left(h_{21} u_{1}+h_{22} v_{1}+h_{23} w_{1}\right)
\end{array}
$$

- Some manipulation - to the homogeneous form, 'transpose' dot products

$$
\begin{array}{cc}
w_{2} \underline{\mathbf{x}}_{1}^{\top} \mathbf{h}_{1} & \begin{array}{l}
-u_{2} \mathbf{x}_{1}^{\top} \mathbf{h}_{3}=0 \\
-v_{2} \mathbf{x}_{1}^{\top} \mathbf{h}_{3}=0
\end{array} \\
w_{2} \underline{\mathbf{x}}_{1}^{\top} \mathbf{h}_{2} \\
w_{2} u_{1} h_{11}+w_{2} v_{1} h_{12}+w_{2} w_{1} h_{13} \\
w_{2} u_{1} h_{21}+w_{2} v_{1} h_{22}+w_{2} w_{1} h_{23} & \begin{array}{l}
-u_{2} u_{1} h_{31}-u_{2} v_{1} h_{32}-u_{2} w_{1} h_{33}=0 \\
-v_{2} u_{1} h_{31}-v_{2} v_{1} h_{32}-v_{2} w_{1} h_{33}=0
\end{array}
\end{array}
$$

Homography Estimation from Known Correspondences (2/3)

- Matrix representation - collect all known terms (point coordinates from the i-th corresponding pair of points) to a matrix \mathbf{A}_{i} and all unknowns to a vector \mathbf{h}

- $\mathbf{A}_{i}-2$ equations, $\mathbf{h}-8$ unknowns (up to scalar multiple) $\longrightarrow 4$ correspondences needed, stacked to 8×9 matrix \mathbf{A}. Then \mathbf{h} is a solution of linear homogeneous system, i.e. right null-space of \mathbf{A}, and \mathbf{H} is composed from \mathbf{h}.

$$
\mathbf{A}=\left[\begin{array}{c}
\vdots \\
\mathbf{A}_{\mathbf{i}} \\
\vdots
\end{array}\right] \quad \mathbf{A h}=\mathbf{0}
$$

Note: When working with points from the affine plane only, we can assume point coordinates normalized to $w_{1}=1, w_{2}=1$.

$$
\mathbf{A}=\left[\begin{array}{ccc}
& \vdots & \\
\mathbf{x}_{1}^{\top} & \mathbf{0}^{\top} & -u_{2} \mathbf{x}_{1}^{\top} \\
\mathbf{0}^{\top} & \underline{\mathbf{x}}_{1}^{\top} & -v_{2} \underline{\mathbf{x}}_{1}^{\top} \\
& \vdots &
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{ccccccccc}
& & & & \vdots & & & & \\
u_{1} & v_{1} & 1 & 0 & 0 & 0 & -u_{2} u_{1} & -u_{2} v_{1} & -u_{2} \\
0 & 0 & 0 & u_{1} & v_{1} & 1 & -v_{2} u_{1} & -v_{2} v_{1} & -v_{2} \\
& & & & \vdots & & & &
\end{array}\right]
$$

Homography Induced by a Plane And Two Cameras (1/3)

- Homography between two images does not depends on world coordinate system choice (chosen at the first camera matrix $\mathbf{P}_{\mathbf{1}}$)
- Two cameras \mathbf{P}_{1} and \mathbf{P}_{2} observing a plane $\boldsymbol{\Pi}$

$$
\mathbf{P}_{1}=\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \quad \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \quad \underline{\boldsymbol{\Pi}}^{\top}=\left[\begin{array}{ll}
\mathbf{n}^{\top} & d
\end{array}\right]
$$

1. Reconstruct $\underline{\mathbf{X}}$ constrained by the plane $\underline{\boldsymbol{\Pi}}$ from $\underline{\mathbf{u}}_{1}$
(projection equation augmented by plane constraint row $\underline{\boldsymbol{\Pi}}^{\top} \underline{\mathbf{X}}=0$ to obtain 4×4 invertible matrix

$$
\begin{gathered}
\lambda_{1}\left[\begin{array}{c}
\mathbf{u}_{1} \\
0
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\mathbf{K}_{1} & \mathbf{0} \\
\mathbf{n}^{\top} & d
\end{array}\right]}_{\mathbf{M}} \underline{\mathbf{X}} \\
\underline{\mathbf{X}}=\lambda_{1} \underbrace{\left[\begin{array}{cc}
\mathbf{K}_{1}^{-1} & \mathbf{0} \\
\frac{-\mathbf{n}^{\top} \mathbf{K}_{1}^{-1}}{d} & \frac{1}{d}
\end{array}\right]}_{\mathbf{M}_{-1}}\left[\begin{array}{c}
\underline{\mathbf{u}}_{1} \\
0
\end{array}\right]=\lambda_{1}\left[\begin{array}{c}
\mathbf{K}_{1}^{-1} \\
\frac{-\mathbf{n}^{\top} \mathbf{K}_{1}^{-1}}{d}
\end{array}\right] \underline{\mathbf{u}}_{1}
\end{gathered}
$$

2. Project $\underline{\mathbf{X}}$ to the second camera to obtain \mathbf{H}

$$
\lambda_{2} \underline{\mathbf{u}}_{2}=\mathbf{P}_{\mathbf{2}} \underline{\mathbf{X}}=\lambda_{1} \mathbf{K}_{\mathbf{2}}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
\mathbf{K}_{\mathbf{1}}^{-1} \\
\frac{-\mathbf{n}^{\top} \mathbf{K}_{1}^{-1}}{d}
\end{array}\right] \underline{\mathbf{u}}_{1}=\lambda_{1} \underbrace{\mathbf{K}_{2}\left(\mathbf{R}-\mathbf{t n}^{\top} / d\right) \mathbf{K}_{1}^{-1}}_{\mathbf{H}_{12}} \underline{\mathbf{u}}_{1}
$$

- General cameras - derivation is the same, but a bit ugly

$$
\begin{gathered}
\lambda_{1}\left[\begin{array}{l}
\underline{\mathbf{u}} \\
0
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{K}_{1} \mathbf{R}_{1} & -\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{C}_{1} \\
\mathbf{n}^{\top} & d
\end{array}\right] \underline{\mathbf{X}} \rightarrow \underline{\mathbf{X}}=\lambda_{1}\left[\begin{array}{c}
\mathbf{R}_{1}^{\top} \mathbf{K}_{1}^{-1}-\frac{\mathbf{C}_{1} \mathbf{n}^{\top} \mathbf{R}_{1}^{\top} \mathbf{K}_{1}^{-1}}{d+\mathbf{n}^{\top} \mathbf{C}_{1}} \\
\frac{-\mathbf{n}^{\top} \mathbf{R}_{1}^{\top} \mathbf{K}_{1}^{-1}}{d+\mathbf{n}^{\top} \mathbf{C}_{1}}
\end{array}\right] \underline{\mathbf{u}} \\
\lambda_{2} \underline{\mathbf{u}}_{2}=\mathbf{P}_{2} \underline{\mathbf{X}}=\lambda_{1} \mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{R}_{2} & -\mathbf{R}_{2} \mathbf{C}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{R}_{1}^{\top}-\frac{\mathbf{C}_{1} \mathbf{n}^{\top} \mathbf{R}_{1}^{\top}}{d+\mathbf{n}^{\top}} \\
\frac{-\mathbf{n}^{\top} \mathbf{R}_{1}^{\top} \mathbf{C}_{1}}{d+\mathbf{n}^{\top} \mathbf{C}_{1}}
\end{array}\right] \mathbf{K}_{1}^{-1} \underline{\mathbf{u}} \\
\mathbf{H}=\mathbf{K}_{2}\left(\mathbf{R}_{2} \mathbf{R}_{1}^{\top}-\frac{\mathbf{R}_{2}\left(\mathbf{C}_{1}-\mathbf{C}_{2}\right) \mathbf{n}^{\top} \mathbf{R}_{1}^{\top}}{d+\mathbf{n}^{\top} \mathbf{C}_{1}}\right) \mathbf{K}_{\mathbf{1}}{ }^{-1}
\end{gathered}
$$

Inverse homography

1. Change of coordinate frame - apply $\mathbf{T}(4 \times 4): \underline{\mathbf{X}}^{\prime}=\mathbf{T} \underline{\mathbf{X}}, \mathbf{P}^{\prime}=\mathbf{P} \mathbf{T}^{-1}, \underline{\boldsymbol{\Pi}}^{\prime \top}=\underline{\boldsymbol{\Pi}} \mathbf{T}^{-1}$

$$
\mathbf{T}^{-1}=\left[\begin{array}{cc}
\mathbf{R}^{\top} & -\mathbf{R}^{\top} \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

$$
\mathbf{P}_{1}^{\prime}=\mathbf{K}_{1}\left[\begin{array}{ll}
\mathbf{R}^{\top} & -\mathbf{R}^{\top} \mathbf{t}
\end{array}\right] \quad \mathbf{P}_{2}^{\prime}=\mathbf{K}_{2}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \quad{\underline{\boldsymbol{\Pi}^{\prime}}}^{\top}=[\underbrace{\mathbf{n}^{\top} \mathbf{R}^{\top}}_{\mathbf{n}^{\top}} \underbrace{-\mathbf{n}^{\top} \mathbf{R}^{\top} \mathbf{t}+d}_{d^{\prime}}]
$$

$\mathbf{n}^{\prime}, d^{\prime}$ are parameters of the plane w.r.t. coordinate system of the second camera
2. Use eq. from Page 6, substitute $\mathbf{P}_{1} \leftarrow \mathbf{P}_{2}^{\prime}, \mathbf{P}_{2} \leftarrow \mathbf{P}_{1}^{\prime}, \underline{\boldsymbol{\Pi}} \leftarrow \underline{\boldsymbol{\Pi}}^{\prime}$

$$
\mathbf{H}_{21}=\mathbf{K}_{1}\left(\mathbf{R}^{\top}+\frac{\mathbf{R}^{\top} \mathbf{t n}^{\top} \mathbf{R}^{\top}}{d-\mathbf{n}^{\top} \mathbf{R}^{\top} \mathbf{t}}\right) \mathbf{K}_{2}^{-1}=\mathbf{K}_{1}\left(\mathbf{R}^{\top}+\frac{\mathbf{R}^{\top} \mathbf{t n}^{\prime \top}}{d^{\prime}}\right) \mathbf{K}_{2}^{-1}
$$

(can be easily verified that $\mathbf{H}_{21}=\mathbf{H}_{12}^{-1}$ from Page 6)

Alternative: use the general equation on Page 7 for $\mathbf{P}_{1}, \mathbf{P}_{2}$ swapped and the same $\underline{\boldsymbol{\Pi}}$.

Homology Induced by a Two Planes And Camera Motion

- A pair of cameras $\mathbf{K}_{\mathbf{1}}[\mathbf{I} \mid \mathbf{0}], \mathbf{K}_{\mathbf{2}}[\mathbf{R} \mid \mathbf{t}]$ observes a pair of planes $\underline{\boldsymbol{\Pi}}_{a}, \underline{\boldsymbol{\Pi}}_{b} \rightarrow \mathbf{H}_{12}^{a}, \mathbf{H}_{12}^{b}$
- Consider a composed homography 'there-and-back': $1 \rightarrow 2$ via $\underline{\Pi}_{a}$ and $2 \rightarrow 1$ via $\underline{\Pi}_{b}$

$$
\begin{aligned}
\mathbf{H} & =\mathbf{H}_{21}^{b} \mathbf{H}_{12}^{a}=\mathbf{K}_{1}\left(\mathbf{R}^{\top}+\mathbf{R}^{\top} \mathbf{t n}_{b}^{\prime \top} / d_{b}^{\prime}\right) \mathbf{K}_{\mathbf{2}}^{-1} \mathbf{K}_{\mathbf{2}}\left(\mathbf{R}-\mathbf{t n}_{a}^{\top} / d_{a}\right) \mathbf{K}_{1}^{-1}= \\
& =\mathbf{I}+\underbrace{\left(-\mathbf{K}_{\mathbf{1}} \mathbf{R}^{\top} \mathbf{t}\right)}_{\mathbf{v}} \underbrace{\left(\frac{\mathbf{n}_{a}^{\top}}{d_{a}}-\frac{\mathbf{n}_{b}^{\prime \top} \mathbf{R}}{d_{b}^{\prime}}+\frac{\mathbf{n}_{b}^{\prime \top} \mathbf{t \mathbf { n } _ { a } ^ { \top }}}{d_{a} d_{b}^{\prime}}\right) \mathbf{K}_{\mathbf{1}}^{-1}}_{\mathbf{a}^{\top}}=\mathbf{I}+\mathbf{v} \mathbf{a}^{\top}
\end{aligned}
$$

Planar homology \mathbf{H} with vertex \mathbf{v}, axis a, eigen value $\mu=1+\mathbf{a}^{\top} \mathbf{v}$: $\quad \mathbf{H}=\mathbf{I}+\mathbf{v a}^{\top}$
$\mathbf{H} \mathbf{v}=\mathbf{v}+\mathbf{v a}^{\top} \mathbf{v}=\left(1+\mathbf{a}^{\top} \mathbf{v}\right) \mathbf{v}=\mu \mathbf{v} \quad \mathbf{v}$ is eigenvector of \mathbf{H} corresponding to eigenvalue μ, as a planar point it is fixed w.r.t. the transformation

$$
\begin{array}{r}
\mathbf{a}^{\top} \underline{\mathbf{x}}=0 \Longrightarrow \mathbf{H} \underline{\mathbf{x}}=\underline{\mathbf{x}}+\mathbf{v a}^{\top} \underline{\mathbf{x}}=\underline{\mathbf{x}} \quad \mathbf{a} \text { is a line of fixed points -2D eigenspace } \\
\text { of } \mathbf{H} \text { with double eigenvalue } 1
\end{array}
$$

- \mathbf{a} and \mathbf{v} represents homogeneous image entities but their scale matters in $\mathbf{I}+\mathbf{v a}^{\top}$
- the point \mathbf{v} and all points on a line \mathbf{a} in one image are mapped to the second image to a points same for both \mathbf{H}_{12}^{a} and \mathbf{H}_{12}^{b} :
$\mathbf{H}_{12}^{a} \mathbf{v} \simeq \mathbf{H}_{12}^{b} \mathbf{v}$
$\left(\mathbf{H}_{12}^{a}\right)^{-\top} \mathbf{a} \simeq\left(\mathbf{H}_{12}^{b}\right)^{-\top} \mathbf{a}$
- \mathbf{a} is the image of the common line of the planes
$-\mathbf{v}=-\mathbf{K}_{\mathbf{1}} \mathbf{R}^{\top} \mathbf{t}$ is the epipole in the first image
- eigenvectors of \mathbf{H} are ($\mathbf{v}, \mathbf{x}_{1}, \mathbf{x}_{2}$) corresponding to eigenvalues ($\mu, 1,1$), and $\mathbf{a}=\mathbf{x}_{1} \times \mathbf{x}_{2}$ (when the matrix is multiplied by an unknown scale λ, the eigenvalues become $(\lambda \mu, \lambda, \lambda)$)

Homology Estimation from Known Correspondences

1. A point $\underline{\mathbf{u}}$ and its image $\lambda \underline{\mathbf{u}}^{\prime}=\mathbf{H} \underline{\mathbf{u}}$ define a common line $\underline{\mathbf{k}}$ (if not lying on a or \mathbf{v}). Since $\mathbf{a}^{\top} \underline{\mathbf{u}} \neq 0$, the vertex must lie on this line as well:

$$
\begin{gathered}
\underline{\mathbf{k}}^{\top} \underline{\mathbf{u}}=0, \quad \underline{\mathbf{k}}^{\top} \mathbf{H u}=0 \\
\underline{\mathbf{k}}^{\top}\left(\underline{\mathbf{u}}+\mathbf{v a}^{\top} \underline{\mathbf{u}}\right)=0 \quad \Longrightarrow \quad \underline{\mathbf{k}}^{\top} \mathbf{v a}^{\top} \underline{\mathbf{u}}=0 \quad \Longrightarrow \quad \underline{\mathbf{k}}^{\top} \mathbf{v}=0
\end{gathered}
$$

The vertex is estimated from two correspondences: $\mathbf{v}=\left(\underline{\mathbf{u}}_{1} \times \underline{\mathbf{u}}_{1}^{\prime}\right) \times\left(\underline{\mathbf{u}}_{2} \times \underline{\mathbf{u}}_{2}^{\prime}\right)$
2. When the vertex \mathbf{v} is known, a linear non-homogeneous system can be used for computing a. Let $\mathbf{H}=\mathbf{I}+\mathbf{v a}^{\top}, \underline{\mathbf{u}}_{i}^{\top}=\left[x_{i}, y_{i}, w_{i}\right], \underline{\mathbf{u}}_{i}^{\prime \top}=\left[x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right], \mathbf{v}^{\top}=\left[x_{v}, y_{v}, w_{v}\right]$.

$$
\lambda\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
w_{i}^{\prime}
\end{array}\right]=\underline{\mathbf{u}}_{i}+\mathbf{v} \mathbf{a}^{\top} \underline{\mathbf{u}}_{i}=\underline{\mathbf{u}}_{i}+\mathbf{v} \underline{\mathbf{u}}_{i}^{\top} \mathbf{a}=\left[\begin{array}{c}
x_{i} \\
y_{i} \\
w_{i}
\end{array}\right]+\left[\begin{array}{c}
x_{v} \underline{\mathbf{u}}_{i}^{\top} \\
y_{v} \underline{\mathbf{u}}_{i}^{\top} \\
w_{v} \underline{\mathbf{u}}_{i}^{\top}
\end{array}\right] \mathbf{a}
$$

$$
\begin{aligned}
x_{i}^{\prime}\left(w_{i}+w_{v} \underline{\mathbf{u}}_{i}^{\top} \mathbf{a}\right) & =w_{i}^{\prime} x_{i}+w_{i}^{\prime} x_{v} \mathbf{u}_{i}^{\top} \mathbf{a} & \left(x_{i}^{\prime} w_{v}-w_{i}^{\prime} x_{v}\right) \mathbf{u}_{i}^{\top} \mathbf{a} & =x_{i} w_{i}^{\prime}-x_{i}^{\prime} w_{i} \\
y_{i}^{\prime}\left(w_{i}+w_{v} \underline{\mathbf{u}}_{i}^{\top} \mathbf{a}\right) & =w_{i}^{\prime} y_{i}+w_{i}^{\prime} y_{v} \underline{\mathbf{u}}_{i}^{\top} \mathbf{a} & \left(y_{i}^{\prime} w_{v}-w_{i}^{\prime} y_{v}\right) \mathbf{u}_{i}^{\top} \mathbf{a} & =y_{i} w_{i}^{\prime}-y_{i}^{\prime} w_{i}
\end{aligned}
$$

The left sides of these eqs. consists of the same vector $\underline{\mathbf{u}}_{i}^{\top}$ multiplied by a scalar, i.e., they are linearly dependent, and only one eq. can be used \rightarrow three points needed.

$$
\mathbf{A}=\left[\begin{array}{c}
\left(x_{1}^{\prime} w_{v}-w_{1}^{\prime} x_{v}\right) \underline{\mathbf{u}}_{1}^{\top} \\
\left(x_{2}^{\prime} w_{v}-w_{2}^{\prime} x_{v}\right) \underline{\mathbf{u}}_{2}^{\top} \\
\left(x_{3}^{\prime} w_{v}-w_{3}^{\prime} x_{v}\right) \underline{\mathbf{u}}_{3}^{\top}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
x_{1} w_{1}^{\prime}-w_{1} x_{1}^{\prime} \\
x_{2} w_{2}^{\prime}-w_{2} x_{2}^{\prime} \\
x_{3} w_{3}^{\prime}-w_{3} x_{3}^{\prime}
\end{array}\right] \quad \mathbf{a}=\mathbf{A}^{-1} \mathbf{b}
$$

